
Tree Based Co-Clustering Identifies Variation in1

Chromatin Accessibility Across Hematopoietic Cell2

Types3

Thomas B. George1, Nathaniel K. Strawn1, and Sivan Leviyang1,*4

1Department of Mathematics and Statistics, Georgetown University, USA.5

*corresponding author, Sivan.Leviyang@georgetown.edu6

Abstract7

Chromatin accessibility, as measured by ATACseq, varies between hematopoi-8

etic cell types in different branches of the hematopoietic differentiation tree, e.g.9

T cells vs B cells, but methods that relate variation in chromatin accessibility10

to the placement of a cell type on the differentiation tree are lacking. Using an11

ATACseq dataset recently published by the ImmGen consortium, we construct12

associations between chromatin accessibility and hematopoietic cell types using13

a novel co-clustering approach that accounts for the structure of the hematopoi-14

etic, differentiation tree. Under a model in which all loci and cell types within15

a co-cluster have a shared accessibility state, we show that roughly 80% of cell16

type associated accessibility variation can be captured through 12 cell type clus-17

ters and 20 genomic locus clusters. Using publicly available ChIPseq datasets,18

we show that our clustering reflects transcription factor binding patterns with19

implications for regulation across cell types. Our results provide a framework20

for analysis of chromatin state variation across cell types related by a tree or21

network.22

key words: chromatin accessibility, hematopoiesis, clustering.23

1 Introduction24

The development of the ATACseq technique over the past decade has spurred a25

broad investigation of chromatin accessibility across cell types [4, 18]. In partic-26

ular, chromatin accessibility has been intensively studied using ATACseq across27

many hematopoietic cells types [8, 20, 32, 21, 5, 43, 39, 42]. Hematopoiesis,28

which involves the differentiation of a single hematopoietic stem cell into the dif-29

ferent blood cell types, is well characterized and the lineages through which the30

differentiation occurs can be described by a differentiation tree [33]. Chromatin31

accessibility has been shown to vary across different hematopoietic cell types,32

and these differences have been shown to be essential to cell differentiation and33

cell function, e.g. [13, 38, 36, 16, 21, 39].34

While many studies have shown differences of accessibility across hematopoi-35

etic cell types, we lack a quantitative description of how variation in accessibility36
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across the hematopoietic cell types reflects the form of the differentiation tree.37

In this context, many questions remain unanswered. Are most accessible ge-38

nomic loci accessible only in a specific, cell type or are a significant number39

of loci accessible jointly across a particular collections of cell types (e.g. all T40

cells)? If many loci are accessible across a particular collection of cell types,41

do those cell types form connected components of the differentiation tree, or42

are they dispersed? More generally, how do we quantitatively find and describe43

associations between chromatin accessibility and the differentiation tree? And44

finally, if such associations exist, how do they shape cellular regulation? An-45

swering these questions would provide a context in which to analyze the chro-46

matin accessibility of particular hematopoietic cell types and to understand47

differences in cellular regulation across the hematopoietic cell types.48

Here, we address these questions using a recently completed ImmGen ([35])49

consortium dataset published by Yoshida et al. [43]. Yoshida et al. char-50

acterized accessibility through bulk ATACseq across 90 murine, immune cell51

types. The availability of bulk ATACseq across such a large number of cell52

types using consistent protocols provides a novel opportunity to investigate ac-53

cessibility patterns in hematopoietic cell types. Typically, in ATACseq studies54

across multiple cell types, the ATACseq workflow ends with the formation of55

an accessibility matrix M , with the rows of M corresponding to genomic loci56

and the columns corresponding to cell types. M can be binary, reflecting a call57

of accessible or not-accessible for a particular genomic locus in a particular cell58

type or can take a range of values, for example if the height of the ATACseq59

peak is used to quantify accessibility. Describing chromatin accessibility across60

cell types can then be framed as describing the structure of M . In our context,61

we are interested in understanding how the structure of M , which is built from62

the Yoshida et al. ATACseq dataset, reflects the hematopoietic differentiation63

tree.64

In a general setting, the most common way to describe the structure of a65

matrix, M , is to construct another matrix, M̃ , with some simple form that is a66

good approximation of M . Standard approaches, such as the svd, are difficult67

to interpret, and have not been commonly used in the context of genomics68

data. Starting with gene expression datasets in the early 2000s [11, 26, 29] and69

extending to current ATACseq datasets, clustering has been the most common70

approach to describing M .71

In the case of chromatin accessibility datasets, a common clustering anal-72

ysis involves clustering of the columns (i.e. cell types), typically by dimension73

reduction followed by k-means or by hierarchical clustering, which identifies74

cell types with similar chromatin accessibility patterns across the genome, e.g.75

[7, 31, 9]. Column clustering has the advantage of decomposing the cell types of76

the differentiation tree into distinct clusters that can then be analyzed. How-77

ever, cell type clustering provides little information about the overall structure78

of M which typically has many more rows than columns. Row (i.e. locus) based79

clustering, which identifies loci with similar cell type accessibility patterns, is80

also common, e.g. [38, 20, 32, 21, 43]. Lara-Astoria et al., [20], used k-means81

to row cluster a dataset involving 16 hematopoietic cell types. They noted that82

loci in different row clusters were accessible across different cell types (see their83

Figure 3). For example, in one of their locus clusters, the loci were accessible in84

stem cells, but not in other cell types. Yoshida et al. used t-SNE to project rows85

(i.e. loci) onto 2-d and then identified loci that cluster in the 2-d space and are86

either accessible across all cell types or are accessible within a single cell type.87

Both these examples reflect an association between M and the differentiation88
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tree, but restriction to row clustering limits investigation of the association.89

