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Abstract

Through advancing the existing and introducing novel methodological devel-

opments in streamlines tractography, this work proposes an approach that

is meant to specifically interrogate an important yet relatively understudied

population of the human white matter - the short association fibres. By mar-

rying tractography with surface representation of the cortex, the framework:

(1) ensures a greater cortical surface coverage through spreading streamline

seeds more uniformly; (2) relies on precise filtering mechanics which are par-

ticularly important when dealing with small, morphologically complex struc-

tures; (3) allows to make use of surface-based registration for dataset com-

parisons which can be superior in the vicinity of the cortex. The indexation
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of surface vertices at each streamline end enables direct interfacing between

streamlines and the cortical surface without dependence on the voxel grid.

Short association fibre tractograms generated using recent test-retest data

from our institution are carefully characterised and measures of consistency

using streamline-, voxel-, surface- and network-wise comparisons calculated.

Keywords: Short association fibers, U-fibers, superficial white matter,

tractography, surface, consistency
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1. Introduction

Functional integration of the brain subunits is mediated in part by the

white matter (Neubert et al. (2010)), which comprises a vast network of

connections between neuronal populations and has been shown to exhibit

change in response to physiological processes (Scholz et al. (2009); Hihara

et al. (2006); Dubois et al. (2014); de Groot et al. (2015); Slater et al. (2019))

and disease (Mito et al. (2018); Datta et al. (2017); de Schipper et al. (2019)).

The white matter is typically divided into projection, commissural and as-

sociation fibres. It is estimated that the association fibres dominate the

white matter (Schüz and Braitenberg (2002)), connecting the cortical areas

within hemispheres. They are in turn subdivided into long and short range

(local) fibre, sometimes distinguishing neighbourhood association fibres as

well (Schmahmann and Pandya (2006)). The long-range fibres course in the

depth of the white matter, connecting distant areas of the hemisphere and

forming distinct bundles that have largely consistent anatomy across individ-

uals. Conversely, the short association fibres (SAF) connect adjacent cortical

areas. Their most superficial component is often referred to as the U-shaped

fibres and described as a thin band that runs immediately beneath the sixth

layer of the cortex (Schmahmann and Pandya (2006)) encompassing a single

gyrus or sulcus (Schüz and Braitenberg (2002)). It is established that neigh-

bouring cortical areas exhibit the strongest structural connectivity (Markov

et al. (2014)). Further, it is estimated that only ∼ 10% of the cortico-cortical

connections belong to the long fascicles, with the volume of the U-shaped fi-

bres possibly as much as ∼ 60% of the total white matter volume (Schüz

and Braitenberg (2002)). It is remarkable therefore that in the neuroimaging
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literature SAF have only started to gain more attention recently (Ouyang

et al. (2017)).

Abbreviation Meaning/Interpretation

ACT Anatomically-constrained tractography

CVB Between-subject coefficient of variation

CVW Within-subject coefficient of variation

DKT Desikan-Killiany parcellation

dMRI Diffusion magnetic resonance imaging

DSI Diffusion spectrum imaging

DTI Diffusion tensor imaging

FA Fractional anisotropy

FOD Fibre orientation distribution

FWHM Full-width half-maximum

GG Grey-grey filter

GMWMI Grey matter - white matter interface

GWG Grey-white-grey filter

HARDI High angular resolution diffusion imaging

HCP-MMP1 Human Connectome Project multi-modal parcellation

HH Hemisphere-hemisphere filter

ICC Intraclass correlation coefficient

LCHT Local cortical half-thickness

MCC Mid-cortical coordinate

PSM Pial surface mesh

SAF Short association fibres

TDI Track density imaging

WSM White surface mesh

Table 1: Table of abbreviations

Diffusion MRI (dMRI) is the preferred method for studying structural

properties and connectivity of white matter pathways in vivo. Its sensitivity

to the random microscopic motion of water molecules (Stejskal and Tanner

(1965)) enables judgement to be made regarding the local directional ar-

chitecture (Dell’Acqua and Tournier (2017)) and microstructural properties
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(Assaf et al. (2019)) of the fibers. In the past few years, a number of dMRI-

