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 9 

Microbes exhibit an astounding phenotypic diversity, including large variations in 10 

growth rates and their ability to adapt to sudden changes in conditions. 11 

Understanding such fundamental traits based on molecular mechanisms has largely 12 

remained elusive due to the complexity of the underlying metabolic and regulatory 13 

network. Here, we study the two major opposing flux configurations of central carbon 14 

metabolism, glycolysis and gluconeogenesis using a coarse-grained kinetic model. Our 15 

model captures a remarkable self-organization of metabolism in response to nutrient 16 

availability: key regulatory metabolites respond to the directionality of flux and 17 

adjust activity and expression levels of metabolic enzymes to efficiently guide flux 18 

through the metabolic network. The model recapitulates experimentally observed 19 

temporal dynamics of metabolite concentrations, enzyme abundances and growth 20 

rates during metabolic shifts. In addition, it reveals a fundamental limitation of flux 21 

based sensing: after nutrient shifts, metabolite levels collapse and the cell becomes 22 

‘blind’ to direction of flux. The cell can partially overcome this limitation at the cost 23 

of three trade-offs between lag times, growth rates and metabolic futile cycling that 24 

constrain the efficiency of self-organization after nutrient shifts. We show that these 25 

trade-offs impose a preferential flux direction and can explain the glycolysis 26 

preference observed for Escherichia coli, Saccharomyces cerevisiae and Bacillus 27 

subtilis, which only shift fast to glycolysis, but slow to gluconeogenisis Remarkably, 28 

as predicted from the model, we experimentally confirmed this preference could also 29 

be reversed in different species. Indeed, P. aeruginosa shows precisely the opposite 30 

phenotypic patterns, switching very quickly to gluconeogenesis, but showing multi-31 

hour lag times that sharply increase with pre-shift growth rate in shifts to glycolysis. 32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.07.443112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443112
http://creativecommons.org/licenses/by-nc-nd/4.0/
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These trade-offs between opposing flux directions can explain specialization of 33 

microorganisms for either glycolytic or gluconeogenic substrates and can help 34 

elucidate the complex phenotypic patterns exhibited by different microbial species.  35 
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Introduction 36 

Fast growth and quick physiological adaptation to changing environments are key 37 

determinants of fitness in frequently changing environments that microorganisms 38 

encounter in the wild. One example of such a switch happens when microbes deplete their 39 

primary nutrient. Escherichia coli preferentially utilizes hexose sugars like glucose that are 40 

metabolized via glycolysis (Gerosa et al., 2015a). To maximize growth on sugars, E. coli 41 

excretes substantial ‘overflow’ production of acetate, even the presence of oxygen (Basan 42 

et al., 2015a, 2017). This naturally leads to bi-phasic growth, where initial utilization of 43 

glucose is followed by a switch to acetate. Similar growth transitions from preferred 44 

glycolytic substrates to alcohols and organic acids ubiquitously occur for microbes in 45 

natural environments (Buescher et al., 2012; Otterstedt et al., 2004; Zampar et al., 2013). 46 

Since these fermentation products are all gluconeogenic, they require a reversal of the flux 47 

direction in the glycolysis pathway. In a previous work (Basan et al., 2020), we showed 48 

that multi-hour lag phases occur in shifts from glycolytic to gluconeogenic conditions and 49 

we observed a trade-off between growth rate and lag time, where faster growth before the 50 

shift resulted in long lager phases. We showed that these lag phases result from an inability 51 

of E. coli to establish net gluconeogenic flux, caused by the depletion of metabolite pools 52 

throughout the gluconeogenesis pathway, and similar obervations where made for Bacillus 53 

subtilis and the yeast Saccharomyces cerevisiae. For organisms with preference for 54 

glycolytic substrates, we showed that shifts in the opposite direction, from gluconeogenic 55 

substrates to glycolytic ones, occur much more quickly, in some cases without detectable 56 

lag phases (Basan et al., 2020).  57 

 58 

These findings raise several fundamental questions: Why do shifts from glycolytic to 59 

gluconeogenic conditions result in lag times of many hours, while shifts from 60 

gluconeogenic to glycolytic conditions only take minutes? Is this preference for glycolysis 61 

a fundamental property of central metabolism, or rather an evolutionary choice? And why 62 

are microorganisms like E. coli or S. cerevisiae unable to overcome lag phases by 63 

appropriate allosteric and transcriptional regulation? At the core of these questions, is a 64 

gap in understanding of how central carbon metabolism adjusts itself to nutritional changes. 65 

Because most organisms can use both glycolytic and gluconeogenic substrates as sole 66 
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carbon sources, central metabolism must self-organize to generate all required precursors 67 

for new biomass from both directions.  68 

 69 

Over the last two decades metabolic models have made substaintial progress in describing 70 

metabolism during steady state exponential growth, elucidating the flux and regulatory 71 

network that govern the coordination of mirobial metabolism (Bennett et al., 2009; Bordbar 72 

et al., 2014; Chubukov et al., 2014; Gerosa et al., 2015b; Link et al., 2013; Noor et al., 73 

2010, 2014; Vasilakou et al., 2016). Such metabolic model were successfully expanded to 74 

dynamics environments (Zampar et al., 2013; Chassagnole et al., 2002; Chakrabarti et al., 75 

2013; Saa and Nielsen, 2015; Andreozzi et al., 2016; Yang et al., 2019), and used to gather 76 

vital information about metabolism, using perturbations (Link et al., 2013), stimulus 77 

response experiments (Chassagnole et al., 2002) or sequential nutrient depletion (Yang et 78 

al., 2019) to validate and improve metabolic models. But, dynamic changes of metabolism 79 

continue pose a considerable challenge, in particular when the proteome undergoes 80 

reorganization, as changes in enzyme abundances influence fluxes and metabolite 81 

concentrations, and vice-versa, metabolites regulate enzyme expression. The resulting 82 

explosion of parameters prevents accurately predicting how metabolism re-organizes, and 83 

how long this adaptation takes. 84 

 85 

Here, we introduce a minimal kinetic model of central carbon metabolism to overcome this 86 

challenge. Our model focuses on the dynamics of key regulatory metabolites in central 87 

metabolism and couples metabolism to enzyme abundance, and enzyme expression to the 88 