Biclustering, which involves specifying a joint cluster of rows (i.e. loci) and90

columns (i.e. cell types), received significant attention during the 2000s in the91

context of gene expression data [6, 22, 34]. Biclustering is particularly effective92

at finding substructure within M and multiple biclusters can be found and93

used to construct an approximating matrix M̃ , but the resulting approximating94

matrix M̃ can be difficult to interpret and its computation is often unstable95

[27].96

Here, we take a middle ground between row or column based clustering97

and biclustering by considering the structure of M through co-clustering. By98

co-clustering, we mean selecting locus clusters and column clusters whose pair-99

ings provide a grid-like structure to the approximating matrix M̃ . In some100

sense, our work is an extension of the row clustering results of Lara-Astasio101

et al. (discussed above) which suggested that the structure of M can be well102

approximated by co-clustering. Our approach is to first row cluster, using the103

well-known Louvain algorithm, [3], which allows for scaling to large number104

of loci, a typical situation in chromatin studies. We then column cluster. But105

importantly, we develop a novel clustering algorithm that restricts column clus-106

tering to clusters that are composed of coherent components of the hematopoi-107

etic differentiation tree. This co-clustering provides a simple and biologically108

meaningful structure to M̃ in which a particular column cluster is a coherent109

hematopoietic phenotype and the overall structure of M can be viewed through110

the accessibility of these hematopoietic phenotypes across multiple locus clus-111

ters. Further, the construction allows us to characterize the variance in M that112

is associated with the differentiation tree.113

Previous authors have considered clustering loci in the context of a cell type114

network such as the hematopoietic differentiation tree, but typically with the115

goal of annotating loci [2, 44, 37]. For example, treeHMM [2] infers a hidden116

state at each genomic locus for each of the cell types through a hidden Markov117

model, with the hidden state serving as an annotation of the locus. From118

our perspective, these methods serve to construct a matrix M - which is the119

starting point of our analysis - with the value of M being the hidden state of120

the HMM across cell types and loci. In contrast to our setting, in which we121

just have ATACseq data, these methods allow for multiple assays for each cell122

type - for example ChIPseqs of different histone modifications - in which case123

constructing M is complex.124

We show that roughly 1/2 of accessible loci in the Yoshida et al. dataset are125

accessible in only one or two cell types in the differentiation tree. Putting aside126

these cell type specific loci, we show that the other loci fall into roughly 20127

locus clusters. Each of these locus clusters can be characterized by cell types128

in which the accessibility is relatively high and cell types that are relatively129

low, and the cell types with high accessibility compose a coherent component130

of the differentiation tree. We show that with 12 cell type clusters (i.e. column131

clusters) that decompose the differentiation tree, we can capture roughly 80%132

of the cell type specific variation in M . We also investigate transcription fac-133

tors (TFs) in the context of this co-clustering, showing that the co-clustered134

structure of M is reflected in the motif and binding patterns of TF across loci135

and cell types.136
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Figure 1: Differentiation Tree. We consider 78 hematopoietic cell types and
assume the shown tree structure. The tree structure is essentially the same as Fig
1A in Yoshida et al. Cell type names have been shortened for readability.

2 Results137

We downloaded the ATACseq data of Yoshida et al. from the NCBI GEO138

database [1]. The Yoshida et al. dataset includes ATACseq libraries across 90139

cell types, but we restricted our attention to 78 of the cell types, leaving out140

some outlier cell types. The differentiation tree we assume is shown in Figure141

1 and is the same as that of Yoshida et al. (compare to their Figure 1A) but142

without the outlier cell types. We applied the ENCODE ATACseq pipeline [10]143

to the Yoshida et al. ATACseq samples for each of the cell types, resulting144

in a collection of peaks representing accessible loci for each cell type. Then,145

following the approach of previous authors, e.g. [20, 8, 43], we constructed a146

master list of loci, composed of non-overlapping 250 base pair windows that147

intersected with every ATACseq peak across all cell types. We then formed148

the chromatin accessibility matrix M with the rows corresponding to each of149

the loci in the master list and the columns corresponding to the 78 cell types.150

An entry of M was 1 if the cell type had a peak that intersected with the151

corresponding 250 base pair locus, otherwise the entry was 0.152

An important issue in constructing M is the sensitivity, specificity trade-off153

in calling locus accessibility. We modulated this tradeoff by choosing different154

IDR values [23] in the ENCODE pipeline. The IDR is similar to an FDR and155

is used to determine reproducible peak calls. We considered IDR values of156

0.01, 0.05, 0.10 and 0.15 which led to roughly 159, 246, 331, and 424 thousand157

loci which were accessible, respectively, in one or more of our 78 cell types. As158

comparison, Yoshida et. al. considered roughly 512 thousand loci over their159

90 cell types. We defined a cell specific locus as a locus which was accessible160

in 2 or less cell types; we found that 38%, 43%, 51%, and 57% of the loci161

for the respective IDR values were cell specific. The increasing level of cell162

specific loci with increasing IDR may reflect increasing noise. Alternatively,163

cell specific accessible loci may have lower levels of accessibility, leading to164
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their being called only at larger IDR values. Regardless of the specific IDR, the165

number of cell specific and non-cell specific loci both constituted a substantial166

fraction of the total accessible loci. Below we present results for an IDR of167

0.01, taking a conservative approach to calling accessibility. Our results were168

essentially unchanged using other IDR, see Materials and Methods for further169

details.170

2.1 Row Clustering171

We clustered the rows (i.e. loci) of the accessibility matrix M using the Louvain172

algorithm [3]. Importantly, we only clustered the rows corresponding to non-173

cell specific loci, of which there were 98, 848 under 0.01 IDR. The Louvain174

algorithm takes a graph (i.e nodes and edges) as input and clusters the nodes to175

maximize a measure of community structure. In our setting, the rows (i.e. loci)176

of M form the nodes. To form edges, we placed an edge between two nodes if177

the corresponding rows had a statistically significant number of columns with178

equal entries (i.e.the two loci shared accessibility states across a statistically179

significant number of cell types). We clustered nodes with edges placed at an180

FDR of 0.0001, 0.001, 0.01, 0.05, and 0.10, respectively. As shown in Table181

1, the fraction of nodes connected by an edge to some other node fell as edge182

FDR was lowered, reflecting the existence of loci with cell type accessibility183

patterns that did not closely match any other loci. As the table further shows,184

the Louvain algorithm formed between 16 to 21 clusters with 30 or more nodes185

across all FDR, except in the case of an FDR of 0.0001. The results for an edge186