based studies have shown that SAF are affected by age and sex (Phillips

et al. (2013)) as well as pathology including autism (d’Albis et al. (2018)),

schizophrenia (Phillips et al. (2011), encephalitis (Phillips et al. (2018)) and

epilepsy (O’Halloran et al. (2017); Liu et al. (2016); Govindan et al. (2013)),

among others. dMRI methods used to study SAF can be broadly divided into

those that do not use tractography and those that do. The former typically

sample measures of microstructure in the superficial white matter as defined

by regions of interest (Nazeri et al. (2013)) or uniformly along the cortical

surface (Phillips et al. (2013, 2018, 2011); Liu et al. (2016)). This approach

avoids any biases of tractography and can be less sensitive to the differences

in cortical folding through the use of surface registration (Fischl et al. (1999))

but it does not discriminate between SAF and the superficial component of

the long-range connections. On the other hand, tractography-based meth-

ods capitalise on local fibre orientation modelling which allows reconstruction

of streamlines providing information about white matter morphology (Mori

and Van Zijl (2002)). Numerous challenges, such as the inability to resolve

multiple fibre directions in regions with complex fibre configurations, can

create ambiguity and lead to a high number of false positive and false nega-

tive results during streamline generation (Maier-Hein et al. (2017)). Recent

advances in image acquisition (Jones et al. (2018)) and processing as well as

development of advanced fibre orientation estimation (Tournier et al. (2007);

Dhollander et al. (2016); Jeurissen et al. (2014)) and streamline integration

and filtering algorithms (Smith et al. (2012); Daducci et al. (2015); Smith

et al. (2015)) have improved the quality of tractography. Despite this, avail-
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able tools are typically used to study whole-brain tractograms or focus on the

deep white matter bundles that show consistent organisation across individ-

uals and thus the performance of these tools for investigating SAF remains

uncertain.

2. Challenges in SAF reconstruction

2.1. Tractogram generation

The study of SAF is confounded by a number of anatomical consider-

ations and methodological limitations (for an overview, see Guevara et al.

(2020); Jeurissen et al. (2017); Rheault et al. (2020); Reveley et al. (2015))

which span initial tractogram generation, SAF-specific filtering and analy-

sis. The tractogram generation step faces the challenges of partial volume

effects (due to the proximity of SAF to cortex and CSF spaces) and complex

local anatomy with multiple regions of crossing, bending, kissing, and fan-

ning fibres. The subcortical location makes SAF potentially more sensitive

to the so-called “gyral bias” - the phenomenon in tractography where many

more streamlines terminate in the gyral crowns as opposed to the sulcal fundi

(Li et al. (2010); Nie et al. (2011); Chen et al. (2012)). It remains unclear

just how much of this effect is explained by methodological shortcomings

(and can be improved) rather than underlying anatomy (see Van Essen et al.

(2014) for a detailed discussion of the subject). Specifically in the context

of U-shaped fibers, the gyral bias has been demonstrated even when state-

of-the-art acquisition and tractography were used (Movahedian Attar et al.

(2020)). Yet, capturing finer anatomical detail of SAF is important due to

their short length and complex morphology.
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2.2. Tractogram filtering

From the filtering perspective, SAF may be defined locally based on man-

ual dissections or functional MRI signal-derived cortical regions of interest

(Movahedian Attar et al. (2020)), whilst for globally (brain-wise) defined

SAF, the filtering criteria typically involve size, shape and/or cortical par-

cellation. Despite the existence of studies examining the histopathology of

SAF in isolated brain regions, the absence of a detailed anatomical knowl-

edge regarding the distribution and consistency of SAF on a whole-brain level

or even a universally accepted definition (Ouyang et al. (2017)) complicates

development and validation of non-invasive methods dedicated to the study

of this subset of the white matter. For instance, the size definition of SAF

(or U-shaped fibres) varies across sources. Some authors have focused on the

relatively long streamlines of 20-80 mm (Guevara et al. (2017); Kai and Khan

(2019)) or more (Román et al. (2017)), mainly concerning the bundles con-

necting neighbouring gyri; while others (Song et al. (2014); Movahedian Attar

et al. (2020)) included the smaller range of 3-30 mm based on the classifi-

cation by Schüz and Braitenberg (2002). Next, although using streamline

similarity measures (typically shape and distance metrics) as filtering crite-

ria (Román et al. (2017); O’Halloran et al. (2017); Kai and Khan (2019)) may

appear appealing, this may lead to exclusion of otherwise valid streamlines as

SAF have been demonstrated to exhibit complex, diverse morphology (Mova-

hedian Attar et al. (2020)) and varying spatial overlap (Zhang et al. (2010));

this is particularly true for shorter (<35 mm) streamlines (Román et al.