concentration of regulatory metabolites, via allosteric and transcriptional regulation, flux 89 

dependent protein synthesis and growth. This self-consistent formulation of metabolism 90 

and growth bridges fast metabolic time scales with slow protein synthesis. As we 91 

demonstrate, our model can explain a major reorganization of metabolism in response to 92 

nurtients shifts: the switching on the directionality of metabolic flux between glycolysis 93 

and gluconeogenesis. Dependent on the required directionality of flux in central 94 

metabolism, enzymes catalyzing the required flux direction are expressed and catalytically 95 

active, while enzymes catalyzing the opposite flux are expressed at low levels and their 96 

activities are repressed by allosteric regulation. This self-organization is key for enabling 97 
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fast growth and preventing costly futile cycling between metabolic reactions in opposing 98 

directions, which can inhibit flux and deplete ATP in the process. Crucially, the model 99 

reveals a choice of one preferred flux direction determined by the relative strength of 100 

different allosteric regulations and imposes that lag phases are constrained by tradeoffs 101 

with the amount of futile cycling and growth rate before the switch.  102 
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 103 

Box 1 Integrated kinetic model of central carbon metabolism. The detailed metabolic reaction network of central 

carbon metabolism is coarse-grained to a minimal network, by combining irreversible glycolytic (orange) and 

gluconeogenic reactions (blue), as well as metabolites. Influx can either occur from glycolytic carbon sources (e.g. 

glucose) or TCA carbon sources (e.g. acetate). (1) Gatekeepers to the central section of glycolysis and 

gluconeogenesis are the two irreversible reactions (glyup, gngup and glylow, gnglow) that feed and drain FBP and PEP. 

The irreversible reactions are allosterically regulated by FBP (Fructose 1-6-bisphosphate) and PEP 

(phosphoenolpyruvate), where ‘outward’ facing reactions are activated (green arrows) and ‘inward’ facing 

reactions are repressed (red arrow). Fluxes 𝑟𝑖  of enzymes 𝑖 depend on enzyme abundances 𝜙𝑖, catalytic rates 𝑘𝑐𝑎𝑡,𝑖  

and allosteric regulations, modeled as a Hill function below its maximal saturation (𝑐𝑗 𝑐𝑗
∗)Τ 𝛼𝑖 , where 𝑐𝑗  is the 

concentration of the regulatory metabolite and 𝑐𝑗
∗ is a reference concentration. Reversible fluxes are modeled with 

simple mass action kinetics. (2) Biomass production requires precursors from glycolytic carbons, PEP and TCA 

carbons, and is implemented in the model as single reaction that drains all three metabolites simultaneously at 

catalytic rate 𝑘𝑐𝑎𝑡,𝐵𝑀. (3) Glycolytic and gluconeogenic enzymes are regulated by Cra, which is in turn modulated 

by FBP. In the model, we assume enzyme expression to linearly depend on FBP concentration 𝑐𝐹𝐵𝑃 . Growth rate: 𝜇, 

steady state abundance: 𝜙𝑖
∗ , steady state concentration 𝑐𝐹𝐵𝑃

∗  and 𝑥𝑖 & 𝑥𝑗 modulate the sensitivity of regulation to 

FBP. Glycolytic and gluconeogenic enzymes are produced as part of protein synthesis. Thus in the model, flux 

through metabolism automatically leads to synthesis of metabolic enzymes and biomass production, resulting in 

dilution of existing enzymes.  
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Results 104 

An integrated, self-consistent kinetic model of glycolysis / gluconeogenesis 105 

Using a theoretical model we wanted to understand how microbes self-organize during 106 

glycolytic and gluconeogenic growth, and how the re-arrangement of this self-organization 107 

determines lag phases. The complexity of central metabolism with intertwined regulation 108 

at different levels in even comparably simply bacteria poses a challenge to quantitative 109 

mechanistic understanding because causal effects behind phenotypes are hard to trace to 110 

their molecular origins. We thus sought to construct a minimal model that focuses on the 111 

biochemical pathway topology in E. coli, and the key regulations that differentiate 112 

glycolysis and gluconeogenesis. The model, illustrated in Box 1, is based on topology of 113 

the biochemical network and allosteric and transcriptional regulation of 114 

glycolysis/gluconeogenesis that has been characterized for E. coli (Berger and Evans, 115 

1991; Ramseier et al., 1995; Johnson and Reinhart, 1997; Pham and Reinhart, 2001; 116 

Kelley-Loughnane et al., 2002; Hines et al., 2006; Fenton and Reinhart, 2009). The 117 

defining features of the model are a set of irreversible reactions (one-directional black 118 

arrows in ‘orange’ and ‘blue’, Box 1) in the upper and lower part of central metabolism. 119 

While not irreversible in an absolute sense, so-called irreversible reactions are 120 

thermodynamically favored so much in one direction that they can be effectively 121 

considered as irreversible (Noor et al., 2014). As a result, these irreversible reactions in the 122 

glycolysis/gluconeogenesis pathway are catalyzed by distinct enzymes, depending on the 123 

directionality of flux in the glycolytic or the gluconeogenic direction (‘bold font, 124 

blue/orange’). Expression levels of these key enzymes, combined with allosteric regulation 125 

and substrate levels, determine the flux through central metabolism.  126 

 127 

There are two sets of irreversible reactions in E. coli central metabolism. First, the 128 

irreversible reaction between fructose-6-phosphate (F6P) and fructose 1,6-bisphosphate 129 

(FBP), catalyzed in the forward direction by 6-phosphofructokinase (PfkA) and backward 130 

by fructose-1,6-bisphosphatase (Fbp), which we refer to as upper 131 

glycolysis/gluconeogenesis, respectively. Second, two sets of enzymes that produce 132 

phosphoenolpyruvate (PEP) and pyruvate (PYR), respectively, which we coarse-grain into 133 

two effective enzymes, called lower glycolysis/gluconeogenesis (Box 1, left). While we do 134 
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not explicitly consider the pentose phosphate pathway in our model, it can effectively be 135 

considered as an irreversible reaction of upper glycolysis (Stincone et al., 2015).   136 