FDR of 0.0001 suggest an overly conservative approach in placing edges, leading187

to too many clusters and many isolated nodes. Below, we present results for the188

edge FDR of 0.001, choosing a relatively conservative value as we did for the189

IDR. Our results are essentially unchanged using the larger edge FDR values,190

see Materials and Methods for details.191

FDR connected loci number of large clusters loci in large clusters

0.0001 57% 36 87%
0.001 72 20 97
0.01 89 21 98
0.05 97 17 99
0.10 99 16 99

Table 1: The Effect of Edge FDR on Locus Clustering. To apply the Louvain
clustering algorithm, we constructed a graph in which loci were represented by
nodes and edges between nodes represented loci with similar accessibility patterns.
We placed edges between two nodes at different FDR. Shown are the percent of loci
that were connected to another locus (connected loci), the number of clusters with
more than 30 loci (number of large clusters), and the fraction of loci that fell within
a large cluster (loci in large clusters).

At an edge FDR of 0.001, the Louvain algorithm produced 100s of clusters,192

but the top 20 clusters included 97% of the nodes in the graph with the re-193

maining clusters all containing less than 30 nodes and most containing only 2194

nodes. The smaller clusters could reflect noise in calling loci and edges or they195

could reflect loci with uncommon patterns of accessibility. Table 2 shows the196
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number of loci in each of the largest 20 locus clusters. The first 13 clusters have197

greater than 2000 loci and the rest of the clusters have 100s of loci, except for198

cluster 19 which has 45 loci. Figure 2 shows the fraction of loci in each row199

cluster that are accessible within each of the 78 cell types.200

cluster size proximal distal cluster size proximal distal

0 5960 0.92 0.06 10 3449 0.09 0.86
1 9289 0.08 0.85 11 2453 0.05 0.85
2 6931 0.06 0.88 12 2152 0.34 0.59
3 6293 0.60 0.35 13 704 0.03 0.93
4 5979 0.19 0.75 14 673 0.02 0.91
5 5947 0.05 0.87 15 441 0.05 0.91
6 5549 0.10 0.83 16 304 0.04 0.87
7 5172 0.14 0.78 17 292 0.02 0.93
8 3689 0.04 0.88 18 173 0.04 0.91
9 3557 0.04 0.88 19 45 0.02 0.93

Table 2: Row Clusters. Twenty row clusters generated by the Louvain clustering
contained 95% of the non-cell specific loci. The twenty row clusters had varying
number of loci (size) and a different fraction of loci within 500 base pair (proximal)
and more than 3000 base pair (distal) from of a transcription start site (TSS). Row
cluster 0 was unique in having loci largely proximal to TSS, possibly acting within
promoters. All other clusters were largely composed of loci distal to TSS, possibly
acting within enhancers.

Notably, cluster 0 contains loci that are accessible in almost all cell types.201

As shown in Table 2, most of the loci in this cluster are within 500 base pair202

of a transcription start site (TSS), possibly acting within promoters. Most of203

the loci in the other locus clusters, accessible in only a subset of the cell types,204

were greater than 3000 base pair from a TSS, possibly acting within enhancers.205

Yoshida et al. noted a similar pattern, with loci close to TSS (what they term206

TSS OCR) accessible across most cell types and loci far from TSS (what they207

term DE OCR) accessible in only certain cell types.208

The clustering reveals clear associations between cell phenotype and acces-209

sibility. As an example, Figure 3 shows the fraction of loci in row clusters 5,210

7 and 9 called as accessible for each cell type. The figure gives the same data211

as rows 5, 7 and 9 of the heatmap in Figure 2, but in the context of the dif-212

ferentiation tree. In row cluster 5, roughly 50% − 80% of loci are accessible213

in macrophages and DCs, while in other cell types accessibility of these loci is214

less than 1%. In row cluster 7, between 40% − 80% of loci are accessible in215

macrophages, dendritic cells, and most B cells, while in other cell types less216

than 10% of loci are accessible. In row cluster 9, all B cells except pro-B cells217

and plasma B cells have between 60% − 95% of loci as accessible, while in all218

other cell types less than 10% are accessible. These three row clusters reflect a219

decomposition of accessible loci in macrophages, DC and B cells into loci that220

are accessible only in macrophages and DC, only in B cells and jointly. Some221

of the smaller row clusters, which reflect a more specific cell phenotype, have222

a more definitive separation of accessibility across cell type. For example, all223

704 loci in cluster 14 are accessible in ILC3 cell types and inaccessible in all224
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Figure 2: Row Clustering using the Louvain Algorithm. We used the Louvain
algorithm to cluster 98, 848 rows (i.e. loci) of the M matrix, giving 20 main row
(i.e. locus) clusters. Each row in the heat map corresponds to a row cluster and
each column to a cell type. The number of loci in each row cluster is given in Table
2. Heatmap colors show the fraction of loci within a row cluster that were accessible
for the particular cell type. Column groupings by cell type are based on our column
clustering for k = 12 discussed below.

other cell types. The less definitive separation in cell type accessibility we see225

in clusters 5, 7 and 9 may reflect experimental noise in the ATACseq workflow,226

but particular loci within a cell type may also vary in their accessibility over227

time due to unstable positioning of nucleosomes or due to a variation of cell228

state [41, 24].229

2.2 Cell Type Clustering230

With the row clustering fixed, we next applied a column (i.e. cell type) clus-231

tering. For column clustering, we chose the number of column clusters as a232

particular value, k, and produced a column clustering for each k = 2, 3, . . . , 12.233

Since one of our main motivations was to quantify the degree to which accessi-234

bility associates with the differentiation tree, we restricted column clusters to235

reflect the structure of the tree.236

Given a graph (i.e. nodes and edges), a collection of nodes is said to be237

connected if there is a path along the tree from every node to every other node.238

Importantly, restricting cell type clusters to connected components did not give239

good results. As an example, consider accessibility in locus (i.e. row) cluster 5,240

as shown in Figure 3. Only 5% of loci in the cluster are accessible in the MPP3241

progenitor cell type, but 80% the loci are accessible in macrophage and DC,242

which are children of the MMP3 cell type. Further, for pDC (plasmacytoid DC)243

and GN (neutrophil), which are also children of MMP3, the loci are relatively244

inaccessible (< 30%). To account for this dynamic, we say a cell types cluster245

respects the differentiation tree if the nodes in the cluster can be divided into a246

collection of connected components, and that these connected components each247
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A B C

Figure 3: Locus Accessibility Across Locus Clusters Reveals Cell Type
Specific Patterns. Shown is the fraction of loci that are accessible within a locus
(i.e. row) cluster across each of the cell types in the differentiation tree. Trees
correspond to locus cluster (A) 5, (B) 7, and (C) 9. Within each tree, the size of a
vertex provides the fraction of loci accessible for the corresponding cell type. Figure
2 provides the same data, but in a heatmap format.