(2017)). The use of cortical parcellations (division of the cortical mantle into

discrete areas) can carry uncertainties of its own. The choice of parcellation
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scheme, termination criteria during tracking, and the way streamlines are

associated with individual parcels all influence the result (Yeh et al. (2019)).

The use of larger parcels and discrete borders may not be particularly well-

suited for studying SAF as both ends of many streamlines will terminate in

the same cortical parcel leading to rejection; parcellation may also impose

artificial boundaries that make little physiological sense.

2.3. Tractogram comparison

Group-wise analysis of SAF is challenged by inter-subject variations in

cortical folding (Rademacher (2002)). Even the sulci known to exhibit more

anatomical consistency across individuals (such as those corresponding to

the primary somatosensory areas (Rademacher (2002)) demonstrate individ-

ual morphological differences up to 1-2 cm in a common reference frame

(Steinmetz et al. (1989)). The trajectories of short (up to 40 mm) superficial

streamlines appear to be strongly influenced by the gyral pattern (Bajada

et al. (2019)). Taken together, one should expect low consistency when com-

paring SAF tractograms composed of shorter streamlines between individuals

based on their shape or spatial distribution alone. Connectome-based com-

parisons using cortical parcellations are possible yet again they face the same

challenges as described above.

Our proposed methodological framework overcomes some of the limita-

tions that are specific to tractography of SAF (as defined in Schüz and Brait-

enberg (2002)) by incorporating a mesh representation of the cortical surface

into the seeding and filtering steps and by introducing simple, anatomy-

driven filtering criteria. This produces clean and physiologically plausible

tractograms of SAF without the need for manual dissection/pruning or ad-
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ditional shape/parcellation-based criteria. Finally, we compare these trac-

tograms within and between subjects to assess consistency of the results,

including with an alternative method of SAF analysis that relies on project-

ing streamline metrics onto the surface in native space.

3. Material and methods

3.1. Workflow

3.1.1. Streamline generation

The overall workflow is summarised in Figure 1. Streamline seeding and

filtering with voxel-based masks can lead to smaller regions being excluded

or misrepresented due to the discrete nature of the voxel grid (??), hence

surface-based filters were employed for this pipeline. The first step to such an

approach is to ensure streamline seeds are distributed approximately evenly

on the surface. The FreeSurfer (Fischl (2012)) white matter surface mesh

(WSM) typically contains ∼1.5 vertices/mm2 for a total of ∼250K vertices

for both hemispheres (excluding the medial wall) and an average face area of

0.32 mm2 (range: 0.07-0.7 mm2, top and bottom 2% excluded) representing

a reasonably dense and even spread; this can be further re-meshed if needed.

Vertex coordinates in each hemisphere were transformed to dMRI space with

ANTs (Avants et al. (2009)) using the inverse warp (see subsubsection 3.2.1)

and concatenated into a single array used to initiate seeding with MRtrix

3.0 (Tournier et al. (2019)). MRtrix was modified such that it can read co-

ordinates from the array and use them as seeds with equal weights during

tractogram generation. Results were verified by visual inspection of the seed

distribution on T1-weighted volumes co-registered to dMRI space and by
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comparing the input and output seed coordinates (data not shown). Track-

ing was performed using the second-order integration probabilistic algorithm

iFOD2 (Tournier et al. (2010)) due to the expected large number of fibre

crossings and challenging morphology; probabilistic tracking has previously

been demonstrated to result in improved gyral bias (Nie et al. (2011)) and

greater spatial overlap of SAF (Guevara et al. (2020)). A total of 5 million

seeding attempts from the given seeds were made per tractogram to ensure

an adequate number of streamlines per vertex. An additional restriction on

the maximum streamline length of 40 mm was used (to be consistent with

the SAF definition of Schüz and Braitenberg (2002) but accounting for the

fact that intracortical portions were later truncated, see section 3.1.2); other

parameters were left as their default settings in the MRtrix implementation

of iFOD2.

3.1.2. Streamline filtering

By definition, a streamline representing association fibres must satisfy the

following criteria: (1) both ends terminate in the neocortex; (2) both ends

terminate in the same hemisphere; (3) the streamline courses through the

white matter. Three respective filters ensuring these three criteria were met

were applied to the initial tractogram.

