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Previous work on murine models and human demonstrated global as well as tissue-specific 1 
molecular aging trajectories in solid tissues and body fluids1-8. Extracellular vesicles like 2 

exosomes play a crucial role in communication and information exchange in between such 3 
systemic factors and solid tissues9,10. We sequenced freely circulating and vesicle-bound small 4 
regulatory RNAs in mice at five time points across the average life span from 2 to 18 months. 5 

Intriguingly, each small RNA class exhibits unique aging patterns, which showed differential 6 
signatures between vesicle-bound and freely circulating molecules. In particular, tRNA 7 
fragments showed overall highest correlation with aging which also matched well between 8 
sample types, facilitating age prediction with non-negative matrix factorization (86% accuracy). 9 

Interestingly, rRNAs exhibited inverse correlation trajectories between vesicles and plasma 10 
while vesicle-bound microRNAs (miRNAs) were exceptionally strong associated with aging. 11 
Affected miRNAs regulate the inflammatory response and transcriptional processes, and 12 

adipose tissues show considerable effects in associated gene regulatory modules. Finally, 13 

nanoparticle tracking and electron microscopy suggest a shift from overall many small to fewer 14 

but larger vesicles in aged plasma, potentially contributing to systemic aging trajectories and 15 
affecting the molecular aging of organs. 16 

 17 
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Introduction 19 
Understanding and controlling molecular hallmarks of age- related processes in higher 20 

organisms promises to greatly improve the quality of life1. For humans, aging is frequently 21 

studied using easily accessible biospecimens such as blood, serum or urine. Consequently, 22 
the scientific community generated models for a broad spectrum of molecular physiological 23 

and pathophysiological processes from different molecule types. For example, studies rely on 24 

long-lived individuals2, serum proteomic profiling3, small RNA patterns in blood cells4,11, or the 25 
exploration of epigenetic control of aging clocks5. Likewise, deeper profiles such as gene 26 

expression fingerprints are available for different tissues6. Murine models facilitate the analysis 27 

of such processes thanks to their restricted influence of a heterogenous genetic background 28 
and varying lifestyles as compared to humans. Thus, organism-wide RNA-sequencing data of 29 

major organs and cell types across the mouse lifespan are available as unique resource to 30 

study aging7,8. The available data suggest complex aging patterns, including both linear and 31 
non-linear effects that are either specific for organs or follow more global organism-wide 32 

trajectories. These observations indicate a systemic and well-orchestrated exchange of 33 
information and molecules between organs. Specifically, extracellular vesicles (EVs) such as 34 
exosomes are postulated to play an important role9,10, e.g., hypothalamic stem cells seem to 35 
control aging through exosomal miRNAs12. Recently, targeted intervention of exosomal 36 

transfer of miRNAs from osteoclast to chondrocytes was described as promising method to 37 
slow or even inhibit osteoarthritis in mice13, as also summarized in a news and views article 14. 38 

Further, several studies address the relation of EVs with aging in a systematic manner15-18. 39 
Also of special interest are studies investigating the change of vesicle bound non-coding RNAs 40 
depending on (treatment) interventions such as caloric restriction19. However, these studies 41 
are often limited in their analysis scope by considering only one small RNA class at a time and 42 

even restricting themselves to a subset of well characterized representatives. Moreover, an 43 
inherent restriction often is the limited sample count, frequently leading to pooling of 44 
biosamples and blurring fine-grained signals. 45 

These and other issues complicate the analysis of EVs and their molecular load. 46 

Especially in the context of EVs in cancer, common pitfalls in purification have been 47 
summarized by Schekman and co-workers20 with the correct nomenclature of EVs, purification 48 

and other aspects elucidated in great detail. Similar limitations as described in the context of 49 

cancer in this review also apply for other diseases, matrices and organisms. 50 
For advancing our understanding on how systemic non-coding RNAs are associated 51 

with aging, we sought to discern differences between the molecular information included in EV 52 

cargo and freely circulating non-coding RNAs. We thereby balance the tradeoff of having 53 
sufficient material for high-throughput sequencing of individual plasma samples at the highest 54 
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purity of input material. For each 55 
individual mouse, plasma and EV 56 

samples we sequenced non-coding 57 

RNAs and contrasted them by 58 
computational approaches. 59 

 60 

Results 61 
To uncover age-related 62 

dynamic processes and to model the 63 

information exchange involved we 64 
sequenced both free circulating non-65 

coding RNAs and vesicle-bound 66 

non-coding RNAs from individual 67 
mice. The molecular profiles are 68 

available at five time points across 69 
the average lifespan between two to 70 
18 months in two to four replicates 71 
per age group and biospecimen type 72 

(Fig. 1A, Supplemental Table 1). 73 
For the plasma and the EV RNA 74 

samples, we sequenced on average 75 
38 million reads and mapped them 76 
to ten different non-coding RNA 77 
classes. In total, the feature set 78 

includes 80,688 different non-coding 79 
RNAs in mice, mostly piRNAs, 80 
circRNAs, lincRNAs and miRNAs 81 

