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Abstract

1. Power analysis is used to estimate the probability of correctly rejecting a null hypothesis
for a given statistical model and dataset. Conventional power analyses assume complete
information, but the stochastic nature of behavioural sampling can mean that true and es-
timated networks are poorly correlated. Power analyses of animal social networks do not
currently take the effect of sampling into account. This could lead to inaccurate estimates
of statistical power, potentially yielding misleading results.

2. Here we develop a method for computing how well an estimated social network correlates
with its true network using a Gamma-Poisson model of interaction rates. We use simulations
to assess how the level of correlation between true and estimated networks affects the power
of nodal regression analyses. We also develop a generic method of power analysis applicable
to any statistical test, based on the concept of diminishing returns.

3. We demonstrate that our network correlation estimator is both accurate and moderately
robust to its assumptions being broken. We show that social differentiation, mean inter-
action rate, and the harmonic mean of sampling times positively impacts the strength of
correlation between true and estimated networks. We also show that the required level of
correlation between true and estimated networks to achieve a given power level depends
on many factors, but that 80% correlation usually corresponded to around 80% power for
nodal regression.

4. We provide guidelines for using our network correlation estimator to verify the accuracy
of interaction networks, and to conduct power analysis. This can be used prior to data
collection, in post hoc analyses, or even for subsetting networks for use in dynamic network
analysis. We make our code available so that custom power analysis can be used in future
studies.
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Introduction

Understanding the form and function of social systems is a core aim of behavioural ecology, and social
network analysis has become a central tool for exploring these topics (Croft et al., 2008). However,
social network analysis comes with challenges unique to the field, ranging from issues of missing or
censored data, through to problems of non-independence in network measures (James et al., 2009;
Farine and Whitehead, 2015). Significant advances have been made in many of these areas over the
last two decades, but the problem of conducting power analysis has generally received little attention,
with the exception of Whitehead (2008). Power analysis is used to determine the amount of data
required to reject a null hypothesis assuming a given effect size, and is used to determine how a
study should be conducted prior to collecting data, or in post-hoc analysis to determine if a study was
sufficiently powered to reject a null hypothesis (Cohen, 1992, 2013). Animal social network studies
rarely use power analysis prior to data collection but often do employ post hoc power analysis to
indicate the reliability of results (Martin et al., 1993; Stadtfeld et al., 2020). In this study, we build
on previous work to develop a method for estimating the accuracy of social networks, and show how
this can be used to conduct power analysis on social networks constructed from interaction rates.

Whitehead (2008) introduced a method for estimating the accuracy of animal social networks
constructed from association rate data by estimating the correlation of the observed association rates
with the true underlying association rates. This method has often been used as a post hoc measure
to verify the robustness of animal social networks before further analyses (Findlay et al., 2016; Ellis
et al., 2017). However, this method is designed specifically for association data, but there are several
other common types of data used to construct animal social networks. Networks are typically built
from weighted edges between nodes that encode the strengths of relationships between individuals
(Krause et al., 2015). Edge weight can be quantified in a number of different ways depending on
the nature of the social system and the data available. There are two types of data often used for
constructing social networks: association and interaction. Association data record instances where
individuals have the opportunity to interact, generally using proximity thresholds or co-detections,
and interaction data record interactions such as grooming or aggression between individuals (Croft
et al., 2011; Brent et al., 2013; Brask et al., 2021).

Correlation between true and estimated networks is a useful intuitive measure of the accuracy
of a network, but even more importantly, it is directly related to the power of statistical analyses.
Whitehead (2008) made a series of recommendations based on the social preference test developed
by Bejder et al. (1998), suggesting that a good general guide for sufficient power is when the product
of the squared social differentiation and mean number of observations per individual is greater than
5 (in their notation: S2 × H > 5). This recommendation is based only on the social preference
test, and it isn’t known how well this generalises to other statistical tests commonly used in social
network analysis. In particular, one of the most common methods for testing hypotheses in social
network analysis is nodal regression (Croft et al., 2011). Nodal regression uses a node-level social
network metric such as node strength, eigenvector centrality, or closeness to quantify an individual’s
position in their social structure, and relates this social position to quantifiable traits such as age or
sex (Farine and Whitehead, 2015). The relationship between network metric and trait is analysed
using regression (Weiss et al., 2021). The statistical power of a conventional regression depends on
sample size, effect size, and significance level. In a nodal regression, sample size is the number of
individuals, the true effect size is fixed and unknown, and the significance level is set by convention,
usually to 0.05 (Cohen, 1994). However, the true effect size is the effect size if the nodal regression
was run on the true, unknown network. The estimated network will not perfectly match the true
network, meaning that the estimated effect size will deviate from the true effect size. Applying
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conventional power analysis to nodal regression could therefore lead to under- or over-estimates of
power, potentially yielding misleading results.