 137 

In E. coli, the activity of enzymes at these irreversible reactions is controlled by several 138 

known allosteric interactions: FBP allosterically activates lower glycolysis PykF (Valentini 139 

et al., 2000), whereas PEP allosterically inhibits PfkA (Pham and Reinhart, 2001) and 140 

activates Fbp in upper glycolysis (Hines et al., 2006). Due to their central role we model 141 

the dynamics of FBP and PEP explicitly using modified Michaelis-Menten kinetics (Box 142 

1, Eq. (1)). The flux that links FBP and PEP is the result of a series of reversible enzymatic 143 

reactions (see Box 1, left), which we coarse-grain into a single reversible reaction (‘super-144 

eno’, bidirectional black arrow in Box 1, right) and model with mass action kinetics (Box 145 

1, Eqs. (2, 3)).  146 

 147 

To accurately model growth transitions, biomass production must be taken into account. 148 

Biomass production is connected to our model in three ways. First, biomass production 149 

requires metabolites and thus drains them from the metabolic network, which in our case 150 

concerns three coarse-grained glycolytic intermediates with a specific stochiometric ratio 151 

that is set by the biomass composition (Supporting Information, Sec. 3.7). This biomass 152 

production yields a drain of the three metabolites, modeled by linear dynamics (Box 1, Eq. 153 

(4)). Second, part of the newly synthesized biomass are the enzymes themselves, which are 154 

primarily regulated by the transcription factor Cra in E. coli (Cortay et al., 1994; Ramseier 155 

et al., 1995), which is itself repressed by binding of the metabolite Fructose-1-phosphate, 156 

closely related to fructose 1-6-bisphosphate (FBP) (Folly et al., 2018). As a first-order 157 

approximation, we assume that the expression level of glycolytic and gluconeogenic 158 

enzymes linearly depends on FBP (Kochanowski et al., 2013a) (Box 1, Eqs. (5-6)), which 159 

will be sufficient to reproduce the empirical enzyme abundances, as we will see later in the 160 

text. Third, biomass accumulation is equivalent to growth and results in dilution of existing 161 

enzymes proportional to growth rate (Box 1, Eqs. (5-6)).  162 

 163 

In total, the model encompasses four irreversible reactions, each regulated allosterically by 164 

either FBP or PEP, and transcriptionally by FBP via cra, and one reversible reaction that 165 
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connects FBP and PEP. We used measured metabolite concentrations for growth on 166 

glucose (Kochanowski et al., 2013a) and Michaelis constants (Berman and Cohn, 1970; 167 

Zheng and Kemp, 1995; Donahue et al., 2000) to constrain enzymatic parameters, and 168 

biomass yield (Link et al., 2008) and density (Basan et al., 2015b) on glucose to constrain 169 

fluxes. We used the level of futile cycling in the upper and lower reactions in exponential 170 

glucose growth conditions as fitting parameters such that the model reproduces the 171 

observed lag times in this paper, see SI Sec. 3.2 for details. 172 

 173 

Central carbon metabolism self-organizes in response to substrate availability 174 

To test whether this simple model could recapitulate steady-state glycolytic and 175 

gluconeogenic growth conditions for Escherichia coli, we compared it to published 176 

metabolite and proteomics data for steady state exponential growth on glucose and acetate 177 

as sole carbon substrates (Basan et al., 2020). Indeed, the model reached distinct steady-178 

Figure 1 Self-organization of metabolism in glycolysis and gluconeogenesis (A & B) Graphic summary of the 

reorganization in glycolysis and gluconeogenesis. Linewidth of reactions arrows indicate magnitude of flux. Font 

size of metabolites and enzymes indicate metabolite concentrations and enzyme abundances, respectively. Active 

regulation is indicated by red/green color, inactive regulation is grey and dashed. (C, D & E) Comparison of 

theoretical and experimental (from [3]) metabolite concentrations and enzyme abundances. Note the striking, 

differential regulation of FBP and PEP, high in one condition and low in the other.  
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states for glycolytic (Fig. 1A) and gluconeogenic conditions (Fig. 1B), consistent with 179 

experimental measurements Fig. 1C-E. The simulation elucidates how central metabolism 180 

self-organizes in response to glycolytic and gluconeogenic conditions and how allosteric 181 

and transcriptional regulation helps to optimize fluxes and minimize futile cycling. As 182 

shown in Fig. 1C, in ‘orange’, during glycolytic conditions, the simulation reached a 183 

steady-state with high FBP levels and low PEP levels, consistent with experimental 184 

metabolite measurements for FBP and PEP during growth on glucose. As illustrated in Fig. 185 

1A, high FBP pool activates lower glycolysis, while the low PEP pool derepresses upper 186 

glycolysis and deactivates upper gluconeogenesis. This suppression of gluconeogenic 187 

fluxes in glycolysis reduces futile cycling, i.e., circular fluxes at the irreversible reactions, 188 

thereby streamlining metabolism.  189 

 190 

 191 
Figure 2 Metabolic state depends on growth rate. A During glycolytic growth, FBP linearly increases with growth 192 

rate. Data: Ref. (Kochanowski et al., 2013b).  B Gluconeogenic enzymes decrease linearly with glycolytic growth rate. 193 

Data: (Hui et al., 2015). C Glycolytic enzymes increase linearly with glycolytic growth rate. Data: Ref. (Hui et al., 2015). 194 

D-F Simulation results recapitulate experimental evidence. 195 

On a transcriptional level, the high FBP pool represses Cra, which in turn derepresses the 196 

expression of glycolytic enzymes and inhibits the expression of gluconeogenic enzymes. 197 

This results in high levels of glycolytic enzymes and low levels of gluconeogenic enzymes 198 

in the simulation (Fig. 1D & E, right panels), consistent with experimental findings from 199 

proteomics measurements (Fig. 1D & E, left panels).  200 
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 201 

In gluconeogenic conditions (‘blue’ in Fig. 1), we find precisely the complementary 202 

configuration of central carbon metabolism. Simulation and experiments show low FBP 203 

and high PEP pools (Fig. 1C). As illustrated in Fig. 1B, high PEP represses upper glycolysis 204 

and activates upper gluconeogenesis, while low FBP deactivates lower glycolysis. Low 205 