Grey-grey (GG) filter. To identify streamlines starting and ending in the

neocortex, midcortical coordinates (MCC) were defined by averaging coor-

dinates of the matching WSM and pial surface mesh (PSM) vertices. Next,

local cortical half-thickness (LCHT) was defined as the Euclidean distance

between the MCC and the corresponding WSM vertex to account for lo-
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Figure 1: Pipeline summary. After seeding from white surface mesh (WSM) coordinates,

tractograms were processed to ensure each streamline starts and ends in the neocortex

(grey-grey filter) of the same hemisphere (hemisphere-hemisphere filter) and escapes into

white matter along the way (grey-white-grey filter). The grey-grey filter functioned by

finding the Closest midcortical coordinate (MCC, average of matching WS and pial coor-

dinates) for each streamline end (with K-means clustering of MCCs for speed). A stream-

line end was considered in grey matter if it laid within the local cortical half-thickness of

its MCC. Then, an iterative algorithm followed the streamline back searching for WSM

intersection at which point the intracortical portion was truncated.

cal variation in cortical thickness. Both ends of each streamline in the initial

tractogram were then evaluated for “intracortical position” by (1) identifying

the closest MCC, (2) measuring the Euclidean distance to it, (3) comparing

this distance to the LCHT measure of said MCC. The “intracortical posi-

tion” was confirmed if the streamline terminated in a sphere centred on the

MCC and with the radius LCHT (also see ??).

To improve computational efficiency, all MCC were clustered with the K-
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means algorithm using squared Euclidean distances (Arthur and Vassilvitskii

(2006)); finding the centroid closest to a streamline end meant the closest

MCC had only to be identified within the cluster of that centroid (see ?? for

details).

Hemisphere-hemisphere (HH) filter. The original hemispheric membership

(left or right) of all cortical vertices and thus MCC was known; the hemi-

spheric allocation of each streamline end became apparent once its closest

MCC was identified during GG filtering. This filter acted by only selecting

streamlines whose both ends resided in the same hemisphere.

Grey-white-grey (GWG) filter. After ensuring all streamlines terminated in-

tracortically, the last filter needed only to follow streamlines back and detect

escape into white matter. Due to the possibility of this happening on a sub-

voxel scale, and because the exact point of intersection with WSM was of

interest, filtering was performed with an ad hoc iterative algorithm (see ??

for details) instead of applying a simple white matter mask.

In short, the algorithm operated by selecting a WSM vertex and testing

its faces for intersection with a streamline segment (straight line connect-

ing two adjacent points). The first WSM vertex was selected to match the

MCC of streamline termination, and the first streamline segment was the

one containing the termination. Despite the MCC being the closest to the

segment, its corresponding WSM vertex did not have to be. Hence, if no

intersection was found, other vertices of the faces just tested were next con-

sidered and of those, the vertex closest to the streamline segment was chosen.

The algorithm propagated along the surface moving closer and closer to the

streamline segment as it kept selecting from adjacent vertices and testing
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faces along the way for intersection until either: (1) an intersection was

found; or (2) no vertex closer to the streamline segment was identified. In

case of the latter, propagation along the streamline occurred instead and the

next segment was interrogated in a similar fashion. The algorithm ran for

each streamline until an intersection was found, or the whole streamline was

examined. Such propagation, as opposed to simply testing faces of vertices

closest to each streamline segment, was preferred because in some cases inter-

section occurred with faces of vertices that were not the closest. In addition

to detecting escape into white matter, GWG filter allowed to register WSM

vertices closest to the intersection (i.e., associate each end of each stream-

line with its WSM vertex); and truncate streamlines at that point if desired.

In this work, GWG was applied to both streamline ends which were then

truncated at WSM.

3.2. Framework evaluation

3.2.1. Data acquisition and pre-processing

Repeatability data from the MICRA study (Koller et al. (2020)) were

used for framework evaluation. In short, after a written informed consent,

brain MR data of six healthy adults (3 males and 3 females, age range 24-

30) were obtained using an ultra-strong gradient (maximum amplitude 300

mT/m) 3T Connectom scanner (Siemens Healthcare, Erlangen, Germany) in

Cardiff University Brain Research Imaging Centre, Cardiff, United Kingdom.