(Fig. 1B). The very first aspect 82 

encompassed the distribution of 83 
molecules from the different RNA 84 

classes. While tRNA fragments were 85 

highly represented both in 86 
exosomes and as freely circulating 87 

molecules, piRNAs showed sharply 88 

lower levels in both specimen types (Fig. 1C). However, dominantly for circRNAs and rRNAs 89 
significantly different amounts as freely circulating molecules compared to vesicle-bound 90 

RNAs were observed. Notably, this analysis has a quantitative and RNA class centric view but 91 

Figure 1: Distribution of sequencing reads into their mapped non-coding RNA classes 
and their general relation to aging. (A) Study set-up. We profiled vesicle and plasma 
samples from mice in 5 age groups and sequenced 80,668 non-coding RNAs from 10 
classes. (B) Overall distribution of molecules to the 10 non-coding RNA classes. (C) 
Fraction of representatives per RNA class dependent on an expression threshold. 
Dashed lines are serum, solid lines vesicle samples. (D) Overlap of expressed RNAs in 
plasma and vesicles as area proportional Venn diagrams. (E) percent of total data 
variance attributed to different parameters such as the age (month), individual mice or 
specimen type (source). Columns are sorted according to decreasing fraction of variance 
attributed to the age. (F) Relative expression of the different RNA classes per timepoint 
and sample type as compared to the baseline (2 months). Green means higher 
expression and purple lower expression. The upper row per RNA class is serum, the 
lower row is vesicles. (G) Prediction of age by non-negative matrix factorization. The 
color code represents the probability (trust) in the prediction, x-axis represents the true 
age group, y-axis the predictions. 
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does not yet consider whether the representative within the classes match across sample 92 
types. For example, only a small number of piRNAs are expressed both in plasma and 93 

exosomes even though general abundance was high. Considering the sample type overlap for 94 

each class, indeed the most significant difference was observed between circulating and 95 
vesicle-bound piRNAs (Fig. 1D). Similarly, we report large differences in the content of RNA 96 

molecules from snRNAs, snoRNAs, and scaRNAs. In contrast, detected tRNA fragments, 97 

lincRNAs, rRNAs and circRNAs are often shared between the two specimen types. In sum, 98 
our data thus argue for a type-specific expression patterns that differ significantly between 99 

non-coding RNA classes in a quantitative and qualitative manner. 100 

Our initial hypothesis was to test for unique aging trajectories within and between non-101 
coding RNA classes wrapped in vesicles or freely circulating in plasma. Thus, we computed 102 

the proportions of variance in the RNA counts that can be explained by available sample 103 

metadata, i.e., either by age of the mice, the specimen type and donor mice identity, or linear 104 
combinations of such. Here, tRNA fragments and miRNAs clearly stood out in terms of fraction 105 

of variance explained by the age (Fig. 1E). In comparison, the lowest information content with 106 
respect to age was obtained by scaRNAs and rRNAs. Importantly, the individuality factor of 107 
each donor mice used for this study was comparably small, independent of the RNA class. To 108 
uncover the actual relationship between each RNA class and mice age, we set the expression 109 

at month 2 as baseline and modelled whether activity increases or decreases over time in EVs 110 
and plasma, separately. As one result, we found remarkably similar dynamics of change for 111 

vesicles and free circulating RNAs. 112 
The largest overall age-related differences exist in rRNAs where the overall amount 113 

increases for free circulating molecules with aging but the vesicle loading of rRNAs decreases. 114 
This substantial difference in the specimen types also explains the high proportion of variance 115 

attributed to the sample type annotation (rightmost green bar in Fig. 1E). Our data further 116 
indicate a strong aging signal in EVs and in plasma, with varying strengths, again depending 117 
on the RNA class (Fig. 1F). As our previous analyses emphasized the role of tRNA fragments, 118 

we investigated the expression profiles in an unbiased manner and performed a classification 119 

into three age groups (young, 2 months; middle aged, 6-8 months; old, 12-18 months). We 120 
modelled this classification task as optimization problem through non-negative matrix 121 

factorization, computing probabilities for each sample to belong to each of the three age 122 

groups. We then assigned each sample to the age group with highest probability. For both 123 
plasma and micro-vesicles, we got varying prediction accuracies, once again with the best 124 

results for tRNA fragments with a remarkable accuracy of 86% (Fig. 1G). 125 

Taken together, our analyses suggest non-coding RNAs to exhibit specific age 126 
trajectories, both in qualitative and quantitative aspects. Moreover, the data pinpoint at 127 

substantial differences in case of circulating RNAs and vesicle bound RNAs where the best 128 
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correlation with age was observed for tRNA fragments. This immediately poses the question 129 
whether loading of vesicles follows biologically relevant environmental mechanisms. To 130 

discover such potential patterns, we next performed a fine-granular and molecule-centric 131 

analysis. 132 
From the 80,668 unique non-coding RNA molecules in Mus musculus included in our 133 

analysis, 23,052 (28.6%) are stably expressed in plasma and vesicles (Supplemental Table 134 