FBP also derepresses Cra, which leads to high expression of gluconeogenic enzymes and 206 

low expression of glycolytic enzymes (Fig. 1D, right panels), consistent with proteomics 207 

measurements (Fig. 1D & E, left panels).  208 

 209 

Next we tested if the model could recapitulate how varying growth rates on glycolytic and 210 

gluconeogenic nutrients affects metabolite levels and protein expression (Gerosa et al., 211 

2015a; Hui et al., 2015). In particular, it has been shown experimentally that FBP acts like 212 

a flux sensor and FBP concentration linearly increases with glycolytic flux (Fig. 2A, upper 213 

panel) (Kochanowski et al., 2013b), which is captured by our simulation (Fig. 2B), under 214 

the condition that the speed of the reversible reaction is slow compared to irreversible 215 

reactions. In this limit, PEP will be drained fast enough for the backward flux, Eq. (6), to 216 

be small, so that the net flux is dominated by the forward flux, Eq. (5), which is proportional 217 

to FBP. The linear increase of FBP concentration with growth rate results in a linear growth 218 

rate dependence of gluconeogenic and glycolytic enzyme abundances in the simulation, in 219 

good agreement with experimental measurements of enzyme abundances from proteomics 220 

(Fig. 2 compare B&C with E&F) (Hui et al., 2015). Together, these results show how 221 

central metabolism self-organizes dependent on the nutrient source, and that transcriptional 222 

and allosteric regulation of FBP and PEP alone suffice to achieve this major re-223 

configuration.  224 

 225 

Central carbon metabolism is primed for switches to glycolysis 226 

Equipped with this model, we next address the question of understanding the mechanistic 227 

basis for the extended lag phases of E. coli upon nutrient shifts from glycolytic to 228 

gluconeogenic conditions (Basan et al., 2020; Kotte et al., 2014). After a shift from glucose 229 

to acetate, E. coli shows a long lag time with almost absent growth for around 5 h (Fig. 230 

3A) (Basan et al., 2020), which can be captured by our model (Fig. 3B), if we fit pre-shift 231 
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futile cycling accordingly, see SI Sec. 3.2 for details. All model solutions shown in this 232 

paper are generated with the parameters generated from this fit. The model captures the 233 

slow adaptation of glycolytic and gluconeogenic enzymes, which only towards the end of 234 

the lag phase significantly change towards their new steady state values (Fig. S6). 235 

Investigating the origin of the growth arrest in the simulation, we found that during lag 236 

phase, the concentrations of upper glycolytic precursors (which includes F6P, G6P and 237 

above) remained very low compared to their steady-state values, which matches published  238 

experimental evidence of F6P measurements (Basan et al., 2020) (Fig. simulation: 3C, data 239 

3D), indicating that the gluconeogenic flux limits formation of essential precursors for 240 

biomass formation. Thereby, according to Eq. (4) the depletion of this precursor limits 241 

growth rate during lag phase. 242 

 243 

In the simulation, the F6P limitation is caused by low net fluxes in upper and lower 244 

gluconeogenesis (Fig. 3E &F, red lines). Previously, it was suggested that futile cycling 245 

between gluconeogenic and glycolytic enzymes could contribute to this flux limitation 246 

(Basan et al., 2020), supported by the observation that overexpression of glycolytic 247 

Figure 3 Shifts between glycolysis and gluconeogenesis. (A) Experimental and (B) model of optical density after shift 

of E. coli from glucose to acetate. Growth shows a substantial lag before it recovers. (C) Experimental and (D) model 

of F6P (normalized to the final state) collapses after shit to acetate, and continues to stay low throughout lag phase. 

Because F6P is an essential precursor for biomass production, this limitation effectively stops biomass growth. 

(E&F) Fluxes of all irreversible reactions. Especially fluxes in lower  glycolysis/gluconeogenesis are of equal 

magnitude, leading to a futile cycle, where no net flux (red line) through central carbon metabolism can be 

established. (G-J) Optical density and metabolic fluxes for the reversed shift from acetate to glucose shows 

immediate growth and no intermittent futile cycling. The dynamics of all enzyme abundances, regulation and fluxes 

for both shifts are shown in Fig. S1-5 in detail. The model also correctly predicts that enzyme abundances only adapt 

late in the lag phase (Fig. S6). 
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enzymes in upper or lower glycolysis strongly impaired switching and resulted in much 248 

longer lag times (Basan et al., 2020). The simulation allows us to probe the effect of futile 249 

cycling in silico, which cannot be directly measured experimentally. Indeed, we found for 250 

our default E. coli parameters that residual lower glycolytic flux almost completely 251 

canceled the flux from gluconeogenesis, i.e., 𝑟gly
low ≈ 𝑟gng

low (solid and dashed black lines in 252 

Fig. 3F), such that net flux remained close to zero (red line, Fig. 3E & F). Thus, this futile 253 

cycling appears to be the main reason for limiting net flux throughout the lag phase.  254 

 255 

The biochemical network and regulation are almost completely symmetric with respect to 256 

the direction of flux, so one might naively expect a shift from gluconeogenesis to glycolysis 257 

to also result in a long lag. However, experimentally the shift in the opposite direction from 258 

gluconeogenesis to glycolysis occurs very quickly in E. coli (Fig. 3G) (Basan et al., 2020). 259 

Indeed, in simulations with our standard E. coli parameters, we found that central 260 

metabolism adjusted very quickly and growth resumed without a substantial lag phase (Fig. 261 

3H). In striking contrast to the shift to gluconeogenesis, futile cycling played no role in the 262 

shift to glycolysis, because both upper and lower glycolytic fluxes got repressed 263 

immediately after the shift (Fig. 3I-J, solid black line), such that net flux can build up (Fig. 264 