In this study we extend the method developed by Whitehead (2008) for estimating the correlation
between true and estimated networks from association data to networks constructed from interaction
data. Interaction data are usually collected by recording instances of pairs of individuals interacting
over many sampling periods using either scan or focal sampling (Martin et al., 1993). The result
is an integer count of interactions X i j between each pair of individuals i and j, and a positive real-
valued sampling time for each pair di j, which is simply the sum of time spent sampling at least one
individual of the pair. The rate of interactions is then computed by dividing the interaction count by
the sampling time, giving the interaction rate:

λ̂i j =
X i j

di j
. (1)

As with any empirical measure, sampling has the potential to influence the estimated interaction
rate significantly (Franks et al., 2010). Consider the case when X i j is 10 interactions and di j is 5
minutes, if interaction counts are Poisson-distributed, the estimate will be 2 interactions per minute,
but the 95% confidence interval will be (0.8,3.4), with a range of 2.6. Compare this to the case
where X i j and di j are 100 interactions and 50 minutes respectively; the point estimate is the same,
but the 95% confidence interval is (1.6, 2.4), with a range of 0.8, less than one third of the range of
the previous case, but for around 10 times the sampling effort. This shows that we should have less
confidence in the estimate of the first case compared to the second case, and demonstrates how the
estimated network could deviate significantly from the true network because of low sampling time.
The magnitude of this deviation will impact the reliability of an analysis, and ideally should be taken
into account when conducting social network analyses.

We demonstrate that our method for interaction data provides accurate estimates of correla-
tion between true and estimated networks in realistic scenarios, and we use simulations to sug-
gest guidelines for the minimum level of correlation required for nodal regression depending on
the desired level of statistical power. We also develop a generic alternative approach for guid-
ing data collection based on the principle of diminishing returns that can be used for any type
of statistical analysis, including but not limited to nodal regression. We contrast our guidelines
to those from Whitehead (2008) to show that the amount of sampling required depends on the
type of data, and that data-specific guidelines may be highly useful when designing and conduct-
ing social network analysis. We have made code and examples for this study publicly available at
www.github.com/JHart96/power_analysis_interaction_networks.

Methods

By modelling interaction counts as being distributed according to a Gamma-Poisson process, we are
able to analytically derive the correlation between sampled networks and true networks. We verify
this correlation equation using simulations which either follow the assumptions of the model, or break
them to varying degrees, to test the robustness of the method. Following this, we use simulations to
determine the level of correlation required to obtain a desired level of power when performing nodal
regression on interaction networks.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.443094doi: bioRxiv preprint 

www.github.com/JHart96/power_analysis_interaction_networks
https://doi.org/10.1101/2021.05.07.443094
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gamma-Poisson model of dyadic interactions

As sampling time increases, we expect that the estimated interaction rate λ̂i j will get closer to the true
interaction rate λi j. However for lower sampling times there may be a considerable error between the
estimated and true interaction rate. This error can be modelled by treating the interaction counts X i j

as draws from a Poisson distribution. Since the underlying true interaction rates λi j are unknown,
we assume the true interaction rates of the dyads are drawn from a gamma distribution: λi j ∼
Gamma(α,β). A Poisson-distributed random variable with rates drawn from the gamma distribution
is equivalent to a random variable following the negative binomial distribution, therefore the number
of observed interactions X i j is given by:

X i j ∼ NegBinomial

�

α,
β

β + di j

�

. (2)

Using this, we can estimate the variance of both the true and estimated interaction rates, which
allows us to estimate the Pearson’s correlation coefficient, ρ, between them:

ρ(λ, λ̂) =
S
p

µH(d)
p

1+µS2H(d)
=

S
p

I
p

1+ S2I
(3)

where S = 1/
p
α is the social differentiation, µ = α/β is the dyadic mean interaction rate, H(d)

is the harmonic mean of the sampling times di j, and I = µH(d) reflects the sampling effort. The
harmonic mean H(d) of the m dyads is defined as H(d) = m/

∑

i, j d−1
i j , and is equal to the arithmetic

mean only in the case where all di j are equal. Note that when sampling time di j is even across all
dyads, sampling effort I is the number of interactions observed per dyad. When sampling time di j is
uneven, sampling effort I will be lower, and more sampling time will be required to reach the same
sampling effort as the equivalent network with evenly-sampled dyads. The correlation is computed
only over dyads that have non-zero sampling times.

The parameters α,β of the underlying gamma distribution can be estimated numerically using
maximum likelihood to obtain point estimates, or alternatively they can be estimated using an MCMC
algorithm such as Gibbs sampling to obtain estimates of their credible intervals (Hammersley, 2013).
We use the maximum likelihood approach in this study to reduce computation time, and to avoid
model fitting problems, but we have included a Gibbs sampling version in the code, to allow the
confidence intervals of the correlation to be estimated.

Simulations 1: Verification of the Gamma-Poisson model

To confirm that Equation 3 is appropriate for interaction rate data, and to determine how robust it is
to the Gamma-Poisson assumptions being broken, we ran simulations under three different scenarios.
These scenarios follow or break the assumptions of Equation 3 to varying degrees (see Table 1 for
more details). The parameter space of these models was explored using a random search for S ∈ (0,2]
and µ ∈ (0, 10]. For scenario 2, an additional constraint was applied such that interaction rates
are stronger between members of the same group than between members of different groups. The
simulations proceeded as follows:

1. Data were generated according to one of the scenarios outlined in Table 1.

2. The true correlation between λ and λ̂ was computed.
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Scenario Description Model

1 Follow the assumptions of the model exactly,
with gamma distributed interaction rates and
Poisson distributed interaction counts.