A B C

Figure 4: Cell Type Clusterings that Respect the Hematopoietic Differ-
entiation Tree. Shown are the column (i.e. cell type) clusters for (A) k = 3 (B)
k = 8; and (C) k = 12, which is the cell type clustering we use throughout the text.
In panel C, clusters are specified by color and this color scheme is used throughout
the text. In panels A and B, clusters are specified by number.

descend from a particular parent node which need not be part of the cluster.248

For a given k, our clustering algorithm selected the cell type clustering that249

respected the tree and led to the best co-clustering approximation of M , see250

Methods for details.251

Figure 4 shows the column clustering produced for k = 3, 8, 12 on the dif-252

ferentiation tree. When k = 3, our clustering splits the differentiation tree into253

a stem/progenitor cell and myeloid cluster, a B cell cluster, and a T cell clus-254

ter. This clustering shows that the general division of immune cell types into255

myeloid, B, and T phenotypes is reflected in accessibility differences. Further,256

stem cell and progenitor cell types are most similar to myeloid cell types in257

their accessibility. Increasing to k = 8, splits stem cells and progenitor cells258

into separate clusters, puts the NK and ILC cell types into separate clusters, in-259

troduces a cluster containing plasma and memory B cells, and splits the myeloid260

compartment. Interestingly, neutrophils are grouped with stem cells, while DC,261

monocytes, and macrophages are split into their own compartment. By k = 12,262

the T cell compartment is split into a CD8 and CD4 cluster and an early T cell263

cluster.264
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A B

Figure 5: Co-clustered Approximation of the Accessibility Matrix M .

Heatmaps of (A) M̃ (12) and (B) M̃
(12)
i/a . The co-clustered matrices M̃ (12) and M̃

(12)
i/a

approximate M . Compare the heatmaps of this figure to the heatmap of M given
in Figure 2.

2.3 Co-clustered Approximation of the Accessibility Ma-265

trix266

For a particular k value, the combination of row and column clusters divided M267

into a grid of 20× k co-clusters. While M is a binary matrix, we built the co-268

clustered approximation of M , M̃ (k), by setting all the entries in a co-cluster to269

the mean value of the co-cluster entries in M . In constructing the matrix M̃ (k),270

we allowed each co-cluster to take on a different value. As a more restrictive271

model, we assumed that a cell type within a particular row (i.e. locus) cluster272

can be either in an relatively inaccessible (i) or accessible (a) state, rather than273

in a continuum of accessibility states. Biologically, this more restrictive model274

supports a single regulatory mechanism shaping the accessibility structure of275

the loci in each locus cluster. To examine the impact of this model, we built276

a matrix M̃
(k)
i/a which had the same co-clusters as M̃ (k), but with co-clusters277

sharing the same locus cluster restricted to have one of two values, representing278

either an inaccessible or accessible state. Figure 5 visualizes these two matrices279

for k = 12.280

We applied an ANOVA analysis to calculate the variation of M captured by281

the co-clustered matrices M̃ (k) and M̃
(k)
i/a . We calculated two R-squared values,282

R2
total and R2

cell type, for the fraction of the total variation in M captured by the283

co-clustering and the fraction of cell type (i.e. column) associated variation in284

M captured by the cell type clustering, respectively; see Methods for details.285

If each cell type was in a separate cluster, then R2
cell type would equal 1 and286

if all cell types were in a single cluster then R2
cell type would equal 0. Since287

we constructed our column clusters to respect the differentiation tree, we used288

R2
cell type as a measure of the association between accessibility and the structure289

of the differentiation tree. Figure 6 shows the R-squared values for different290

values of k. Also included in the figure are co-clusterings in which cell types291
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A B

Figure 6: Decomposition of Accessibility Variation. Using an ANOVA analy-
sis, we calculated an R-squared value giving the fraction of (A) total variation and
(B) cell type associated variation in M captured by our co-clustered approximation

matrices M̃ (k) and M̃
(k)
i/a as well as co-clustering in which columns were clustered

using hierarchical and k-means methods without taking the differentiation tree into
account.

were clustered using hierarchical and kmeans clustering, respectively. We used292

the R-squared values for these two general clustering methods, which are not293

constrained by the differentiation tree, as a baseline against which to compare294

the R-squared of our clustering approach, which is constrained by the tree.295

As seen in Figure 6A, the fraction of variation captured by the co-clustering296

varied between 0.20 to 0.40 as the number of cell type clusters k rose from 2297

to 12. In contrast, as shown in Figure 6B, the fraction of cell type associated298

variation captured by the cell type clusters rose from 0.20 to 0.80, meaning that299

our cell type clustering captured most of the association between accessibility300

and cell type, at least for the higher k values. The large fraction of the total301

variation in accessibility not captured by our co-clustering (roughly 0.6 for302

k = 12) is associated with the row clustering. As discussed above and reflected303

in Figure 2, within a row (i.e. locus) cluster, cell types tended to have either a304

high or low fraction of loci in an accessible state, but the high and low fraction305

were often intermediate, e.g. 0.50 and 0.10, instead of extreme, e.g. 1.0 and306

0. This within cell type variation could reflect noise in the ATACseq workflow,307

stochasticity in the accessibility state of the loci, or row clusters that are too308