2). We then computed the linear Pearson correlation as well as the non-linear distance 135 
correlation for each of the investigated RNAs. 136 

Based on this information, we estimated for each RNA whether it is linearly correlated 137 

with age, nonlinearly correlated with age or not correlated with age at all for plasma and 138 
vesicles separately. For both sample types, freely circulating in plasma (Fig. 2A) and vesicle 139 

bound (Fig. 2B), the linear component was dominant and online few exceptions with non-linear 140 

trajectories occurred. The amplitude and frequency of non-linear RNAs were both slightly 141 
enriched in EVs. Interestingly, we also observed a slight enrichment towards negative 142 

correlation in EVs. Both aspects argue for a more characteristic abundance of RNA levels in 143 
aging EVs as compared serum. Having observed non-coding RNAs that are positively and 144 
negatively correlated with age in vesicles or freely circulating further called for exploring 145 
whether the up- and down-regulated molecules show similar compositions in the two specimen 146 

types. In total, 27% and 22% are increasing and decreasing with age in EVs and serum, 147 
respectively, slightly differing from what would be expected by a random distribution (cf. 148 

methods). Intriguingly, however 39% of the 23,052 expressed non-coding RNAs are negatively 149 
correlated in EVs with age but positively correlated in plasma and with 12% behaving vice-150 
versa (Fig. 2C, Supplemental Table 2). To seek common patterns for the increasing and 151 
decreasing expression of non-coding RNAs we clustered the expression in EVs and in plasma 152 

separately and extracted RNA clusters from the dendrogram. For each cluster we then 153 
computed the average linear and non-linear correlation with aging and finally calculated the 154 
overlap of the sample types. Our analysis confirmed the strong and orchestrated decrease of 155 

correlation with age in EVs as compared to plasma (Fig. 2D). The vesicle clusters are enriched 156 

in the lower left corner, indicating the significant trend towards negative correlation with age in 157 
EVs. Further, the data reveals a substantial age-related loss in linear correlation as compared 158 

to non-linear correlation. To validate the origin of these signals we inspected all concordant 159 

and discordant non-coding RNAs and provide specific examples for markers clearly increasing 160 
with age in plasma and vesicles (miR-466i-5p, Fig. 2E), decreasing with age in plasma and 161 

vesicles (Gm16701, Fig. 2F), increasing with age in plasma but decreasing with age in vesicles 162 

(Gm20756, Fig. 2G), and lastly decreasing with age in plasma but increasing in vesicles (miR-163 
690, Fig. 2H). We further examined whether the patterns hold for all the 10 non-coding RNA 164 
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classes or rather if they 165 
are class specific. Here, 166 

the specificity of 167 

patterns for the different 168 
non-coding RNA 169 

classes was 170 

astonishing. For 171 
example, 94% of tRNA 172 

fragments increased 173 

with age in both plasma 174 
and in EVs. Also, 54% of 175 

rRNAs decreased with 176 

age in plasma but 177 
increased with age if 178 

vesicle-bound. 179 
Inversely, 42% of 180 
circRNAs increased with 181 
age in plasma but 182 

increased with age if 183 
vesicle-bound. Also, 184 

other RNA classes 185 
revealed distribution 186 
patterns significantly 187 
deviating from the 25% 188 

per group as expected 189 
by chance. For 190 
example, 82% of 191 

miRNAs increased with 192 

age in EVs (Fig. 2I). 193 
In the light of the 194 

regulatory mechanism 195 

of miRNAs typically 196 
repressing gene 197 

expression21 and further 198 

knowing that mRNA 199 
levels tend to decrease 200 

with age, we next asked 201 

Figure 2: Correlation of non-coding RNAs with aging in EVs and in serum. (A) For each non-coding RNA, 
the x-axis represents the Pearson correlation and the y-axis the distance correlation with age in serum. 
The red line is a smoothed spline, and the colored dots (green, negatively; red, positively) are correlated 
with age in a predominantly non-linear manner. (B) The same information as in panel (A) but for EVs. (C) 
Scatter plot showing the Pearson correlation in vesicles (x-axis) in relation to the Pearson correlation in 
plasma (y-axis). Orange numbers represent the percentage of points in each of the four quarters. The 
data suggest a shift to negative correlation with age in vesicles. (D) Non-coding RNAs in plasma and EVs 
were clustered and resulting clusters were attributed with the average linear and non-linear correlation. 
Solid lines represent a match of non-coding RNAs, the thicker the line the more non-coding RNAs match 
between a plasma and vesicle cluster. The diameter of the points represents the cluster size. Most EV 
clusters accumulate in the lower left corner. (E-H) Examples of non-coding RNAs that increase or decrease 
with age. The x-axis represents the age, the y-axis the expression of the selected non-coding RNA (orange, 
EV; blue serum). (I) Confusion matrix scatter plots (see also panel (A) split by the RNA classes. 
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whether the miRNAs increasing or decreasing with age in vesicles or plasma exhibit a distinct 202 
function in a pathway-specific manner. For each gene ontology category22 we computed an 203 