X i j ∼ Poisson(λi jdi j)
λi j ∼ Gamma(α,β)

2 Introduce community structure with two
classes of dyads: same or different group. The
two classes have two different parameterisa-
tions of the gamma distribution. Interaction
counts are Poisson-distributed.

X i j ∼ Poisson(λi jdi j)
λi j ∼ Gamma(αki j

,βki j
)

ki j ∼ Bernoulli(p)

3 Simulating sparse networks by modelling in-
teraction counts as a zero-inflated Poisson
with a sparsity (1−π).

X i j = Zi jYi j

Yi j ∼ Poisson(λi jdi j)
λi j ∼ Gamma(α,β)
Zi j ∼ Bernoulli(π)

Table 1: Simulation models used for verifying the Gamma-Poisson model, where simulation 1 follows
the assumptions perfectly, but simulations 2 and 3 break the assumptions in different ways. The
amount of sampling time di j for each dyad is drawn from a Poisson distribution. In model 2 the
probability of a dyad belonging to the same group is given by p.

3. The parameters µ and S were estimated using maximum likelihood and used to compute the
estimated correlation ρ(λ, λ̂) between λ and λ̂.

4. The correlations were recorded and the process was repeated 200 times.

The relationship between the true and estimated network correlations was quantified by computing
the Pearson correlation coefficient, the mean absolute error, and the standard deviation of the error.

Simulations 2: Statistical power of nodal regression

We ran simulations to test how statistical power relates to sampling effort in the case where the true
effect size is the minimum required to achieve 100% power. This made it possible to see the effect
of sampling effort without the effect being hidden behind under- or over-powered tests. To simulate
data collection we followed the core assumptions of the model: that dyad-level interaction rates are
drawn from a gamma distribution, and observations are made such that interaction counts follow a
Poisson distribution. Sampling time for each dyad was modelled as the number of sampling periods,
which was drawn from a Poisson distribution with mean D ∈ [10,10000]. The dyad-level interaction
rates were converted to an edge list from which the true network was built. Node strength si was
used as the node-level network metric for these simulations. A linear relationship between network
metric and individual trait was created by assigning traits t i to each individual i according to a linear
equation t i = a+ bsi + εi, where a is the equivalent of an intercept term, b encodes the relationship
between metric and trait, and εi is a normally-distributed noise term: εi ∼ N(0, 1). The value of
the effect b was set depending on the number of nodes n. This was determined using a preliminary
simulation in such a way that the value of b for a given number of individuals was equal to the lowest
value for which a power ≥ 99.9% can be achieved.

Networks were estimated using Equation 1 and node strength was estimated from the corre-
sponding estimated networks. To estimate the relationship b, a simple linear regression was fitted to
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the simulated data, and node-label permutations were used to calculate the p-values (R Core Team,
2013; Croft et al., 2011). The power of the nodal regression was computed for each set of parameters
by repeatedly assigning traits t i according to the true network, fitting a linear model to an estimated
network, and computing the p-value of the estimated relationship. The proportion of p-values less
than 0.05 gave the power of the test for the current set of parameters. We searched the parame-
ter space using a random search to assess the relationship between network correlation, statistical
power, and the number of individuals.

Finally, to provide guidelines on the level of correlation required in a nodal regression, LOESS
curves approximating the relationship between correlation and power for different numbers of indi-
viduals were fitted to the simulated data (Cleveland, 1979; R Core Team, 2013). The resulting curves
were used to predict the level of network correlation required to achieve 80% power, assuming the
underlying relationship has power ≈ 100%.

Simulations 3: Optimal network correlation estimator for generic tests

The relationship between network correlation (Equation 3) and statistical power is affected by sev-
eral factors, many of which will depend on the type of analysis being conducted. The relationship
between power and correlation was explored in detail for nodal regression in the previous section,
but simulation-based studies like this are limited to the analyses they focus on, and cannot generalise
to other methods. However we can expect that as network correlation increases, the power of any
statistical tests should also improve (or at least stay the same). Assuming that increases in network
correlation positively affect statistical power, and that increases in sampling effort come at a cost to
researchers, the problem of finding the optimal sampling effort can be seen as finding the point at
which increases in sampling effort lead to diminishing returns.

Diminishing returns describes how the rate of increase of one variable decreases as another vari-
able increases (Shephard and Färe, 1974). In our case the aim is to find the point at which increases
in sampling effort lead to diminishing increases in correlation. This is the same problem as finding
the “elbow point” of the relationship between correlation and sampling effort. There is no guar-
antee of the power of the analysis at the elbow point, but we do know that additional sampling
would provide increasingly small gains in correlation. Since collecting behavioural data is generally
time-consuming, financially expensive, and may even have ethical implications, assuming a cost to
increases in sampling effort allows us to use the elbow point as an estimate for the optimal level of
correlation and corresponding amount of sampling (Martin et al., 1993).