3I-J, red line). The absence of transient futile cycling, despite the symmetry of regulation 265 

and metabolic reactions, suggests that in E. coli allosteric and transcriptional regulations 266 

are ‘primed’ in the glycolytic direction. 267 

 268 

Molecular cause of preferential directionality 269 

To understand the molecular cause of the asymmetric response and lag phases, we 270 

investigated the role of allosteric and transcriptional regulation in our simulation. During 271 

steady state growth, the differential regulation during glycolysis and gluconeogenesis is 272 

achieved by PEP and FBP, the metabolites that are “sandwiched” between the two 273 

irreversible reactions and connected by a series of reversible enzymes, coarse-grained in 274 

our model into the ‘super-enolase enzyme’. First, we focused on regulation during 275 

exponential growth and wanted to investigate how the cell achieves differential regulation 276 

of glycolytic and gluconeogenic enzymes using the metabolites FBP and PEP. In 277 

equilibrium, forward and backward reactions would balance, i.e., 𝑟ENO+ = 𝑟ENO−, and no 278 
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net flux can run through central metabolism, meaning that the cell cannot grow. Using Eqs. 279 

(2 & 3), the balance of forward and backward fluxes results in a fixed quadratic dependence 280 

of FBP and PEP in equilibrium, 281 

  𝑐FBP
eq

= 𝑘ENO− 𝑘ENO+Τ  (cPEP
eq

)
2

. (7) 

 282 

In Figure 4 (top), we show a visual representation of the FBP-PEP relation. Close to the 283 

equilibrium, FBP and PEP levels go up and down together, rather than the opposing 284 

directions, as observed for glycolytic and gluconeogenic growth (Fig. 1A&B). This results 285 

in low net-flux and creeping growth. Hence, in steady state growth conditions, the 286 

Figure 4 Molecular cause for asymmetric recovery dynamics. (top) Graphical summary of dynamics of the 

regulatory metabolites FBP and PEP. Distance from the quadratic equilibrium line determines net metabolic flux 

and thus growth rate. (A) Recovery of FBP and PEP of after a shift from glucose to acetate, shows a distinctive 

joint increase, followed by an overshoot of FBP. Data from Ref. [4]. Red line is a quadratic  guide to the eye. Final 

acetate steady state is drawn as grey symbol.(B) Model solution of FBP and PEP. After the fast collapse of 

metabolite levels (triple arrow  to white circle), the dynamics closely follows the quadratic FBP-PEP equilibrium 

Eq. ( Error! Reference source not found.. Eventually recovery will diverge away from the equilibrium line, 

towards the non-equilibrium steady states of gluconeogenesis (grey circle) (C) For a shift to glycolysis, metabolite 

levels do not collapse, but instead land already far from equilibrium (triple arrow to white circle), such that flux 

is immediately established, and recovery is quick. 
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equilibrium must be broken and FBP ≫ PEP or FBP ≪ PEP, such that either glycolytic 287 

flux is bigger than gluconeogenic, or vice-versa (𝑟ENO+ ≫ 𝑟ENO−  and 𝑟ENO+ ≪ 𝑟ENO−, 288 

respectively). This is achieved by the irreversible reactions, which drain and supply 289 

metabolites to the ‘super-enolase’. Because of the positive feedback between enzyme 290 

activity and non-equilibrium of the ‘super-enolase’, this regulation topology achieves 291 

differential regulation during glycolysis and gluconeogenesis. As we observed in the 292 

analysis of the glycolytic and gluconeogenic steady-states (Fig. 1), this differential 293 

regulation adjusts enzyme levels via transcriptional regulation and suppresses futile cycling 294 

at the irreversible reactions. 295 

 296 

While regulation of central metabolism efficiently organizes FBP-PEP in a far from 297 

equilibrium state during exponential growth, nutrient shifts expose the limitations of this 298 

regulatory system. Metabolite measurements in the shift of E. coli from glucose to acetate 299 

show that levels of FBP and PEP drop within minutes of the shift to acetate, followed by a 300 

very slow joint increase of FBP and PEP over the course of hours, constituting the majority 301 

of the lag phase (Fig. 4A). This joint increase, rather than a differential increase, is the 302 

hallmark of a close-to-equilibrium state.  303 

 304 

The slow recovery can be understood from the simulation, which shows that FBP and PEP 305 

proceed close to the equilibrium line of Eq. (7), where growth is slow (Fig. 4B). Strikingly, 306 

as shown in Fig. 3F, throughout most of the lag phase, higher gluconeogenic flux from 307 

increasing levels of gluconeogenic enzymes is almost completely lost to a corresponding 308 

increase in futile cycling, because increasing FBP activates lower glycolysis (instead of 309 

deactivating it) and thereby increases futile cycling. The overshoot of FBP in Fig. 4A (data) 310 

and Fig. 4B (model) corresponds to the breaking of the equilibrium, that finally allows the 311 

cell to establish net flux: PEP concentration is high enough to activate upper 312 

gluconeogenesis sufficiently to drain FBP via upper gluconeogenesis (see Fig. 3E). Lower 313 

FBP then shuts down futile cycling in lower glycolysis/gluconeogenesis (Fig. 3F), pushing 314 

FBP and PEP concentrations to a state far from the equilibrium line (see Fig. 4B) and 315 

allowing the cell to grow at a faster rate. 316 

 317 
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The fundamental difference between shifts to gluconeogenesis and glycolysis is that 318 

glycolytic shifts immediately land far from equilibrium (Fig. 4C, triple arrow to white 319 

circle), such that cells immediately grow at faster rates, allowing them to express the new 320 

enzymes needed to recover quickly. Thus, to understand why glycolytic shifts recover 321 

faster than gluconeogenic shifts, we need to understand why glycolytic shifts immediately 322 

land far from equilibrium, while gluconeogenic shifts land close to equilibrium.  323 

 324 
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Three trade-offs constrain lag times to glycolysis and gluconeogenesis 325 

The out-of equilibrium state is caused by net flux going through metabolism. Therefore, 326 

we investigated what causes fluxes not to flow in a uniform direction after shifts to 327 

glycolysis and gluconeogenesis. In principle, metabolite flux brought into central 328 

metabolism can exit via two drains: upper gluconeogenesis, activated by PEP, and lower 329 

glycolysis, activated by FBP (Fig. 5A). If the strength of the lower drain is stronger than 330 

the upper drain, then after a switch to glycolysis, FBP builds up, PEP is drained and a net 331 