broad.309

The R2
total and R2

cell type values based on the M̃ (k) co-clusterings were similar310

to values based on M̃
(k)
i/a and hierarchical and kmeans column clusterings. The311

similarity of the R-squared values between M̃ (k) and M̃
(k)
i/a provides support for312

viewing accessibility within a particular locus (i.e. row) cluster as falling into313

one of two states for all the cell types. The clusters inferred by the hierarchical314

and kmeans algorithms included clusters with cell types dispersed through the315

tree, but this increased degree of freedom did not associate with a better co-316

clustering approximation. The similarity of the R-squared values based on317

hierarchical and kmeans clusterings to our co-clusterings suggests that there318

is not a significant component of cell type variation that does not respect the319

differentiation tree.320
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Figure 7: Accessibility Co-Clusters. To investigate enrichment of TF motifs, we
defined a collection of accessibility co-clusters formed through the combination of

locus clusters and all cell types in the accessible state of M̃
(12)
i/a . In the heatmap,

accessibility co-clusters are the yellow blocks within each of the 20 rows, compare

to M̃
(k)
i/a in Figure 4B. As an example, accessibility co-cluster 5 is formed by the loci

in locus cluster 5 and the DC and macrophage cell type clusters

2.4 TF Motif Enrichment Across Co-Clusters321

Using methods introduced by Schep et al. in [30], Yoshida et al. computed322

an accessibility score measuring the enrichment of a TF motif on accessible323

loci within a particular cell type relative to the presence of the TF motif on324

accessible loci across all cell types. From the perspective of a matrix analysis,325

this is a column (i.e. cell type) based approach because enrichment is assessed326

over all accessible loci for a single cell type. To adapt the method of Schep et al.327

to co-clusters, we defined 20 co-clusters formed by the combination of each locus328

cluster and the cell types in the accessible state of M̃
(12)
i/a for that locus cluster,329

see Figure 7. We refer to these co-clusters as accessibility co-clusters. There330

is one accessibility co-cluster for each locus cluster. For example, accessibility331

co-cluster 9 is formed by the loci in locus cluster 9 and the cell types in our332

B cell, cell type cluster while accessibility co-cluster 5 is formed by the loci333

in locus cluster 5 and the DC and macrophage cell type clusters. For each334

accessibility co-cluster, we adapted the method of Schep et al. by considering335

enrichment of a TF motif over accessible loci in the accessibility co-cluster336

against a background of accessible loci over all other loci and cell types, see337

Materials and Methods for computational details.338

Importantly, since loci near TSS tended to be accessible across all cell types,339

we restricted our analysis to loci greater than 3000 base pair from a TSS. This340

had the advantage of restricting our analysis to regulatory features specific to341

putative enhancers, which are likely different than regulatory features specific342

to promoters. For TF motifs, we used the 76 TF motifs identified by Yoshida et343

al. as significantly associated with accessibility (see their Table S5). Of these344

TF motifs, we found that 43 were statistically enriched in at least one of the345
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Figure 8: TF Motif Enrichment Associates with Particular Accessibility
Co-clusters. We evaluated enrichment of each TF motif (columns) within each
accessibility co-cluster (rows). At an FDR of 0.05, we found 43 TF motif, co-cluster
pairings that were enriched (white coloring). As a particular example, the BCL11A
motif (far left column) was enriched in 6 accessibility co-clusters, in particular co-
cluster 9. Accessibility co-cluster 9 is formed by loci in row cluster 9 and B cell
types. The co-cluster is visualized in Figure 7 by the yellow block within row 9.

20 accessibility co-clusters (FDR 0.05).346

Figure 8 shows enrichment across the 43 significant motifs and the 20 ac-347

cessibility co-clusters. Of the 43 TF motifs that we found to be enriched in348

at least one accessibility co-cluster, the 7 motifs BCL11A, BCL11B, NFE2,349

NFKB1, RUNX1, RUNX2, RUNX3 were enriched in more than 3 accessibility350

co-clusters. The TF BCL11A is an instructive example. Yoshida et al. found351

BCL11A motifs enriched in accessible loci in B cells and myeloid cell types352

(see their Fig 5F). Similarly, we find BCL11A to be enriched in 4 accessibility353

co-clusters: the co-cluster formed by locus cluster 5 and myeloid cell types; the354

co-cluster formed by locus cluster 7 and stem cells, myeloid cells and B cells;355

the co-cluster formed by locus cluster 9 and B cells; and the co-cluster formed356

by locus cluster 12 and myeloid cells and B cells. Our enrichment analysis357

extends the results of Yoshida et al. by decomposing the cell type enrichment358

of BCL11A. For example, the enrichment of BCL11A in accessible B-cell loci359

reflects enrichment in loci that are jointly accessible across myeloid and B cells,360

but also in loci that are accessible only within B cells or myeloid cells, respec-361

tively.362

There were 13 motifs enriched for a single accessibility co-cluster with the363

most significant enrichment occurring for TCF12, TBX21, NFKB2, EBF1, and364

GATA3. EBF1 and GATA3 are instructive examples. Yoshida et al. also365

generated RNAseq datasets for each of their cell types. Based on these RNAseq366

datasets, EBF1 is expressed solely in B cells while GATA3 is expressed in ILC,367

NK, and T cells. Reflecting these expression patterns, EBF1 is known as a368

master regulator of B cell differentiation [25] and GATA3 is a regulator of T369

cell differentiation [14]. We found the EBF1 motif enriched in the co-cluster370

formed from locus cluster 9 and B cell types, matching the known regulation371

role of EBF1. In contrast, GATA3 was enriched in the co-cluster formed from372

locus cluster 13 and ILC3 cell types. This result matched at least part of the373
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expression pattern of GATA3, but did not reflect the regulatory role of GATA3374

in T cell differentiation. For GATA3, our enrichment shows that ILC3 cells375

have accessible loci that are more enriched for the GATA3 motif than T cells,376

but the regulatory significance of this result is unclear.377

The remaining 23 TF were enriched in 2 or 3 co-clusters. The transcription378

factors PAX5 and EOMES are instructive examples. PAX5 is a master regulator379

of B cell differentiation [15]. We find PAX5 enriched in the co-clusters formed380

by locus cluster 7 and myeloid and B cells and by locus cluster 9 and B cells.381