enrichment score for the miRNAs in EVs and in serum. Next, we used the list of miRNAs sorted 204 

by their correlation with age to perform cutoff-free miRNA set enrichment analysis23,24. A direct 205 
comparison provided strong evidence supporting the notion that miRNAs correlated with age 206 

in vesicles are significantly enriched in biochemical categories as compared to those in plasma 207 

(Fig. 3A). This finding is in line with our initial hypothesis that EVs are specifically loaded with 208 
non-coding RNAs that exert biological processes in remote sensing cells. To understand the 209 

nature of these processes, we compared the 16 categories that are at least three orders of 210 

magnitude more significant in vesicles as compared to plasma to the two being at least three 211 
orders of magnitude more significant in serum. In the former, the strongest enrichment was 212 

found for the protein heterodimerization activity, neural crest cell migration, negative regulation 213 

of inflammatory response, receptor internalization, positive regulation of neuroblast 214 
proliferation, the mitochondrial envelope, the positive regulation of DNA-templated 215 

transcription and the TORC2 complex (all with adjusted p-value < 5x10-5 in vesicles and p-216 
value > 0.01 in serum). The categories with higher significance in plasma are cellular response 217 
to BMP stimulus (p=6x10-5 vs. 0.11) and negative regulation of myotube differentiation 218 
(p=6x10-7). Distinct pathways being specifically enriched in vesicles opens the question on 219 

potential effects in gene regulation in different tissues. 220 
The core hypothesis of our work stipulates specific loading of EVs with non-coding 221 

RNAs, first and foremost miRNAs, enabling the performance of specific function and gene 222 
regulation in remote cells. Previously, we established a bulk- and single cell murine tissue 223 
aging atlas, Tabula Muris Senis7,8. In these studies, we report both linear and nonlinear aging 224 
trajectories in gene expression signals. Similar to the findings on non-coding RNAs observed 225 

here, the associated genes cluster with coherent biological functions (among others, 226 
extracellular matrix regulation, unfolded protein binding, mitochondrial function, and 227 
inflammatory and immune response). The expression patterns are consistent across tissues, 228 

differing only in the amplitude and age of onset. Especially fat tissues showed early aging 229 

signals of biochemical pathways similar to those observed in the miRNA pathway analysis 230 
described above. It was previously shown that miRNAs target genes in a pathway specific 231 

manner25-27. Thus, for miRNAs associated with age we extracted validated target genes from 232 

miRTarbase28 and evaluated the correlation of potential targets with age annotations from 233 
Tabula Muris Senis (Fig. 3B). In this context, the expected pattern is a negative correlation of 234 

target genes where miRNAs increase with age and vice versa, and as such was confirmed for 235 

several organs, including mesenteric fat, gonadal fat, the brain’s white blood cells and brown 236 
fat. Likewise, the tissue independent aging patterns matched our expectations. While fat 237 

tissues generally showed the best concordance, other tissues such as the lung or pancreas 238 
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did not. The target gene 239 
correlation for mesenteric 240 

and gonadal fat verified the 241 

increased correlation with 242 
age for miRNAs 243 

decreasing with age and 244 

vice versa (Fig. 3C/3D). 245 
Intriguingly, this effect was 246 

more pronounced for 247 

gonadal fat, however only 248 
for EV bound miRNAs and 249 

less so for serum. 250 

Translating the miRNAs 251 
and genes to a proper 252 

target gene network 253 
identified 8 core genes: 254 
Notch1, Bace1, Hdac4, 255 
Igf1, Eln, Cav2, Insig1, and 256 

Scap (Fig. 3E), possibly 257 
reflecting physiological 258 

relevance for both 259 
signaling networks and 260 
epigenetic processes. 261 

In sum, our 262 

analysis reinforces the 263 
central role of fat in early 264 
aging processes, 265 