Figure 5 Trade-offs between glycolysis and gluconeogenesis. (A) Two drains in central metabolism deplete central 
metabolites. (B-C) Changing abundance 𝜙 or allosteric regulation strength 𝛼 in either lower or upper drain leads to 
a shift of lag times, decreasing lags in one direction at the cost of the other. Chosing strength of the drains such that 
either top or bottom is stronger, will lead to a fast recovery in on direction, and a slow in the other. (D) Reversible 
enzymes in the central metabolism (coarse-grained here into ‘super-eno’). Abundance of reversible enzymes scale 
linearly with growth rate [16]. (E-F) Decreasing abundance of reversible enzymes decreases lag times. This effect is 
due to regulatory metabolites being in a far-from-equilibrium state when abundances are low, which allows 
differential regulation via FBP and PEP. For high abundance, regulation is weak and lag times long. (G) There are 
two futile cycles in central metabolism. (H-I) Increasing abundance of enzymes of the opposing direction in pre-
shift, e.g. gluconeogenic enzymes in glycolytic growth, increases futile cycling and decreases lag times. Because in 

futile cycles free energy is dissipated, usually in the form of ATP hydrolysis, futile cycling has an energetic cost. 
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flux is immediately accomplished. In a shift to gluconeogenesis, however, the lower drain 332 

leaks the influx coming from the bottom, as seen in Fig. 3F, leading to an in-and-out flux, 333 

but no net flux. In this situation, FBP and PEP stay in equilibrium and the recovery stalls. 334 

If on the other hand, the upper drain was stronger than the lower drain, then we would 335 

expect the behavior to be reversed and gluconeogenic flux would be immediately 336 

accomplished, while the glycolytic recovery would stall.  337 

 338 

In the simulation, we are able test the hypothesis that the strength of the upper and lower 339 

drains determines the preferential directionality of the central metabolism (Fig. 5B&C) by 340 

varying enzyme abundances and the strength of allosteric interactions in upper (pink) and 341 

lower drains (green) in silico, and letting metabolism adapt to gluconeogenesis and 342 

glycolysis conditions. Indeed, we found that a decrease of lag time in one direction led to 343 

an increase of lag time in the opposite direction.  344 

 345 

Varying the outflow from metabolism is not the only determinant of lag times. The set of 346 

reversible enzymes, coarse-grained in our model into ‘super-eno’, plays another key role, 347 

because they interconvert the regulatory metabolites FBP and PEP (Fig. 5D). If this 348 

conversion is fast, the concentrations of FBP and PEP will be close to their equilibrium 349 

relation in Eq. (7), and differential regulation is impossible. As a result, lag times in both 350 

directions increase if the abundance of reversible reactions increase (Fig. 5E-F). This is a 351 

counter-intuitive result, as one would have naïvely expected more enzymes to speed up 352 

reactions. But instead, in metabolism more enzymes will collapse the differential regulation 353 

and slow down adaptation rates. Because the cell needs to scale the abundance of reversible 354 

glycolytic enzymes with growth rate to catalyze sufficient flux through metabolism, the 355 

relation between reversible enzyme abundance and lag time is in fact a fundamental trade-356 

off between growth rate and lag time.  357 

 358 
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Finally, we found that while lag times are constrained by the two above trade-offs, they 359 

can be substantially decreased if the cell allows more futile cycling, i.e., the circular 360 

conversion of metabolites in the upper and lower irreversible reactions that dissipates ATP 361 

(Fig. 5G). Increasing the abundance of gluconeogenic enzymes in glycolytic growth (Fig. 362 

5H) or glycolytic enzymes in gluconeogenic growth (Fig. 5I) substantially decreases lag 363 

times at the cost of futile cycling, which dissipates free energy in the form of ATP. This 364 

third trade-off thus allows organisms to decrease their switching times by sacrificing 365 

energetic efficiency. 366 

 367 

Because the three trade-offs of Fig. 5 are based on a single parameter set, the same as in 368 

Fig. 1-4, we wondered if different biochemical parameters and regulations could break the 369 

trade-offs and allow simultaneous fast growth and fast switching without costly futile 370 

cycling. To investigate this possibility, we performed an extensive scan of model 371 

parameters, by randomly choosing sets of biochemical parameters and simulating the 372 

resulting model. Of those parameter sets, we chose those that allowed steady state growth 373 

in both glycolytic and gluconeogenic conditions, and were able to switch between both 374 

states. We found that metabolism in the majority of randomly generated models is 375 

inefficient and dominated by futile cycling in upper and lower glycolysis; only a minority 376 

of models were able to reduce futile cycling in glycolysis and gluconeogenesis. 377 

Figure 6 Large-scale parameter scan reveals Pareto optimality between lag times and futile cycling. (A-B) Model 
calculated for randomized protein abundancies, reaction rates, Michaelis constants, allosteric interactions, 
transcriptional regulation, see SI. Each point corresponds to a parameter set that allows exponential growth on 
both glycolytic and gluconeogenic carbons, as well switching between both conditions. Data is colored according to 
the total regulation R, i.e., sum of fold-changes of enzyme activities between glycolysis and gluconeogenesis, 

(𝑐𝑖
𝑔𝑙𝑦 𝑐𝑖

𝑔𝑛𝑔
⁄ )

𝛼𝑖
. For standard E. coli parameters R = 23. R>104 are likely unphysiological. Lines indicate Pareto front. 

(C) Parameter sets from panels A&B with low futile cycling highlighted over the background of all parameter sets 
(grey). 
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Remarkably, despite probing variations of all possible model parameters, including 378 

Michaelis Menten parameters of enzymes and the strengths of allosteric and transcriptional 379 

regulation, lag times could not be reduced at-will by the cell. Instead, a ‘Pareto frontier’ 380 

between futile cycling in preshift conditions and lag times emerged (Fig. 6 A&B). Points 381 

close to the ‘Pareto frontier’ (solid lines) are Pareto-optimal, meaning that any further 382 

decrease of either parameter must come at the expense of the other. Overall, stronger 383 

allosteric regulation (black: R < 102, red/green: R > 102, grey: R > 104) shifted the Pareto 384 

frontier, but was not able to overcome it. Parameter combinations that led to low futile 385 

cycling in either glycolysis or gluconeogenesis showed long lag times in at least one 386 

condition (Fig. 6C). Thus, from this analysis, it seems that organisms cannot overcome 387 

long lag times without paying a futile cycling cost during steady-state growth. 388 