Yoshida et al.’s RNAseq data show that PAX5 is expressed solely in B cells, so382

PAX5 motifs in locus cluster 5 are not bound by PAX5 in myeloid cell types,383

but these loci are accessible, suggesting an association with other TFs. EOMES384

regulates effector NK and T cells [12] and, in line with this regulation, Yoshida385

et al.’s RNAseq data shows EOMES expressed in NK cells and CD8 T cells.386

We find EOMES enriched in two accessibility co-clusters, one formed by locus387

cluster 1 and T cells and one formed locus cluster 8 and NK cells. EOMES388

motifs are enriched in two locus clusters with loci that accessible in disjoint389

cell clusters, T and NK cell types, respectively. In contrast, PAX5 motifs were390

enriched in co-clusters that spanned multiple cell clusters, e.g. B cells and391

myeloid cells, over which the loci were jointly accessible.392

2.5 Association of TF ChIPseq Peaks and Co-Clusters393

To validate and explore the functional consequences of our TF motif analysis,394

we collected publicly available ChIPseq datasets from the GEO database for395

PAX5 and EOMES. We used PAX5 ChIPseq data from Revilla-I-Doming et396

al., [28], that sampled pro-B cells and mature B cells, and we used EOMES397

ChIPseq data from Wagner et al. [40] and Istaces et al. [17] that sampled398

NK cells and CD8 thymocytes, respectively. Briefly, we downloaded fastq files399

from GEO and applied a standard peak calling workflow to call peaks. We then400

identified intersections between our master collection of 159 thousand accessible401

loci and the TF peaks, see Materials and Methods for accessions and workflow402

details.403

Figure 9A shows a scaled count of the number of loci that contained a PAX5404

peak across different locus clusters for the mature-B and pro-B cell types. Since405

locus clusters differ in size, the raw count is not directly informative. Instead, we406

scaled the raw count by the expected count under the null of equal distribution407

of peaks across loci. A scaled count above one represents an enrichment of408

peaks in the locus cluster. Only locus clusters with a scaled count greater409

than 1 for either the mature B or pro-B ChIPseq datasets are shown. Our TF410

motif analysis showed enriched motifs in accessibility co-clusters 7 and 9 and,411

correspondingly, for both the pro-B and mature-B cell ChIPseqs, locus clusters412

7 and 9 had enriched counts.413

The mature B cell type falls within our B cells, cell type cluster. B cells414

are present in the accessibility clusters formed by locus clusters 0, 3, 7, 9 and 12415

(see the B cell columns of Figure 7). All of these locus clusters had enriched416

PAX5 peak counts, and only locus cluster 19 had an enriched count without417

associated accessibility in B cells. Overall, there was a statistically significant418

association between PAX5 peaks and accessibility (p-value 0.001,, hypergeomet-419

ric test). The pro-B cell type falls within our progenitor (pro) cell type cluster.420

Progenitor cells are present in 10 of the accessibility clusters and PAX5 peaks421

had enriched counts in 4 of these, reflecting a marginally significant association422

between peaks and accessibility (p-value 0.08). Interestingly, in locus cluster423
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A B

Figure 9: Distribution of PAX5 and EOMES ChIPseq Peaks Across Lo-
cus Clusters. The bar graphs show a scaled count (y-axis) of the number of loci
in a locus cluster (x-axis) that contained a ChIPseq peak for (A) PAX5 and (B)
EOMES ChIPseq datasets. Scaled counts took into account the different sizes of
our 20 locus clusters. A scaled count above 1 represents an enrichment of peaks
above an expectation under a uniform null. The locus clusters enriched for PAX5
ChIPseq peaks had a statistically significant association with accessibility in pro-B
and mature B cell types and we found an analogous association for EOMES peaks,
see text for details.

19, PAX5 peak counts were enriched in the mature B cell ChIPseq but not the424

pro-B cell ChIPseq. We would expect the reverse because accessibility cluster425

19 is specific for progenitor cells. This deviation might reflect differences in cell426

state between the ChIPseq studies and Yoshida et al.427

Figure 9B shows analogous results for EOMES ChIPseq peaks in the NK and428

CD8 thymocyte cell types. Our motif analysis showed enrichment of EOMES in429

co-clusters formed by locus clusters 1 and 8. Locus cluster 1 and 8 had enriched430

EOMES ChIPseq peak counts for both NK and CD8 thymocyte cell types and431

only the NK cell type, respectively. In-line with these results, early T cells -432

of which CD8 thymocytes are a member - and NK cells are both accessible in433

locus cluster 1 but only NK cells are accessible in locus cluster 8. Both NK434

and CD8 thymocytes had a statistically significant association between their435

accessibility co-clusters and the locus clusters at which EOMES peak counts436

were enriched (p-values 0.0003 and 0.001 respectively).437

For both PAX5 and EOMES ChIPseq datasets, we also calculated the frac-438

tion of loci with peaks that were cell specific. Recall, cell specific loci were439

accessible in 2 or less of the Yoshida et al. cell types we considered. For PAX5440

and EOMES, roughly 15% and 5% of loci with peaks were cell specific, respec-441

tively. In contrast, roughly 80% and 70% of loci with peaks fell within one of442

our 20 locus clusters, demonstrating that accessibility patterns across multiple443

cell types capture the dominant portion of TF binding, at least for EOMES444

and PAX5 and for the accessible loci we consider.445
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3 Materials and Methods446