The elbow of the curve can be computed numerically by rotating the curve of ρ against I by θ
radians about the origin (0.0,0.0) and finding the maximum point of the rotated curve. The angle θ
is usually determined by the maximum point of the curve, but in our case ρ is asymptotic to 1.0, so no
maximum exists. We can get around this problem by introducing a free parameter ρMAX to describe
the effective maximum correlation to be used for computing the elbow. The choice of ρMAX encodes
the minimum acceptable trade-off between increases in correlation and increases in sampling effort,
and therefore will affect the estimated elbow point. However, using a value of ρMAX sufficiently
high that we would consider a sampled network to be negligibly different to the true network (for
biological purposes) represents a meaningful choice since increases in correlation beyondρMAX would
add no further value for our purposes. We use a value of ρMAX = 0.99 for our analysis, but a brief
exploration of the impact of this choice is included in the supplementary material.

To assess the levels of power obtained by using the optimal correlations, we simulated nodal
regression analyses for different levels of social differentiation S ∈ (0.0,0.5] and sampling effort
I ∈ (0,500] using a similar setup as the previous section. The power of the analysis for each simulated
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(a) Social differentiation (b) Total interactions

Figure 1: Plots of Equation 3 against social differentiation S and sampling effort I = µH(d) for
different levels of sampling and social differentiation respectively. This shows that for relatively low
levels of social differentiation around S = 0.25, a high level of sampling effort around I = 100 is
required to achieve a correlation of ρ = 0.90. It also shows that for low social differentiation of
S = 0.05, even high levels of sampling effort of I = 100 will not yield a correlation of ρ = 0.90.

“true” network was computed, and the proportion of networks with lower than the optimal level of
correlation with power greater than 80% were calculated. This was repeated for the proportion of
networks with the same or higher than the optimal level of correlation. This provides a descriptive
measure of the performance of the optimal correlation at estimating the sampling required to achieve
80% power. This level of power was chosen from convention, but there is no reason that the optimal
correlation estimator should obey this convention as it is based on a different concept to conventional
power analysis. We also estimated the level of power that most closely matched the estimator for
nodal regression analysis using a grid search.

Results

Gamma-Poisson model of dyadic interactions

The analytical equation for estimated network correlation given by Equation 3 was used to produce
the plots in Figure 1 of network correlation against social differentiation and sampling effort. This
shows that, as expected, correlation increases towards an asymptote at 1.0 with both social differ-
entiation S and sampling effort I . Lower numbers of interactions (I = 1) did not reach a correlation
of 1.0 even for high levels of social differentiation (S = 1.0). Higher sampling efforts of I = 100
reached close to a correlation of 1.0 even at low levels of social differentiation, S < 0.25. This shows
that social differentiation is an important factor in estimating the correlation of a sampled network,
which is in line with the findings of Whitehead (2008). The results show that relatively low values of
S ≈ 0.25 are required to make achieving a high level of network correlation feasible, but that lower
values of social differentiation (S = 0.05) require higher sampling effort (I > 100) to achieve even
50% correlation.
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(a) Scenario 1: Gamma interac-
tion rates

(b) Scenario 2: Community
structure

(c) Scenario 3: Zero inflated in-
teraction rates

Figure 2: Comparisons of the true correlations between interaction rates and the correlations esti-
mated using Equation 3. The black line is diagonal and shows the ideal relationship between the
true and estimated correlations. In these visualisations the three models were run with different
maximum social differentiation parameters to ensure the full distribution of correlations was visible,
these were 0.20, 0.01, and 1.00 for models 1, 2, and 3 respectively. In each of these models the true
and estimated correlations are closely related, with few major deviations. The yellow lines show the
general relationship using LOESS curves fitted to the points.

Simulations 1: Verification of the Gamma-Poisson model

The results of our simulations (see Figure 2) show that true and estimated correlation match closely
across the parameter space. Over the full parameter space outlined in Table 1, the mean absolute
error between the true and estimated correlations was 5.5%, 0.047%, and 3.5% for scenarios 1, 2, and
3 respectively. The standard deviations of the errors for the three scenarios were 0.0084, 0.0038,
and 0.047 respectively, and the correlations between the true and estimated network correlations
were 99%, 99%, and 96% respectively. The relationship between true and estimated correlation is
shown in Figure 2 over a limited part of the parameter space, where the social differentiation was
adjusted manually to visualise the full width of the distribution of correlations. Social differentiation
was used to adjust the mean level of correlation purely for visualisation purposes, and was not used
when computing the descriptive statistics.

Simulations 2: Statistical power of nodal regression

The results of the nodal regression simulation are shown in Figure 3 for four different network sizes
(10, 20, 50, 100). The relationship between correlation and power is approximately logistic, with
a higher power for networks with larger numbers of nodes across the range of correlations. Large
gains in power could be seen for networks with 20 nodes against those with 10 nodes (37% versus
27% respectively, at a correlation of 50%), whereas networks with 100 nodes against 50 nodes had a
much smaller gain in power (55% versus 51% respectively, again at a correlation of 50%). To attain
a statistical power of the conventional 80%, correlations of 81%, 78%, 69%, and 65% were required
for network sizes 10, 20, 50, and 100 respectively. The maximum required level of correlation to
achieve 80% statistical power was 81% (for n= 10).

Table 2 shows the sampling effort I required to achieve 80% power, depending on the social
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differentiation S and size of a network n. For systems with low levels of social differentiation and
low network sizes, high sampling effort (I = 530 for n = 10, S = 0.05) is required. However, as
social differentiation increases, much lower sampling effort is required (I = 5.3 for n= 10, S = 0.5).
This reflects the findings shown in Figure 1. Larger network sizes also have an effect on the required
amount of sampling, with n= 100 requiring less than half the sampling effort as n= 10.