The higher gradients resulted in higher signal-to-noise ratio per unit time for

a given b-value, allowing for utilisation of higher b-values which are more

sensitive to intra-axonal water displacement (Jones et al. (2018); Setsompop

et al. (2013); Genc et al. (2020)). Each subject was imaged five times us-

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.443084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443084
http://creativecommons.org/licenses/by/4.0/


ing the same protocol within a two-week period at approximately the same

time of day. Only anatomical (T1-weighted) and diffusion (dMRI) data were

utilised for the purposes of this study.

dMRI data (single-shot spin echo, echo planar, voxel size: 2×2×2 mm3;

b-values of 200, 500, 1200, 2400, 4000, 6000 s/mm2 in 20, 20, 30, 61, 61, 61

noncollinear directions, respectively, with thirteen interspersed b0 volumes;

TR/TE 3000/59 ms - see Koller et al. (2020); Setsompop et al. (2012) for

details) were corrected for slicewise intensity outliers (Sairanen et al. (2018)),

signal drift (Vos et al. (2017)), Gibbs artifact (Kellner et al. (2016)), eddy

current distortion and motion artifact (Andersson and Sotiropoulos (2016)),

echo-planar image distortion (Andersson et al. (2003)), and gradient non-

linearities (Glasser et al. (2013)). Pre-processed data were upsampled to

1x1x1 mm3 (Dyrby et al. (2014)). Diffusion tensor estimation in each voxel

was performed with nonlinear least squares. The fibre orientation distri-

bution (FOD) (Tournier et al. (2007)) was derived using 3-tissue response

function estimation (Dhollander et al. (2016)) and subsequent multi-shell

multi-tissue constrained spherical decomposition (Jeurissen et al. (2014))

with harmonic fits up to the eighth order. The quality of the pre-processing

steps as well as FOD distributions were visually confirmed for all subjects.

Anatomical data (Siemens MPRAGE1 sequence, voxel size: 1x1x1 mm3,

TR/TE 2300/2.81 ms) were run through the FreeSurfer 7.1 package (Fischl

(2012)) which includes standard T1-weighted volume pre-processing steps.

The longitudinal stream designed for repeated acquisitions was used (Reuter

et al. (2012)). One subject lacked a T1-weighted volume for one of the

sessions; instead, the within subject template (referred to as “base” in the

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.443084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443084
http://creativecommons.org/licenses/by/4.0/


longitudinal stream) was used, resulting in a total of six “base” and twenty-

nine final (referred to as “long”) sets. The quality of produced surface meshes

was visually inspected at every step and corrected where necessary as per the

standard FreeSurfer protocol. dMRI-derived fractional anisotropy (FA) vol-

umes were non-linearly registered to FreeSurfer T1-derived “brain” volumes

using ANTs; coordinates of surface vertices were then brought into DWI

space using the inverse transform and registration quality was visually con-

firmed in each case. An average subject was created for group analyses from

the six “base” sets with FreeSurfer’s make average subject command and

used as a common space template for all “long” sets (surface co-registration

done with surfreg).

3.2.2. Effects of surface seeding

A modified version of the established MRtrix ACT/GMWMI was exe-

cuted on the same data to compare the effects of the two seeding methods

on subsequent filtering. First, FreeSurfer’s “aseg” volume was transformed

to dMRI space using the already available registration and nearest neigh-

bour interpolation (preserving segmentation labels). This acted as the input

into MRtrix’s FreeSurfer-based five-tissue-type (5TT) segmented tissue im-

age generation algorithm (Smith et al. (2012)). The 5TT image was then

manipulated such that the cerebellar cortex and the amygdala/hippocampus

were excluded from the grey matter volume (matching the cortical areas used

in surface seeding), while the deep nuclei as well as the ventricles were added

to the white matter volume with their original volumes set to null. The ma-

nipulation effectively forced all streamlines to start and end at the neocortex.

A grey matter-white matter interface (GMWMI) volume was generated and
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seeding performed until the total number of streamlines for ACT/GMWMI

matched the same number generated with surface seeding (see subsubsec-

tion 3.1.1); analogously, streamline length was confined to ≤ 40 mm. Stream-

lines were then GG-filtered such that only those with both ends within the

cortex remained. HH and GWG filtering were not performed as they de-

pend on the results of the GG filter and, when compared to the latter, reject

far smaller number of streamlines. Streamline end-associated “intersection”

MCC indices (as the output of GG) were used for surface-based analyses.