3.1 Construction of the M matrix447

We downloaded the Yoshida fastq files from GEO accession GSE100738. We448

used the standard ENCODE ATACseq workflow to call peaks at different IDR449

as described in the text. We collected all peaks called by the ATACseq workflow450

across all cell types. Each peak was associated with a locus on the murine mm10451

genome centered at the peak summit and extended 250 base pairs up and down452

stream. Then for each chromosome, moving 5′ to 3′, we sequentially evaluated453

the loci and formed a master list of loci. We did this in a greedy manner. If we454

encountered a locus that did not intersect with a locus already in our master455

list, we added the locus to the master list, otherwise we moved on to the next456

locus. Previous authors used a similar approach [20, 8, 43]. Given the master457

list of loci, we then formed M . A locus contained a peak for a given cell type458

if any of the cell types peaks intersected with the locus.459

3.2 Locus Clustering460

As an input graph to the Louvain algorithm, we let each row of M be a node461

and placed edges between rows (i.e. nodes) at a different FDR as described in462

the text. Each row consisted of 78 ones and zeros. Given two rows with n and463

N ones, respectively, we let s be the number of columns in which the two rows464

shared a 1. We assumed that s had a hypergeometric distribution (78 balls, N465

white balls and n draws), which corresponds to a null in which we permute the466

column of one of the rows. We then calculated the p-value cutoff that would467

lead to the specific FDR given the matrix M . Once the graph was constructed,468

we used the Python sklearn package implementation of the Louvain algorithm469

to perform the clustering.470

3.3 Cell Type Clustering471

On the differentiation tree, we defined a cell type cluster that respected the472

tree by a particular node a, which we called the cluster root node, and a subset473

of its children Ca. The corresponding cluster contained all the nodes in Ca and474

a subset (possibly empty) of descendants of each of these nodes that formed a475

connected component of the tree. The root node a could be a member of the476

cluster, but could be kept out as well. This gave us a cluster that respected477

the tree, as described in the text. Partitioning the tree into k clusters is then478

equivalent to identifying k such a, Ca combinations. We took a greedy approach479

to finding the optimal k clusters that minimized ‖M − M̃ (k)‖22. We started the480

algorithm by selected k root nodes randomly on the tree and for each root node481

a, including all its children in Ca. Then at each iteration, we attempted to swap482

a root node with another node and attempted to swap the current subset of Ca483

with another subset. We repeated this iteration until no swaps improved the484

‖M − M̃ (k)‖22. Since the problem is non-convex, we tried 20 different starting485

clusters for each k.486

3.4 ANOVA Decomposition487

For notational convenience, let M and M̃ (k) be the matrices M and M̃ (k) re-488

stricted to rows in a particular locus cluster. Then a standard ANOVA analysis489
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decomposes the variation of M into a portion predicted by M̃ (k) and a residual490

portion. The associated R-squared is given by,491

R2
total = 1− ‖M − M̃

(k)‖22
‖M − µ‖2

,

where µ is the mean of the entries of M . R2
total is exactly the standard R-492

squared of a linear predictor. The means of the columns of M are not affected493

by column clustering. With this in mind, we consider the prediction of the494

column means of M , which we write as M·,i, by M̃ (k). Then the portion of495

variation of M·,i predicted by M̃ (k) is given by the R-squared expression,496

R2
cell type = 1− ‖M·,i − M̃

(k)‖22
‖M·,i − µ‖22

.

We calculate R-squared over the whole matrix M by averaging the R-squared497

values over the locus clusters.498

3.5 TF Motif Analysis499

Most of our TF analysis followed the workflow described in Schep et al. in [30].500

We downloaded motif descriptions using the R package chromVARmotifs and501

then used the R package motifmatchR to call motifs on the DNA sequences502

spanned by our loci at a p-value of 5E-6. This gave us a binary matrix, A,503

analogous to M except that columns corresponded to motifs and a 0 and 1504

value in an entry corresponded to the absence or presence of a motif at a locus,505

respectively.506

To determine motif enrichment for a co-cluster, for each cell type in the507

co-cluster, we calculated the fraction of accessible loci that contained the motif508

and then averaged over all cell types in the cluster. This gave us a raw co-509

cluster score r. We computed an analogous raw null score n using all loci and510

cell types not in the co-cluster. Finally, we computed an enrichment score,511

enrichment score =
r − n
r + n

(1)

Schep et al. computed a similar score, except that they normalize r − n by a512

variance term. We found that the variance term was often small, leading to513

statistical instability, so instead we normalized by r + n. We then permuted514

columns to find a cutoff to our enrichment score that gave a 0.05 FDR. We515

called a motif as enriched for a co-cluster if its enrichment score exceeded the516

cutoff.517

3.6 ChIPseq Workflow518

We downloaded fastq files from Revilla-I-Doming et al., [28] with GEO acces-519

sions GSM932921, GSM932922 GSM932925, and GSM932926. We downloaded520

the fastq files from Wagner et al. [40] and Istaces et al. [17] with GEO accessions521

GSM3900380, GSM3900381 and GSM3559328, GSM3559327, respectively. We522

aligned the fastq to the murine mm10 genome using bowtie2 (-X1000 was the523

only non-standard flag) [19], filtered for poorly aligned reads and duplicates524

using samtools and Picard, and called peaks using MACS2 [45]. We called a525

loci from our ATACseq analysis as containing a ChIPseq peak if the ChIPseq526

peak summit was within the locus 500 base pair window.527
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4 Discussion528

The recently published ATACseq dataset of Yoshida et al. provides a valuable529

resource through which to investigate patterns of chromatin accessibility across530

immune cell types. Here, we used this dataset to investigate the degree to which531

co-clustering of genomic loci and cell types can capture and describe patterns532

of chromatin accessibility. Some genomic loci were accessible in only 1 or 2533

cell types, and we found that roughly half of accessible loci over immune cell534

types were of this type, in line with previous analyses of datasets encompassing535

non-hematopoietic cell types [38]. The other half of the accessible loci, which536

are accessible in multiple cell types, were the focus of our study. We found that537

essentially all of these loci, > 95%, can be grouped into 20 locus clusters. Within538

each locus clusters, the cell types showed roughly two states of accessibility539

reflecting a relatively high and low percentage of the loci that were accessible,540

respectively. For example, in locus cluster 1 which was composed of roughly541

9000 loci, we found that in most T cell types, roughly 60% of the loci were542

accessible while in all other cell types roughly 0 − 10% were accessible. The543

dichotomy between cell types was more extreme in some locus clusters. For544

example, in locus cluster 8, we found all loci were accessible in NK cells but not545