Figure 3: The relationship between estimated network correlation and statistical power for various
numbers of nodes over 1000 simulations, where the minimal effect size was chosen such that power
was ≥ 99.9%. Power and correlation are monotonically related in a relationship that resembles a
logistic curve. Larger numbers of nodes achieved a higher power for a lower correlation than smaller
numbers of nodes, as is expected in a nodal regression where sample size is equal to the number
of nodes. A statistical power of 80% is common by convention, and was generally achieved for all
simulated networks with at least 10 nodes for network correlations greater than 80%.

Simulations 3: Optimal network correlation estimator for generic tests

The powers of the nodal regression analyses for this simulation were split into five even groups
between 0% and 100%, with the top group of 80 - 100% being the desired power, by convention.
The results of the simulations are shown in Figure 4 with the optimal sampling effort overlaid. The
optimal sampling effort for low levels of social differentiation (S < 0.1) was in excess of a sampling
effort of I = 500. For slightly larger values of social differentiation (0.1 ≤ S ≤ 0.2), the required
sampling effort drops quickly from approximately I = 500 to I = 100. The sampling effort for larger
values of social differentiation quickly asymptotes towards zero.

The optimal sampling effort generally fell around the boundary between power levels of 60 - 80%
and 80 - 100% for the nodal regression analyses. Considering the curve as a classifier of under- and
over-powered analyses, using a power of 80% as the boundary between the two, 50.3% analyses
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n

S 10 20 50 100

0.05 530 410 230 200
0.2 33 26 14 12
0.5 5.3 4.1 2.3 2
0.8 2.1 1.6 0.89 0.77
2 0.33 0.26 0.14 0.12
10 0.013 0.01 0.0057 0.005

Table 2: Required sampling effort I = µH(d) to achieve a statistical power of 80% for networks with
social differentiation S and number of nodes n. Relatively low numbers of interaction observations
are required to achieve 80% power for levels of social differentiation of 0.5 and higher.

below the curve were under-powered, and 99.9% of the analyses above the curve were adequately-
or over-powered. In the context of our simulated nodal regressions, the curve was relatively conser-
vative, with the power level that most closely corresponded to the power of the optimal correlations
being 90%.

Discussion

In this study we showed that sampling effort can have a major impact on the accuracy of social
interaction networks. We showed that this can severely affect the power of statistical analyses, and
demonstrated how to carry out power analysis by accounting for sampling effort in both linear regres-
sion analyses and generic statistical analysis. We derived an equation to describe how well a sampled
network correlates with the true underlying network using a Gamma-Poisson model of interaction
counts. We showed that the equation is a good estimator of the true correlation, and is robust to
the assumptions of the model being moderately broken. We used simulations of nodal regression
analyses to find the relationship between network correlation and statistical power. Additionally we
developed an estimate for the optimal level of correlation required for generic analyses by using the
concept of diminishing returns, where increases in network correlation come at the cost of increasing
levels of sampling effort. We showed that this can be used as an alternative to conventional power
analysis by verifying the results against the nodal regression simulations.

The nodal regression simulations suggested that a reasonable level of correlation to achieve at
least 80% power is also around 80%. This value of correlation has precedent in the behavioural
sciences, and would be categorised as “very strong” by Evans (1996). However we arrived at this
value through the use of simulations, and would advise careful application of this guideline for dif-
ferent nodal regression-based analyses, and discourage its use on other types of analysis. We believe
it is particularly important to note that in our simulations we used the smallest possible effect sizes
required to achieve approximately 100% power. This is highly unlikely in the real world, with the
true effect size either being lower, in which case no amount of sampling will be able to obtain full
power, or the effect size being higher, in which case lower sampling efforts will be able to obtain full
power. For this reason, we suggest using the code we have made available to run a custom power
analysis for any specific study.

An alternative method for calculating the required level of correlation is to use the diminish-
ing returns-based optimal correlation estimator. In the nodal regression simulations it proved to be
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Figure 4: Power of nodal regression analyses for networks with varying levels of social differentiation
S and sampling effort I . The black line shows the optimal sampling effort estimated using the dimin-
ishing returns method, corresponding to the optimal correlation as social differentiation increases.
This can be viewed as a classifier where analyses below the line are under-powered, and analyses
above the line are adequately- or over-powered.

a conservative classifier of analysis power, often suggesting that more samples were required than
would have been necessary to obtain a power of 80%, and was more in line with a desired power
level of 90% in this specific simulation. Since the estimator is based on diminishing returns, it im-
plicitly models the trade-off between lower sampling variance and the cost of sampling, which is a
fundamental part of behavioural data collection. For this reason, we believe this generic estimator
to be a useful tool for generating estimates of the amount of sampling required, and in making few
assumptions, it is flexible, allowing it to be used for any type of social network analysis. Another
strength of the method is that knowledge of the desired statistical power is not required. Power can
often be difficult to define, and is therefore usually treated as a nuisance parameter when conducting
power analyses, with researchers reverting to conventions such as 80%. The free parameter ρMAX

could be considered a similar theoretical limitation to this method, but we view it as the maximum
value of correlation a researcher is interested in. We chose ρMAX = 0.99 because the final increase
in correlation by 0.01 from 0.99 to 1.00 is unlikely to be of biological or practical interest, though
other values could be used depending on the specific context. We suggest that for nodal regression,
the simulations we have provided will be a more precise tool, but for other types of analyses, or
where the desired power level is difficult to define, the generic estimator will give a good guide to
the amount of sampling needed. The two methods can also be used in conjunction with each other
to gain additional understanding about the power of an analysis.