The effects of the two seeding methods were evaluated by comparing GG-

filtered tractograms on the following characteristics: (1) number of stream-

lines surviving filtering; (2) cortical coverage (proportion of vertices with

streamlines); (3) number of streamlines associated with each vertex; (4) pro-

portion of “covered” surface representing gyri (estimated as proportion of

streamline-linked surface vertices with a negative FreeSurfer “sulc” value).

3.2.3. Tractogram characteristics and assessment of consistency

The following complementary approaches were chosen to evaluate the

generated SAF tractograms: (1) general streamline metrics; (2) volume-based

track density imaging (TDI) maps (Calamante et al. (2010)); (3) surface-

based projections of streamline metrics; (4) connectome-based graph theory

metrics. The focus of these assessments was to provide a description of

the tractograms and to test their consistency within and between subjects

rather than producing inferences about the physiological properties of SAF

themselves.
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General streamline measures. SAF tractograms were assessed and compared

using the following criteria: (1) streamline count; (2) mean streamline length;

(3) mean streamline FA derived by sampling respective FA volumes along

each streamline with MRtrix’s tcksample command (mean FA across each

streamline).

TDI maps. TDI maps for each session were generated with MRtrix’s tckmap

command. The maps were compared in average subject space by applying the

previously obtained dMRI-to-T1 transform followed by a “base-to-average”

transform (concatenated and performed in a single step using ANTs).

Surface-based analysis. Each streamline terminated at two WSM vertices

(one per end) allowing streamline-related metrics to be recorded at these

vertices in native space. This enabled the use of surface-based registration

for comparisons, which due to the complexities of cortical folding, can be

superior to volume-based registration for these superficial structures. The

following metrics were thus recorded: (1) number of streamlines per vertex;

(2) cortical coverage (binarised version of the former); (3) mean streamline

length per vertex; (4) mean FA per streamline per vertex. The latter can

be thought of as being conceptually similar to uniform sampling of FA (or,

indeed, any scalar) along the surface, with the exception that the size and

shape of the sampling kernel changed informed by the streamlines at the

vertex being sampled, and the sampling occurred exceptionally in the white

matter.

Results were saved in FreeSurfer “curv” format (??). Two types of anal-

ysis were performed: (1) using average values for all vertices of both hemi-

spheres; (2) directly comparing surfaces on a per-vertex basis per hemisphere.
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For the latter, corresponding “curv” files were stacked (mris preproc) and

smoothed (mri surf2surf ) at 5 mm full-width at half-maximum (FWHM).

Smoothing is commonly used in neuroimaging to boost signal-to-noise ratio,

alleviate registration misalignment, and improve normality of residuals. As

per-vertex testing was not sensitive to between-vertex interactions, smooth-

ing provided an alternate means to account for these interactions. For all

surface-based analyses, only the cortical surface (excluding the “medial wall”

label) was studied.

Graph theory metrics. The cortex was parcellated using FreeSurfer with two

different atlases: (1) the Desikan-Killiany parcellation atlas (DKa) producing

31 regions per hemisphere; (2) the Human Connectome Project multi-modal

parcellation (HCP-MMP1) producing 180 regions per hemisphere (Glasser

et al. (2016); Mills (2016)). Weighted connectivity matrices were constructed

for each hemisphere separately as they shared no connections. Edge weights

were generated from streamline counts to evaluate tractogram consistency

by determining which surface label the ends of each streamline belonged to

(termination at WSM was recorded during filtering). The Brain Connectiv-

ity Toolbox (version: 2019-03-03, Rubinov and Sporns (2010)) was used to

normalise connectivity matrix entries to [0,1] and remove self-connections.

Next, network density (ρ) and weighted network metrics including network

strength (KW), betweenness centrality (BW), characteristic path length (LW),

global efficiency (EW
G ), local efficiency (EW

L ), and clustering coefficient (CW)

were computed. For each node-wise network measure (i.e. KW, BW, CW, and

EW
L ), the average over all nodes was used.
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3.2.4. Statistical analysis

To compare surface seeding with ACT, a two-tailed paired sample t-test

was used. In subsequent experiments, consistency of SAF tractograms was

evaluated by examining metric reproducibility, between-subject variability

and reliability. The former two were calculated using within (CVW) and

between (CVB) subject coefficients of variation, respectively (Laguna et al.