indicating that vesicle 266 

bound miRNAs have 267 
important contributions. 268 

Having demonstrated that 269 

the cargo of EVs seems to 270 
be biologically relevant 271 

further opens the question 272 

whether it is just the cargo 273 
of the EVs or whether the 274 

Figure 3: Pathway results and nanoparticle tracking. (A) miRNA pathway enrichment for age-related 
miRNAs in plasma (x-axis) and vesicles (y-axis). Each dot is one pathway, the size represents the number 
of miRNAs associated with the pathway. The red dashed line is the bisector, the green lines mean two 
orders of magnitude higher significance in plasma and vesicles, respectively. The pathways with at least 
three orders of magnitude difference are listed on the right. (B) For miRNAs that are positively and 
negatively correlated with age in plasma and vesicles, the correlation with age of target genes from 
Tabula Muris Senis across 17 tissues is shown. Expected is that miRNAs going down with age have target 
genes going up with age and vice versa. (C,D) For two fat tissues the target gene correlation with age 
is detailed for the four groups shown as rows in (B). (E) Target network. Large green dots depict genes, 
small pink dots represent miRNAs and lines delineate regulatory events between miRNAs and genes. 
The color shading represents the correlation with age and the hub genes targeted by at least three 
miRNAs are annotated in red. Relative font sizes represent the number of miRNAs targeting the 
respective gene. (F) Size histogram of two selected examples from the nanoparticle tracking analysis, 
one young and one old mouse. (G) Average concentration and size of nanoparticles in young and old 
mice before and after ultracentrifugation. For both types of analysis we observe the shift towards fewer 
but larger vesicles in aged mice. (H) Selected electron microscopy images of one young and one old 
mouse plasma sample show EVs and a limited background signal.  
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nature of vesicles is altered. 275 
We finally carried out nanoparticle tracking analysis (NTA) and Cryogenic electron 276 

microscopy (cryo-EM) on a new cohort of mice. Thereby we focused on the extreme ages, i.e., 277 

studied four mice of the youngest and four mice of the oldest age group. A general shift in the 278 
distribution from more and smaller EVs present in young animals to fewer but larger EVs in old 279 

animals was observed (Fig. 3F, Supplemental Fig. 1). We performed this analysis for 280 

samples with and without ultracentrifugation to minimize noise in the data. Although this 281 
analysis is challenging and apoptotic bodies might blur the image, we find for both sample 282 

types with and without centrifugation identical patterns: aging leads to a decrease of the 283 

particle concentration and at the same time to an increase of the average particle diameter 284 
(Fig. 3G). Both the differential loading and the different size and number of EVs seem to add 285 

to the altered molecular aging profiles across tissues. Although only in a qualitative manner, 286 

also cryo-EM supported the thesis of different sizes and counts for vesicles in young and old 287 
plasma (examples are presented in Fig. 3H, all available cryo-EM images are shown in 288 

Supplemental Fig. 2). 289 
 290 
Discussion 291 

While our study presents intriguing new insights into the correlation of EVs and the 292 

molecular loading of EVs with non-coding RNAs in the context of aging, it is important to 293 
mention possible limitations and how we took them into account. First, the purification of EVs 294 

is challenging and bears many pitfalls20. Generally, the more purification steps are applied the 295 
less material is left, requiring a pooling of samples. We decided to have the maximal purity 296 
possible while still leaving sufficient material for individual sequencing of small RNAs, avoiding 297 
any pooling. As stated by Schekman et al. 20, healthy skepticism concerning the possible 298 

connection between exosomal miRNAs and control of gene expression in target cells will 299 
remain until functional cell culture and animal studies are conducted with exosomes purified 300 
by rigorous and quantitatively documented procedures. While NTA and cryo-EM do not replace 301 

such purification, they demonstrate a limited background noise in the used samples. A second 302 

limitation comes down to the molecular measurement and annotation of the molecules. Having 303 
reached a high sequencing depth from low input volumes, the data are mapped to the standard 304 

reference databases. Whether read molecules, e.g., mapping to piRNAs actually represent 305 

functional piRNAs and not fragments or reads mapping to miRNAs annotated in miRbase are 306 
representing functional miRNAs, is only partially known, calling for further functional validation 307 

experiments. These factors have to be addressed in targeted studies with larger cohorts of 308 

mice and using orthogonal molecular profiling technologies such as RT-qPCR. 309 
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Online Methods 
 
Animals: For the non-coding RNA sequencing experiments, we used female C57BL/6N mice 
at the age in months of 2 (n = 4; body weight (bw): 19-20 g), 6 (n = 4; bw: 25-29 g), 8 (n = 4; 
bw: 23-26 g), 12 (n = 2; bw: 31 g) and 18 (n = 4; bw: 34-42 g). To assess the spread of vesicles 
in fat tissues, a second cohort of female C57BL/6N mice was used with an age of 2 (n = 4; bw: 
19-20 g) and 18 months (n = 4; bw: 29-41 g). The animals were housed in groups on wood 
chips as bedding in the conventional animal facility of the Institute for Clinical & Experimental 
Surgery (Saarland University, Homburg/Saar, Germany). They had free access to tap water 
and standard pellet food (Altromin, Lage, Germany) and were maintained under a controlled 
12-h day/night cycle. This animal study was approved by the local State Office for Health and 
Consumer Protection and conducted in accordance with the Directive 2010/63/EU and the NIH 
Guidelines for the Care and Use of Laboratory Animals (NIH Publication #85-23 Rev. 1985). 
 