The inspiration for this work, Whitehead (2008), suggested a guideline sampling effort for the
social association test of S2 × H > 5, where H is the mean number of observed interactions per
individual (Bejder et al., 1998). This is a classifier analogous to the classifier shown in Figure 4 for
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determining the required level of sampling effort for a given value of social differentiation to achieve
a sufficiently-powered analysis. An obvious difference between the shapes of the two classifiers is that
Whitehead’s is linear, and ours is highly non-linear. The original was determined “by eye” whereas
ours was calculated using a LOESS curve, so sampling and fitting differences could be responsible
for some of the discrepancies. However, we found that the number of interactions observed per
dyad was the important factor for the classifier, whereas Whitehead (2008)’s guidance suggested
that H – the number of interactions per individual – was the important factor. This is a key point
because unless a strict sampling regime is used, sampling is unlikely be even across dyads and nodes,
and a subset of well-sampled individuals that share connections might be over-sampled, while other
dyads remain severely undersampled. This is taken into account by the definition of sampling effort,
I = µH(d), since the harmonic mean is lower than the arithmetic mean for unevenly sampled dyads.
The previous study showed that this was unimportant in the case of association data on a specific
test, but we found that for interaction data, it is vital to take this into account.

We suggest that in addition to conducting power analyses when developing studies or assessing
the feasibility of a study, our methods could also be used in post hoc or dynamic social network
analyses where subsetting is required. It is common for long-term interaction data to be split up into
multiple networks, often for the purposes of studying changes in social behaviour over time (Pinter-
Wollman et al., 2014). Our methods could be used as a data-driven means to determine the amount
of data required for each network, and therefore how many networks should be constructed. In
this case a correlation of 0.99 could be considered to be a representative network by the arguments
above, but again this may depend on the context.

The prevalence of p-values in the behavioural sciences has been widely criticised, and alternative
hypothesis testing frameworks are becoming increasingly common in social network analysis (Cohen,
1994; Halsey, 2019; Franks et al., 2021). The concept of statistical power is directly tied to p-
values and null hypothesis significance testing, and is therefore subject to the same criticism as p-
values themselves. The criticisms of these concepts are valid, and there are many drawbacks to using
arbitrary thresholds when conducting statistical analyses. Despite this, frequentist statistics and the
p-value remain widely-used, and as long as this is the case, power analysis will remain a useful tool,
and we believe the field of social network analysis can still benefit from its wider introduction.

Correlation is a familiar statistical concept, so using network correlation to quantify the impact of
sampling on the accuracy of social networks is an attractive method. However, correlation on its own
can only offer limited information about how useful a sampled network will be in further analyses.
We used simulations in this study to estimate how network correlation relates to statistical power
in nodal regression, but these simulations are limited to specific circumstances, under a number of
assumptions. This will always be a limitation of simulation studies, and makes the generality of
the results somewhat restricted. We have shown that the required level of network correlation is
context dependent. This contrasts with some studies that have used Whitehead (2008)’s method
to calculate correlation, and suggest a minimum acceptable level of correlation at 40% (Chabanne
et al., 2017; Hawkins et al., 2020; Frau et al., 2021). Our results suggest a threshold value of 40% is
not generally optimal when conducting nodal regressions, and that the true optimal could be higher
or lower depending on the level of social differentiation and sampling effort.

We have made the code from this study publicly available, and our method of power analysis can
be used for any prospective studies where interaction data will be collected, in post hoc analysis when
reporting results, to indicate whether a null result may be due to insufficient sampling, and even when
subsetting data to ensure sufficient data are used in each network. The diminishing returns method
presented here for computing optimal correlation naturally encodes the cost of collecting behavioural
data and provides a simple method for estimating required sampling effort without specifying addi-
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tional parameters such as desired power. We believe its flexibility could prove it to be useful for a
wide variety of social network analyses.
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Supplementary material: Power tables

Nodal regression

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.275 0.4661 0.5517 0.6051 0.6519 0.7028 0.7553 0.8116 0.875
20 0.1965 0.3478 0.4629 0.5433 0.5992 0.6551 0.7113 0.7822 0.8625
50 0.1502 0.2683 0.3651 0.4352 0.492 0.5402 0.6015 0.6901 0.7974
100 0.1366 0.2513 0.3444 0.4217 0.4744 0.5264 0.5755 0.6537 0.764

Table 3: Correlation table showing the minimum required level of network correlation to achieve a
given level of power for a number of individuals between 10 and 100 assuming the minimal effect
size capable of producing maximum power.
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Supplementary material: Derivation of Equation 3

Gamma-Poisson model

In Whitehead (2008), the population association indices are assumed to be distributed according to
a beta distribution. The beta is defined on [0,1], making it ideal for modelling association indices
that are strictly in the same range. However, when modelling interaction rates, any positive number
of interaction rates can occur in an interval of time, so we propose using the gamma distribution to
model the underlying “true” interaction rates of the population:

λi j ∼ Gamma (α,β)

where λi j is the interaction rate between individuals i and j, and α,β > 0 are parameters con-
trolling the shape of the distribution. The observed number of interactions between i and j, X i j is a
an integer count variable, and should therefore be distributed according to a Poisson, depending on
the time di j spent sampling the dyad (i, j):

X i j ∼ Poisson
�

di jλi j

�

.