(2020)). Reliability of metrics was characterised using single measurement

intraclass correlation coefficient for absolute agreement ICC(3,1) with subject

effects modelled as random and session effects fixed (McGraw and Wong

(1996)). The data were formulated with a linear mixed-effects model (Chen

et al. (2018)). For voxel-based (TDI) and surface-based analysis, CVW, CVB

and ICC were calculated at each voxel/vertex. All statistical analyses were

performed in MATLAB 2015a.

3.3. Data/code availability statement

• Data: please refer to Koller et al. (2020) for access to the test-retest

data.

• Code: the MATLAB code for filtering of SAF and interfacing with the

surface will be made available shortly after publication at:

https://github.com/dmitrishastin/SAF

4. Results

4.1. Effects of surface seeding

The distribution of successful seeds in relation to the WSM is illustrated

in the top row of Figure 2. This demonstrates that surface seeding resulted
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Figure 2: Tracking from the surface vertices (left) versus tracking using MRtrix

ACT/GMWMI (right). Top row: distribution of seeding coordinates with each method

(yellow) related to a section of the WSM (green), white lines show scale (1 mm) in three

orthogonal directions. Surface seeding appears to achieve a more spatially uniform dis-

tribution and places seeds directly on the mesh (by definition). Bottom row: results of

GG-filtering for both seeding methods (not truncated) overlaid on the T1-weighted volume

(slice thickness: 1 mm). Surface-seeded streamlines extend into the grey matter, allowing

to interface with the WSM.

in a smaller number of unique seeds (being confined to the WSM vertices

only) yet provided a more consistent GMWMI coverage. The initial trac-

tograms generated with the two methods looked very different (not shown)
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because surface seeding does not use anatomical priors as streamline termi-

nation/rejection criteria; however, after GG filtering (in itself an anatomical

prior) the distribution and course of streamlines in the white matter looked

very similar (Figure 2, bottom row). Compared to ACT (Table 2), surface

seeding resulted in a slightly larger number of streamlines surviving GG filter-

ing (p=0.006). Importantly, 60% more MCCs were covered with streamlines

(p<0.001) and each was associated with 240% more streamlines on average

(p<0.001). This difference was likely influenced by the more consistent seed

placement with surface seeding and the fact that with ACT, streamlines did

not propagate into grey matter and occasionally even left a superficial rim of

unfilled white matter (Figure 2). The latter would have prevented subsequent

GG filtering from accepting some streamlines. Decreasing the FOD cut-off

during tracking did not improve this result significantly. In contrast, sur-

face seeding allowed tracking to propagate in both directions with non-white

matter sections truncated later at the GWG filtering step. Additionally, the

expected gyral bias was noticed with surface seeding as streamlines associ-

ated with more MCCs in gyri than in sulci whereas the reverse was true for

ACT (p<0.001).

4.2. SAF tractograms

Tractograms appeared anatomically consistent and no manual pruning

was required (Figure 3). On average, 20% of the original streamlines survived

the filtering. Mean streamline length was 19.11±0.16 mm after trimming the

intracortical portions. The average FA per streamline was 0.31±0.01. Trac-

tograms covered 87.27±1.78% of WSM vertices with 6.94±1.10 streamlines

per vertex. Mean streamline length and mean FA per vertex were similar to
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Surface Seeding ACT + GMWMI3

Mean SD Mean SD p4

Number of streamlines generated 4.5M 0.1M 4.5M 0.1M matched

Number of streamlines after GG filter1 1.1M 52K 1.0M 64K 0.006

Cortical coverage (%)2 88.36 2.14 55.72 1.08 0.000

Termination density (streamlines/vertex)2 18.39 2.55 7.68 1.06 0.000

Prevalence of gyri in the covered surface (%)2 52.77 0.65 47.95 0.58 0.000

1 Streamlines starting and ending in the neocortex

2 Calculated at MCC, averaged over all vertices of both hemispheres

3 Using FreeSurfer algorithm, modified only to use the cortical ribbon

4 Paired T-test (two-tailed) using within-subject averages

Table 2: Results of filtering after tracking from the surface vertices versus tracking using

MRtrix ACT/GMWMI for the same initial number of streamlines. Seeding from the

surface leads to more efficient subsequent filtering and a larger cortical coverage.