Blood sampling: The mice were anesthetized by an intraperitoneal injection of ketamine (100 
mg/kg bw; Ursotamin®; Serumwerke Bernburg, Bernburg, Germany) and xylazine (12 mg/kg 
bw; Rompun®; Bayer, Leverkusen, Germany). Subsequently, they were fixed on a heating pad 
in supine position. After midline laparotomy, a maximal volume of blood (~700-1000 µL) was 
taken from the vena cava and transferred into plasma tubes (Sarstedt, Nümbrecht, Germany). 
The blood samples were then centrifuged at 20°C and 10.000 xg for 5 min and the resulting 
plasma was stored at -80°C until further use. 
 
Purification of EVs: 200 µl of mouse plasma were transferred to 1 mL open-top thickwall 
polypropylene ultracentrifugation tube (Beckman-Coulter, USA) and diluted with 800 µL of 
phosphate-buffered saline to prevent the tube from collapsing in the ultracentrifuge vacuum. 
Samples were centrifuged for 2 h, at 4°C at 100,000 x g using the Type 50.4 Ti fixed-angle 
rotor (Beckmann-Coulter, USA). Supernatants were carefully removed, and the pellets were 
resuspended in 20 µL of phosphate-buffered saline. Samples were stored at –80°C until further 
analyses. 
 
RNA extraction: Total exosomal RNAs were isolated semi-automated using the miRNeasy 
Micro kit (Qiagen, Hilden, Germany) and Qiacube isolation robot according to the 
manufacturer’s recommendations with addition of 2 µL RNase-free glycogen (20 mg/mL, 
Invitrogen, Carlsbad, CA, USA) to facilitate RNA precipitation. RNA concentration was 
measured using Qubit™ microRNA Assay Kit (ThermoFisherScientific, Waltham, MA, USA). 
 
High-throughput RNA-sequencing: Isolated RNA samples were analyzed by Agilent small 
RNA Chips and 2 ng each (exosomes and supernatants) were used for Illumina compatible 
library preparation using the D-Plex small RNA Kit (Diagenode, BE). The kits employ 3´-poly 
A tailing and template switch-based cDNA generation using UMI (unique molecular identifier) 
tagged template switch oligos. After PCR amplification involving 13 cycles, libraries were 
purified from TBE-PAGEs. Illumina sequencing was carried out on a HiSeq2500 platform using 
the High Output mode for 96 cycles. 
 
Nanoparticle-tracking analysis: 1 µl of serum was diluted in 1199 µL, 1 µL of the 
resuspended pellet was diluted in 999 µL of phosphate-buffered saline, in order to achieve a 
final concentration between 20 and 120 particles/frame. Samples were then measured on 
NanoSight (Malvern, UK) at a camera level of 15. For each sample, three captures of 30 s 
were acquired. Videos were then analyzed at a detection threshold of 5 using NTA 3.4 
software. 
 
Cryo-Transmission Electron Microscopy: 3 µL of each sample were transferred to a holey 
carbon film-coated copper grid (Plano S147-4), blotted for 2 s, and plunged into undercooled 
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liquid ethane at –165 °C (Gatan Cryoplunge3). The grid was then, under liquid nitrogen, 
transferred to a cryo-TEM sample holder (Gatan model 914). Low-dose bright-field images 
were acquired at –170 °C, using a JEOL JEM-2100 LaB6 Transmission Electron Microscope 
and a Gatan Orius SC1000 CCD camera. 
 
Bioinformatics: The sample primary processing was performed with miRMaster29 using 
standard parameters. As output, miRMaster generated a list with the expression of 80,668 
RNAs from 10 RNA classes. The data were normalized to expression in one million reads and 
further processed with R (R 4.0.4 GUI 1.74 Catalina build (7936)). The Venn diagrams were 
generated using the eulerr package from R. Mapping the fraction of variance to different 
parameters was done using the principal variance component analysis (pvca) package. 
Splines were computed using the smooth.spline function with seven degrees of freedom. Color 
palettes were generated using the RColorBrewer package. Smoothed scatter plots were 
computed using the smoothScatter function setting the point number to 500. Clustering was 
done for highest expressed non-coding RNAs (at least 5 reads per million in at least one 
sample) using the scaled expression matrix (z-score of each feature). The clustering was 
performed with the hclust function, using the Euclidean distance measure. Clusters were 
extracted by cutting the dendrograms at 1/1.25 of the maximal height. Heatmaps of target 
genes were computed using the heatmap.2 function. The network visualization has been 
performed using iGraph. As input for the network analysis, targets from miRTarbase 28 were 
used, however, restricted to strong evidence targets. To compute the statistical concordance 
of RNAs correlated with aging across sample types, a random background distribution with 
respect to positive and negative correlation was assumed. Briefly, a random distribution would 
mean that close to 25% of non-coding RNAs is consistently positively regulated in serum and 
EVs, 25% is consistently negatively correlated with age and 25% in each are positively 
correlated in the one and negatively correlated in the other specimen type. 
 