Since di j is constant for any particular dyad, the distribution of di jλi j is given by

di jλi j ∼ Gamma

�

α,
β

di j

�

.

This type of model is known as a Gamma-Poisson mixture, and is equivalent to the conjugate dis-
tribution of a Poisson random variable with gamma priors (). The distribution of X i j can be described
by the negative binomial in terms of the gamma parameters α,β and the sampling time di j:

X i j ∼ NegativeBinomial

�

α,
β

β + di j

�

.

In empirical network studies, the interaction rate usually used is based on this sampled interaction
count X i j. The estimated interaction rate λ̂i j is defined as

λ̂i j =
X i j

di j
.

Estimating correlation

The goal of this study is to compute the correlation between the true and estimated interaction rates
λi j and λ̂i j respectively. The Pearson correlation coefficient is defined by

ρ(x , y) =
Cov(x , y)

p

Var(x)Var(y)
.

In the same way as Whitehead (2008), we assume that the random variables λi j ≈ λ̂i j, allowing us
to set Cov(λi j, λ̂i j)≈ Var(λi j), giving the following equation for correlation:

ρ(λ, λ̂)≈
p

Var(λ)
Æ

Var(λ̂)
.
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This assumption was verified using the simulations shown in the main study. The variance of the true
interaction rate is simply the variance of the gamma distribution:

Var(λi j) =
α

β2

The variance of the estimated interaction rate is based on the variance of the negative binomial:

Var(λ̂i j) = Var

�

X i j

di j

�

=
1
d2

i j

Var
�

X i j

�

=
α(β + di j)

di jβ

The total variance of the true interaction rate over the m dyads can now be written as:

Var(λ) =
mα
β2

.

The total variance of the estimated interaction rates is:

Var(λ̂) =
∑

i, j

α(β + di j)

di jβ2

=
α

β2

�

m+ β
∑

i, j

1
di j

�

.

The variance ratio can now be written as:

Var(λ)

Var(λ̂)
=

mα
β2

β2

α

�

m+ β
∑

i, j

1
di j

�−1

=
m

m+ β
∑

i, j
1

di j

.

Now the correlation is given by

ρ(λ, λ̂) =

√

√

√

m

m+ β
∑

i, j
1

di j

.

The α,β parameterisation of the gamma distribution is not especially biologically meaningful, so
we use an alternative parameterisation in terms of the mean interaction rate µ and social differenti-
ation S. This parameterisation can be written for α,β as:

α=
1
S2

β =
1

S2µ
.
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The
∑

i, j
1

di j
term in the correlation equation is related to the harmonic mean H of the interaction

rates:

H(d) =
m

∑

i, j
1

di j

.

By substituting in these three equations, we arrive at the final equation (Equation 3) for correlation:

ρ(λ, λ̂) =
S
p

µH(d)
p

1+µS2H(d)
=

S
p

I
p

1+ S2I

where I = µH(d) is a term introduced to summarise the amount of sampling (we call it the sampling
effort) for ease of interpretation.

Likelihood estimator

To estimate the parameters of the gamma distribution, we cannot simply calculate the mean inter-
action rate and social differentiation of the estimated interaction rates, since they are subject to
sampling error. Therefore we use our Gamma-Poisson model to estimate the parameters of the un-
derlying “true” distribution of interaction rates. Unfortunately the maximum likelihood estimator of
the negative binomial only exists for data where the sample variance is larger than the sample mean.
This could be limiting in our case, so instead we use numerical maximum likelihood estimation. The
log-likelihood of our model is derived from the likelihood of the negative binomial, and is given by

`(α,β |X , d) =
∑

i, j

log

�

�

α+ X i j − 1
X i j

�

�

β

β + di j

�X i j
�

1−
β

β + di j

�α
�

.

We used a numerical method (Nelder-Mead) to maximise the log-likelihood and estimate the pa-
rameters α,β . The parameters µ, S were calculated from these. Alternative methods such as Gibbs
sampling can also be used to estimate the parameters, and would provide a credible interval estimates
for the correlation. We did not use this method in our simulations because of both the computation
time it would require, and the potential for errant chains, but have included it in the code and rec-
ommend its use for typical, one-off analyses where the diagnostics can be checked manually.

MCMC estimation

To estimate the posterior distributions of the parameters of the gamma distribution, and hence the
posterior distributions of social differentiation S and correlation ρ, we used Gibbs sampling. To
ensure the MCMC chains fit well, we used weakly informative gamma priors over α and β:

α∼ Gamma(a1, b1)
β ∼ Gamma(a2, b2)

where a1, a2, b1, b2 were chosen so that the mean of the parameters α,β were equal to their numerical
MLE estimates α̂, β̂ , and the coefficient of dispersion was δ = 10. This means the hyperparameters
are given by

b1 = b2 = δ, a1 = α̂b1, a2 = β̂ b2.
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Supplementary material: Additional verification simulations

The model verification simulations were run for additional scenarios not shown in the main text.