 389 

Pseudomas aeruginosa is at the other end of Pareto spectrum  390 

Taken together, the results of Fig. 5 & 6 suggest that the cell cannot achieve fast growth, 391 

low futile cycling and fast adaptation simultaneously in both glycolysis and 392 

gluconeogenesis. Instead, each of the three trade-offs will constrain the evolutionary 393 

optimization of microbial metabolism, such that any optimal solution is on a the surface of 394 

a multidimensional Pareto frontier, where any improvement in one phenotype will come at 395 

the expense of another. 396 

 397 

Because the preference is solely determined by biochemical parameters that are not 398 

strongly constrained, such as strengths of allosteric regulations and enzyme abundances, it 399 

could be reversed during evolutionary adaptation if bacteria evolve on gluconeogenic 400 

substrates. From the model, we expect that microbes should exist that show precisely the 401 

opposite phenotypic pattern of E. coli: fast switching to gluconeogenic substrates, where 402 

E. coli shows long lag phases, and slow switching to glycolytic substrates, where E. coli 403 

adapts quickly.  404 

 405 
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 406 

Figure 7 Comparison of Escherichia coli and Pseudomonas aeruginosa during growth and shifts. (A) Growth rates on 407 
glycolytic carbons (orange) are faster for E. coli than on gluconeogenic carbons (blue). For Pseudomonas, this 408 
dependence is reversed. No growth indicated with “n.g”. (B-C) Shifts for E. coli and P. aeruginosa between glycolytic 409 
and gluconeogenic carbon substrates. The preferential order of P. aeruginosa is reversed in comparison to E. coli (D) 410 
E. coli shows an increase of lag times to gluconeogenesis with increasing pre-shift growth rate. Lag times diverge 411 
around growth rate 1.1/h. (E) The model predicts diverging growth rates without further fitting, based on the growth 412 
rate dependent expression levels of glycolytic and gluconeogenic enzymes (Fig. 2E-F). (F) P. aeruginosa shows a 413 
strikingly similar growth rate to lag time dependence as E. coli, when switched to glycolysis, with lag times diverging 414 
around 1.0/h. (G) The model can recapitulate observed P. aeruginosa lag times if pre-shift glycolytic enzymes are 415 
decreased as a function of pre-shift growth rate. 416 

One possible example of such microbes are Pseudomonas species, which have been 417 

reported to show diauxie when switching from glycolytic to gluconeogenic substrates 418 

(Lynch and Franklin, 1978). Therefore, we tested the model predictions in a strain of the 419 

clinically relevant species, P. aeruginosa. Indeed, we found that P. aeruginosa grew faster 420 

on gluconeogenic carbon substrates, than on glycolytic carbon substrates, which is the 421 

opposite preference of E. coli (Fig. 7A). In addition, P. aeruginosa showed the reversed 422 

lag time phenotypes compared to E. coli (compare Fig. 7C & D), i.e. short lag phase when 423 

shifted from glycolysis (glucose) to gluconeogenesis (malate),  but a long lag phase in the 424 

opposite direction. (Fig. 7C).  425 

 426 

In Basan et al (Basan et al., 2020) it was shown that lag times to gluconeogenesis for E. 427 

coli depend on the pre-shift growth rate (Fig. 7D). Our kinetic model captures the 428 

divergence of lag times at fast growth rate, simply by varying the carbon uptake rate in the 429 

pre-shift condition (Fig. 7E), because the increase of lag time is caused by the linear 430 

decrease of gluconeogenic enzyme abundance (Fig. 2B), and increase of glycolytic enzyme 431 

abundance (Fig. 2C) with faster growth rate, which are already implemented via the FBP-432 
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cra regulation in the model (see Box 1). While glycolytic enzymes are required to ensure 433 

sufficient glycolytic flux, the reduction of gluconeogenic enzymes reduces the backward 434 

flux that causes futile cycling. 435 

 436 

If Pseudomonas aeruginosa is subject to the same trade-offs as E. coli, then we expect it 437 

to have evolved a similar regulation. Fast growing P. aeruginosa should have a low 438 

abundance of glycolytic enzymes, to reduce futile cycling and allow efficient growth. Slow 439 

growing P. aeruginosa should have higher glycolytic abundance and show shorter lag 440 

times. To test this hypothesis, we grew P. aeruginosa on a variety of TCA carbons (same 441 

as in Fig. 6A) and shifted to glucose. Indeed, we observe an increase of lag time for faster 442 

growth that is remarkably similar to what we previously found for E. coli (Fig. 6F). The 443 

increase of lag times can be captured by the model, by varying the expression of glycolytic 444 

enzymes, i.e. varying futile cycling, in the pre-shift condition (Fig. 6E). This demonstrates 445 

that P. aeruginosa is constrained by the same trade-offs between growth and lag that are 446 

present for E. coli. However, in contrast to E. coli, P. aeruginosa appears to have 447 

evolutionarily chosen a different objective, and evolved fast and efficient gluconeogenic 448 

growth, as well as fast switching to gluconeogenesis. P. aeruginosa is thus located at the 449 

opposite spectrum of the Pareto frontier compared to E. coli. 450 

 451 

Discussion 452 

In this work, we presented a self-consistent, coarse-grained kinetic model of central carbon 453 

metabolism, combining key allosteric and transcriptional regulation, as well as biomass 454 

production, enzyme synthesis, and growth. This model elucidates the remarkable capacity 455 

of central carbon metabolism to self-organize in response to substrate availability and flux 456 

requirements. The simulation successfully recapitulates enzyme and metabolite levels for 457 

different glycolytic growth rates, as well as growth rate and metabolite dynamics of growth 458 

shifts, as measured previously in E. coli. But the model also reveals key limitations to this 459 

flux-sensing based self-organization that can only be partially overcome at a cost 460 

determined by three fundamental tradeoffs between growth rate, futile cycing and lag times 461 

for shifts to the non-preferred direction. This suggests that central carbon metabolism 462 

inherently has a preferred flux direction that should evolve in different organisms, 463 
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depending on the ecological environment and preferential substrate utilization. We 464 

validated this key model prediction in a different bacterial species, P. aeruginosa and 465 

showed that in P. aeruginosa, reversal of substrate preference as compared to E. coli, 466 

coincides with a complete reversal of the phenomenology of lag phases and tradeoffs 467 

during shifts between different substrates.  468 

 469 

Our model indicates microbes could in principle reduce lag times by tolerating high levels 470 

of futile cycling. We estimate that ATP dissipation from futile cycling can be on the same 471 

order of magnitude as the energy budget of the cell during steady-state growth, but energy 472 

production pathways only constitute a relatively small fraction (around 20%) of the total 473 

cellular proteome (Basan et al., 2015a). Thus, in theory, the cell might be able to 474 

compensate for higher levels of futile cycling with increasing resources devoted to energy 475 

production. However, experimentally it appears that E. coli chooses to keep futile cycling 476 

in check, even at the cost of substantially reduced growth rates, as evidenced by the 477 

repression of glycolytic enzymes by the transcription factor Cra resulting in slower growth 478 