in any other cell type. Ideally, in terms of cluster coherence, locus clustering546

might lead 100% or 0% of loci being accessible within a cell type. Certainly547

some of the locus cluster incoherence we see results from noise in the ATACseq548

workflow. But chromatin accessibility is not static, and some portion of the549

incoherence may reflect stochasticity in nucleosome positioning, binding of TF550

complexes, or other dynamic effects [41, 24]. It could also be that more locus551

clusters would result in greater coherence. Changing the graph we used as552

input to the Louvain clustering did not lead to more coherent locus clusters,553

but further work is needed to explore this issue.554

Given the locus clusters, we found that a modest number of cell type clus-555

ters could capture a large fraction of the variation in accessibility associated556

with cell types. Using 12 cell type clusters, we were able to capture 80% of557

the cell type associated variation. Further, the cell type clusters we formed558

reflected coherent phenotypes as defined by the hematopoietic differentiation559

tree. When we formed cell type clusters using methods that were insensitive to560

the differentiation tree, the fraction of variance captured did not improve. Our561

cell type clustering extends the results of Lara-Astosia et al. [20] describing an562

association between accessibility and hematopoietic cell type.563

Ultimately, we characterize chromatin accessibility to better understand cel-564

lular regulation. In particular, chromatin accessibility is strongly associated565

with TF binding [18]. Using both TF motif analysis and existing ChIPseq566

studies, we’ve shown that TF binding patterns associated with our co-clusters.567

Importantly, our results show that some TFs act across co-clusters. For ex-568

ample, we found that PAX5 motifs are enriched in two sets of loci. One set569

is accessible only in B cells while the other is accessible in both B cells and570

some myeloid cell types. Our ChIPseq analysis confirmed that PAX5 bound to571

both types of loci in B cells. Myeloid cell types do not express PAX5, at least572

at homeostasis, but the loci that are accessible in myeloid cell types and that573

are bound by PAX5 in B cells may regulate myeloid cells through other TFs or574

under non-homeostatic conditions. We found a different binding pattern for the575

transcription factor EOMES. In our ChIPseq analysis, we found that EOMES576

bound loci in NK and T cells, but that loci bound in NK cells were inaccessible577

in T cells and vice-versa. Our motif analysis suggests that many TF act across578
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several co-clusters, in a manner similar to PAX5 and EOMES. These results579

suggest that analyzing patterns of chromatin accessibility through co-clustering580

or through a biclustering method may be essential in understanding the overlap581

and divergence of regulation in different cell types.582

From a computational viewpoint, our work provided two insights. First, we583

found that co-clustering, rather than biclustering, provided a relatively stable584

and scalable means of analyzing ATACseq datasets across many cell types. We585

initially attempted a biclustering approach but found that solutions depended586

on starting conditions of the algorithm, that the algorithms did not scale well587

to the large number of accessible loci, and that interpretation was difficult.588

Second, we developed a novel graph based clustering algorithm to account for589

the hematopoietic differentiation tree. In this context, the novelty is the form590

that we assumed for the clusters. Initially, we formed clusters as connected591

components of the differentiation tree, but we found that the clusters created592

did not approximate the Yoshida et al. data well. Certain cell types have593

accessibility patterns that are different than the patterns of their parent cell594

type and connected components force the parent to be included with the chil-595

dren. Accounting for this effect vastly improved the fit of our clustering and596

points to the need for clustering approaches that account for the specifics of597

differentiation biology.598

Our analysis involved several computational choices that may affect our599

results. We made binary calls of whether a locus was accessible or inaccessible.600

Using a continuous measure may better reflect chromatin accessibility biology601

and may affect our clustering results. From a computational perspective, we602

depended on the binary nature of the data to construct the input graph to603

the Louvain algorithm. We have also not explored an iterative co-clustering604

approach, e.g [6]. Our two-step clustering of loci followed by cell types makes605

our approach simple and scalable, but an iteration may lead to better results.606

Biologically, we are limited to the cell types given in the Yoshida et al dataset607

and our assumption of a particular form to the differentiation tree.608

Overall, we have demonstrated a co-clustering approach that quantifies and609

delineates the association between chromatin accessibility and immune cell610

type. Our results provide a context in which to assess chromatin accessibility of611

other immune cell types. With the increased application of single cell ATACseq612

and the likely generation of even larger bulk ATACseq datasets, computational613

approaches to characterize chromatin accessibility patterns over an increasingly614

broad set of hematopoietic cell types will be needed.615
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B. Göttgens, Q. Li, D. Bodine, S. Mahony, J. Taylor, G. A. Blobel, M. J.780

Weiss, Y. Cheng, F. Yue, J. Hughes, D. R. Higgs, Y. Zhang, and R. C.781

Hardison. An integrative view of the regulatory and transcriptional land-782

scapes in mouse hematopoiesis. Genome Research, 30(3):472–484, 2020.783

[43] H. Yoshida, C. A. Lareau, R. N. Ramirez, S. A. Rose, B. Maier, A. Wrob-784

lewska, F. Desland, A. Chudnovskiy, A. Mortha, C. Dominguez, J. Tellier,785

E. Kim, D. Dwyer, S. Shinton, T. Nabekura, Y. L. Qi, B. Yu, M. Robinette,786

K. W. Kim, A. Wagers, A. Rhoads, S. L. Nutt, B. D. Brown, S. Mostafavi,787

J. D. Buenrostro, and C. Benoist. The cis-Regulatory Atlas of the Mouse788

Immune System. Cell, 176(4):897–912.e20, 2019.789

[44] Y. Zhang, L. An, F. Yue, and R. C. Hardison. Jointly characterizing epige-790

netic dynamics across multiple human cell types. Nucleic Acids Research,791

44(14):6721–6731, 2016.792

[45] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bern-793

stein, C. Nussbaum, R. M. Myers, M. Brown, W. Li, and X. S. Shirley.794

Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9(9), 2008.795

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.07.443145doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443145
http://creativecommons.org/licenses/by-nc-nd/4.0/