Beta Poisson

The gamma distribution is a natural choice for modelling lower-bounded rates thanks to its flexibil-
ity, however, it is technically possible for rates to be limited by an upper-bound. To test how well
Equation 3 estimates correlation in this case, we used a Poisson model of interaction counts with
interaction rates drawn from a beta distribution with a given mean µ and social differentiation S.

Figure 5: Estimated correlation against true correlation in the zero-inflated Poisson scenario. The
estimated correlation values had a correlation of 96% with the true correlation values, and a mean
absolute error of 3.5%.

Equation 3 performed well in the beta Poisson scenario. This might be because the gamma distri-
bution can be similar in shape to the beta. This simulation confirms that this method of estimating
correlation will work reasonably well for upper-bounded rates.

Beta binomial

The original paper (Whitehead, 2008) assumes the data are distributed according to a binomial dis-
tribution with parameters given by a beta distribution. This is often relevant when using association
indices such as the simple ratio index to estimate the proportion of time two individuals associate.
With this type of data we recommend using the original method. However, we implemented a sim-
ulation of this kind of data to test how well our correlation estimate fares when its assumptions are
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severely broken. In these simulations we set the mean interaction rate µ and social differentiation S
in the same way as the previous simulations. The results are shown in Figure 5.

Figure 6: Estimated correlation against true correlation in the Beta binomial scenario. The correlation
estimator performs poorly in this scenario, consistently underestimating the true correlation. In many
cases a correlation of ρ = 0 was predicted where the true correlation was anywhere between 0 and
1.

The poor performance of Equation 3 in this scenario was expected, since the simulation generates
data consistent with binary sampling, whereas our correlation estimate assumes interaction count
sampling. This means that most of the underlying assumptions are broken, making this equation for
correlation not applicable to this type of data. This confirms that when using binary sampled data,
Whitehead (2008)’s method should be used to calculate correlation, but when using interaction rate
data, our Equation 3 should be used.

Biased sampling

In many cases, sampling is uneven across individuals, and consequently some dyads may be more
heavily sampled than others. Any biases in sampling should not effect our method since the harmonic
mean, which is used to determine sampling effort (I = µH(d)), is sensitive to imbalanced values,
and will naturally capture biased sampling. To check this, we created a simulation like scenario 1,
but where the number of samples di j is drawn from one of two Poisson distributions, one with mean
Dlow ∈ [1,10], and another with mean Dhigh ∈ [10, 100].
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Figure 7: Estimated correlation against true correlation in the biased sampling scenario. The corre-
lation estimator performs well in this scenario since none of the assumptions of the model are being
broken.

The estimator performed well in this scenario, with a mean absolute error of 0.7% and an overall
correlation of 99.5%. None of the assumptions of the model were broken by this scenario, so the
estimator was expected to perform well here. This demonstrates that biased sampling will not affect
the correlation estimate.
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Supplementary material: Nodal regression with eigenvector cen-
trality

In the main text we used strength to assess the power of nodal regression, but the choice of network
metric should not affect the results since the effect size was calculated relative to the metric when
estimating the effect size required for ≈ 100% power. To verify this, we ran the simulations with
eigenvector centrality as the network metric. These simulations replicated our results, showing that
the results should hold for any custom power analysis run using our code.

Figure 8: Relationship between power and correlation for different numbers of nodes in nodal re-
gression simulations with eigenvector as the predictor variable.
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Supplementary material: Effect of ρMAX on optimal correlation
estimate

The generic diminishing returns method relies on a free parameter ρMAX indicating the effective
maximum amount of correlation that is biologically relevant. In the main text we used ρMAX = 0.99,
but any value between 0 and 1 could theoretically be used. Values of ρMAX close to 0 might not
be advisable, but there is scope for parameter choice for values of ρMAX closer to 1. To evaluate
the effect of parameter choice on the classifier, we repeated Simulation 3 for three value: ρMAX ∈
{0.9,0.99, 0.999}. These values were chosen to have different orders of magnitude difference to 1
to show the realistic maximum range of the classifier.

Figure 9: Simulation 3 was re-run for three different values of ρMAX ∈ {0.9,0.99, 0.999} to test the
sensitivity of the diminishing returns method to parameter choices with different orders of magnitude
difference to 100% correlation. The solid black line indicates the value of ρMAX = 0.99 used in the
main text, the long dashed line indicates ρMAX = 0.9, and the short dashed line indicates ρMAX =
0.999.

The parameter choice makes of ρMAX a significant impact on the classifier. A parameter value of
ρMAX = 0.90 yielded a classifier closely matching the 80% power boundary for the nodal regression
simulations, whereas the higher value ρMAX = 0.999 was extremely conservative, suggesting much
higher sampling efforts than required to attain a high level of power. These results are difficult to
extrapolate to other contexts, but by keeping the definition of ρMAX as the maximum correlation of
biological relevance, this method can be used to provide guidance on the required sampling effort
for a given level of social differentiation.
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