Matrix factorization: We predicted the age of samples with respect to three age groups 
"young" (2 months), "middle" (6-8 months) and "old" (12-18 months). To this end, the 
expression patterns were split in 20 individual matrices, for each of the 10 non-coding RNA 
classes and for plasma and EVs. We first normalized the given non-negative Matrix D by 
dividing all elements by the maximum value in 𝐷. To obtain the probabilistic regarding the age 
groups, we decomposed the matrix 𝐷 into two further matrices 𝑇 and 𝑃, where 𝑃 gives us the 
desired probabilities. 𝑇 stands for the matrix of the typical age group vectors, i.e., in each entry 
of a column there is a value representing all entries at this position of all samples belonging to 
this age group. The matrix 𝑃 contains the probabilities of each sample to each age group 
respective to their typical vector in 𝑇. We formulated the non-negative matrix factorization as 
the optimization problem:  

 
The first two constraints require all entries of the matrices 𝑇 and 𝑃 to lie between 0 and 1. 
Since we were interested in the percentage of a sample belonging to the three age groups, we 
also required all columns of the matrix P to sum up to 1 using a numerical solver30. 
We then classified each sample by choosing the index with the highest entry of each column 
in P and assigned the index as a label to each one. However, the rows of P were invariant to 
permutations. Here, this means that it is not clear which label corresponds to which age group. 
Furthermore, a measure of quality for the results was needed. Using the known age, we could 
construct a ground truth for each sample and calculated the classification accuracy for every 
permutation. The ground truth used was “young” corresponding to two-month-old mice, 
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“middle” to six- and eight-months-old and “old” to twelve- and 18-month-old. Finally, we chose 
the permutation labels which maximize the accuracy and obtain a measure of quality. 
 
Data availability 
All sequencing data are freely available from the Sequence Read Archive SRA [reviewer link 
to the data is available upon request]. 
 
Code Availability 
The primary data analysis has been performed using miRMaster. miRMaster is available as 
web service. The source code of miRMaster is not publicly available because of licensing 
issues. The other analyses have been carried out using standard R packages that are freely 
available (see Methods Section).     
 
 
Competing interests 
None declared. 
 
Author contributions 
FK contributed to data analysis, data interpretation, and writing the manuscript. TK performed 
the vesicle extraction experiments. NL contributed to the study set up and the interpretation of 
the analysis. MS contributed to the sequencing of the samples and to the study set up. LG 
contributed to the versicle purification experiments. NF contributed to the sequencing 
experiments. AS contributed to the sequencing experiments. TF contributed to the analysis of 
primary sequencing data. OH contributed to the analysis of the tissue experiments from TMS. 
AE performed the matrix factorization analysis. MK performed the Cryo EM analysis. JK 
contributed to the matrix factorization analysis and the interpretation of the results. KW and 
HM contributed to the tRNA fragments analysis and interpretation. GF contributed to the 
vesicle extraction and to the study set up. TWC contributed to the analysis and interpretation 
of the data in the context of the tissue experiments from TMS. EM contributed to the study set 
up and the interpretation of the results. MWL performed the mouse experiments. AK 
contributed to study set up, data interpretation and manuscript writing.  
 
Acknowledgements 
We appreciate the support of the mouse facility at Saarland university. We appreciate input 
from the members of the Keller lab.  
 
Funding 
This study has partially been funded by the Regional Government of the Saarland and by 
Saarland University.  
 
Supplementary Materials are available online. 
 
 
References 

 
1 Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180-

186, doi:10.1038/nature20411 (2016). 
2 Deelen, J. et al. A meta-analysis of genome-wide association studies identifies multiple 

longevity genes. Nat Commun 10, 3669, doi:10.1038/s41467-019-11558-2 (2019). 
3 Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the 

lifespan. Nat Med 25, 1843-1850, doi:10.1038/s41591-019-0673-2 (2019). 
4 Fehlmann, T. et al. Common diseases alter the physiological age-related blood 

microRNA profile. Nat Commun 11, 5958, doi:10.1038/s41467-020-19665-1 (2020). 
5 Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock 

theory of ageing. Nat Rev Genet 19, 371-384, doi:10.1038/s41576-018-0004-3 (2018). 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.07.443093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443093
http://creativecommons.org/licenses/by-nc/4.0/


 13 

6 Aramillo Irizar, P. et al. Transcriptomic alterations during ageing reflect the shift from 
cancer to degenerative diseases in the elderly. Nat Commun 9, 327, 
doi:10.1038/s41467-017-02395-2 (2018). 

7 Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 
583, 596-602, doi:10.1038/s41586-020-2499-y (2020). 

8 Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the 
mouse. Nature 583, 590-595, doi:10.1038/s41586-020-2496-1 (2020). 

9 Pastuzyn, E. D. et al. The Neuronal Gene Arc Encodes a Repurposed Retrotransposon 
Gag Protein that Mediates Intercellular RNA Transfer. Cell 172, 275-288 e218, 
doi:10.1016/j.cell.2017.12.024 (2018). 