(Basan et al., 2020). We hypothesize that futile cycling must be considered not just during 479 

steady-state growth, but during growth shifts and during starvation, where the cellular 480 

energy budget is much more limited. In fact, it has been recently shown that the energy 481 

budget of the cell is around 100-fold smaller during carbon starvation and that energy 482 

dissipation can increase death rates several-fold (Schink et al., 2019). Therefore, even 483 

levels of futile cycling that are modest during steady-state growth should severely affect 484 

survival of cells in these conditions.   485 

 486 

Our findings indicate that lag times and a tradeoff between futile cycling and short lag 487 

times are inherent properties of central carbon metabolism, at least given the existing 488 

allosteric and transcriptional regulation. Why different regulation that can overcome this 489 

limitation has not evolved, at least in the microbes that we tested, is a difficult question. In 490 

principle, one could imagine that the cell could directly detect the presence of 491 

gluconeogenic substrates and the absence of glycolytic substrates, which could trigger the 492 

active degradation of glycolytic enzymes and would allow the cell to overcome lag phases 493 

more quickly. However, since there are dozens of glycolytic and gluconeogenic substrates, 494 
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this would result in a much higher degree of complexity of the regulation. It may be 495 

difficult for a regulatory network to integrate so many signals, many of which would be 496 

conflicting with each other in any one condition. Typically, the regulatory architecture 497 

found in E. coli is of a much simpler in nature (Kochanowski et al., 2013a). The wrong 498 

decision to degrade key metabolic enzymes would have adverse consequences, for example 499 

when glycolytic flux is only briefly interrupted, degrading these enzymes would impair 500 

growth. 501 

 502 

Another reason, why no such regulation has evolved could be related the to the striking 503 

observation that the regulation of upper and lower glycolysis/gluconeogenesis and 504 

directionality of flux are performed by the metabolite concentrations of FBP and PEP, 505 

which are cut off from the rest of metabolism by irreversible reactions. We argue that the 506 

logic for this regulatory architecture is product inhibition, which ensures that this essential 507 

part of central carbon metabolism is adequately supplied with metabolites, but also ensures 508 

that uncontrolled accumulation of metabolites does not occur. In fact, because the reactions 509 

of upper and lower glycolysis are effectively irreversible, even a slight misbalance in flux 510 

between these enzymes and biomass demand would result in uncontrolled accumulation of 511 

metabolites and in the absence of a cellular overflow mechanism, these metabolites would 512 

quickly reach toxic levels, e.g., via their osmotic activities. As demonstrated by the 513 

simulation, the existing regulation of glycolysis/gluconeogenesis successfully solves this 514 

potentially serious problem. 515 

 516 

Our model shows that the known regulatory architecture of glycolysis/gluconeogenesis 517 

accomplishes efficient regulation of fluxes and metabolite pools in response to diverse 518 

external conditions, while avoiding toxic accumulation of internal metabolites and 519 

integrating multiple conflicting signals with only two regulatory nodes. The 520 

glycolysis/gluconeogenesis system is a remarkable example of self-organization of 521 

regulatory networks in biology. It provides an elegant solution to the complex, obligatory 522 

problem, posed by the biochemistry of central carbon metabolism. All organisms that need 523 

to switch between glycolytic and gluconeogenic flux modes face this problem and we argue 524 

that this explains the striking degree of conservation of the phenomenology of shifts 525 
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between glycolytic and gluconeogenic conditions that we found in different microbial 526 

species, ranging from E. coli, Bacillus subtilis, and even wild-type strains of the lower 527 

eukaryote Saccharomyces cerevisiae to the reversed phenotypes in P. aeruginosa. 528 

Conversely, we argue that the quantitative phenotypes exhibited by microbes in such 529 

idealized growth shift experiments in the lab, can reveal much about their natural 530 

environments, ecology and evolutionary origin.  531 
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Methods 541 

Bacterial cultures 542 

Strains used in this paper are wild-type Escherichia coli K-12 NCM3722 (Soupene et 543 

al., 2003) and Pseudomonas aeruginosa PAO1 (Stover et al., 2000). The culture 544 

medium used in this study is N−C− minimal medium (Csonka et al., 1994), containing 545 

K2SO4 (1 g), K2HPO4·3H2O (17.7 g), KH2PO4 (4.7 g), MgSO4·7H2O (0.1 g) and NaCl 546 

(2.5 g) per liter. The medium was supplemented with 20mM NH4Cl, as nitrogen 547 

source, and either of the following carbon sources: 20mM Glucose-6-phosphate, 548 

20mM gluconate, 0.2% glucose, 20mM succinate, 20mM acetate, 20mM citrate, 20mM 549 

malate or 20mM fumerate. 550 

 551 

Growth was then carried out at 37° C in a water bath shaker at 200 rpm, in silicate 552 

glass tubes (Fisher Scientific) closed with plastic caps (Kim Kap). Cultures spent at 553 

least 10 doublings in exponential growth in pre-shift medium. For growth shifts, 554 

cultured were transferred to a filter paper and washed twice with pre-warmed post-555 

shift medium. Cells were resuspended from the filter paper in post-shift medium, and 556 

unsequently diluted to an OD of about 0.05. 557 

 558 

Theoretical modelling  559 

The integrated minmal model of metabolism and growth was implemented in 560 

MATLAB using the SimBiology toolbox, and is described in detail in the Supporting 561 

Information. 562 

  563 
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