10 Tkach, M. & Thery, C. Communication by Extracellular Vesicles: Where We Are and 
Where We Need to Go. Cell 164, 1226-1232, doi:10.1016/j.cell.2016.01.043 (2016). 

11 Kern, F. et al. Deep sequencing of sncRNAs reveals hallmarks and regulatory modules 
of the transcriptome during Parkinson’s disease progression. Nature Aging 1, 309-322, 
doi:10.1038/s43587-021-00042-6 (2021). 

12 Zhang, Y. et al. Hypothalamic stem cells control ageing speed partly through exosomal 
miRNAs. Nature 548, 52-57, doi:10.1038/nature23282 (2017). 

13 Liu, J. et al. Exosomal transfer of osteoclast-derived miRNAs to chondrocytes 
contributes to osteoarthritis progression. Nature Aging 1, 368-384, 
doi:10.1038/s43587-021-00050-6 (2021). 

14 Meulenbelt, I., Ramos, Y. F. M., Baglio, S. R. & Pegtel, D. M. Censoring exosomal 
crosstalk in osteoarthritis. Nature Aging 1, 332-334, doi:10.1038/s43587-021-00052-4 
(2021). 

15 DeCastro, J. et al. The Microfluidic Toolbox for Analyzing Exosome Biomarkers of 
Aging. Molecules 26, doi:10.3390/molecules26030535 (2021). 

16 D'Anca, M. et al. Exosome Determinants of Physiological Aging and Age-Related 
Neurodegenerative Diseases. Front Aging Neurosci 11, 232, 
doi:10.3389/fnagi.2019.00232 (2019). 

17 Prattichizzo, F. et al. Exosome-based immunomodulation during aging: A nano-
perspective on inflamm-aging. Mech Ageing Dev 168, 44-53, 
doi:10.1016/j.mad.2017.02.008 (2017). 

18 Machida, T. et al. MicroRNAs in Salivary Exosome as Potential Biomarkers of Aging. 
Int J Mol Sci 16, 21294-21309, doi:10.3390/ijms160921294 (2015). 

19 Lee, E. K. et al. The involvement of serum exosomal miR-500-3p and miR-770-3p in 
aging: modulation by calorie restriction. Oncotarget 9, 5578-5587, 
doi:10.18632/oncotarget.23651 (2018). 

20 Shurtleff, M. J., Temoche-Diaz, M. M. & Schekman, R. Extracellular Vesicles and 
Cancer: Caveat Lector. Annual Review of Cancer Biology 2, 395-411, 
doi:10.1146/annurev-cancerbio-030617-050519 (2018). 

21 Bartel, D. P. Metazoan MicroRNAs. Cell 173, 20-51, doi:10.1016/j.cell.2018.03.006 
(2018). 

22 Gene Ontology, C. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids 
Res 49, D325-D334, doi:10.1093/nar/gkaa1113 (2021). 

23 Kern, F. et al. miEAA 2.0: integrating multi-species microRNA enrichment analysis and 
workflow management systems. Nucleic Acids Res 48, W521-w528, 
doi:10.1093/nar/gkaa309 (2020). 

24 Backes, C., Khaleeq, Q. T., Meese, E. & Keller, A. miEAA: microRNA enrichment 
analysis and annotation. Nucleic Acids Res 44, W110-116, doi:10.1093/nar/gkw345 
(2016). 

25 Kern, F. et al. Validation of human microRNA target pathways enables evaluation of 
target prediction tools. Nucleic Acids Res 49, 127-144, doi:10.1093/nar/gkaa1161 
(2021). 

26 Kehl, T. et al. miRPathDB 2.0: a novel release of the miRNA Pathway Dictionary 
Database. Nucleic Acids Res 48, D142-D147, doi:10.1093/nar/gkz1022 (2020). 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.07.443093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443093
http://creativecommons.org/licenses/by-nc/4.0/


 14 

27 Backes, C. et al. miRPathDB: a new dictionary on microRNAs and target pathways. 
Nucleic Acids Res 45, D90-D96, doi:10.1093/nar/gkw926 (2017). 

28 Huang, H. Y. et al. miRTarBase 2020: updates to the experimentally validated 
microRNA-target interaction database. Nucleic Acids Res 48, D148-D154, 
doi:10.1093/nar/gkz896 (2020). 

29 Fehlmann, T. et al. Web-based NGS data analysis using miRMaster: a large-scale 
meta-analysis of human miRNAs. Nucleic Acids Res 45, 8731-8744, 
doi:10.1093/nar/gkx595 (2017). 

30 Lutsik, P. et al. MeDeCom: discovery and quantification of latent components of 
heterogeneous methylomes. Genome Biol 18, 55, doi:10.1186/s13059-017-1182-6 
(2017). 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.07.443093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443093
http://creativecommons.org/licenses/by-nc/4.0/