Figure 3: Final appearances of SAF tractograms following the filtering process. Left: SAF

streamlines overlaid on the T1-weighted volume in dMRI space (coronal view). Right:

3D visualisation of SAF streamlines in one hemisphere (medial view). The sagittal slice

at the bottom shows positions of the cuts on the left.
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overall mean length and FA, respectively. The range of values on the surface

in a single subject can be seen in ??. The overall proportion of streamlines

terminating in gyri was 59.21±1.30%, supporting the presence of gyral bias.

Seeding and Filtering Descriptors Mean1 SD1 CVW(%) CVB(%) ICC

Number of streamlines generated 4.5M 39.1K 1.11 5.50 0.877

Total number of streamlines retained after filtering 0.9M 20.7K 3.56 9.37 0.654

Filtered Tractogram Descriptors2

Streamline length (mm) 19.11 0.14 0.99 0.80 0.000

Mean streamline FA 0.31 0.00 1.28 5.55 0.845

Surface Data Before Filtering3

Cortical coverage (%) 88.43 0.70 1.11 5.42 0.874

Termination density (streamlines/vertex) 18.38 0.27 2.07 3.10 0.985

Surface Data After Filtering4

Cortical coverage (%) 87.26 0.87 1.38 4.27 0.729

Termination density (streamlines/vertex) 6.93 0.15 3.08 3.76 0.978

Mean streamline length per vertex (mm) 17.05 0.25 1.91 6.20 0.749

Mean streamline FA per vertex 0.28 0.01 2.44 9.03 0.796

Prevalence of gyri in the covered surface (%) 59.21 1.30 0.51 2.84 0.904

1 Averaged within subjects

2 Averaged over all SAF streamlines of both hemispheres

3 Calculated at MCC, averaged over all vertices of both hemispheres

4 Calculated at WSM, averaged over all vertices of both hemispheres

Table 3: Whole-brain metrics. Surface metrics were calculated before smoothing. Mea-

sures of consistency were calculated using mean values per session. SD, standard deviation.

CVW, coefficient of variation within subjects. CVB, coefficient of variation between sub-

jects. ICC, intraclass correlation coefficient. FA, fractional anisotropy.

With the exception of streamline length, all metric means exhibited high

reproducibility (CVW 0.51-3.56%), low between-subject variation (CVB 0.80-

9.37%), and moderate-to-high reliability (ICC 0.654-0.978). Streamline length

had a very low standard deviation across the board resulting in similarly low

CVW and CVB therefore producing a low ICC.
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4.3. Track density imaging maps

Figure 4: Repeatability of SAF using TDI map comparison in common space. All maps

were superimposed on the average T1-weighted volume. Streamlines were truncated at

the white matter surface before map generation. CVW and CVB were thresholded at

100%. CVW, coefficient of variation within subjects. CVB, coefficient of variation between

subjects. ICC, intraclass correlation coefficient.

Although TDI maps suggested an overall moderate-to-high reliability of

the spatial distribution of streamlines (median ICC: 0.771), reproducibility

was low (median CVW: 66.16%) suggesting a lot of variation within subjects

(Figure 4). Median CVB was 274.76% (thresholded in the figure), attesting

to a very high variation between subjects when comparing TDI maps. The

immediate subcortical areas showed the least consistency, possibly as a re-

sult of cortical folding differences (manifesting in registration imperfections)
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coupled with partial volume effects or less reliable tracking on the grey-white

interface.

4.4. Surface-based analysis

Figure 5: Surface-based analysis demonstrated on the lateral cortex of the right hemi-

sphere. NS, termination density (number of streamlines/vertex). LS, mean streamline

length/vertex. FAS, mean streamline fractional anisotropy/vertex. CVW, coefficient of

variation within subjects. CVB, coefficient of variation between subjects. ICC, intra-

class correlation coefficient. Values at each vertex were recorded in subject space, then

transformed into average subject space before running analyses. CVW and CVB were

thresholded at 100%.

In order to minimise the registration-related distortions and issues with
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cortical folding differences, streamline data were projected on the surface in

native space before applying surface registration (Figure 5, also ??). Anal-

ysis of termination density demonstrated moderate reliability (median ICC:

0.780) and low reproducibility (median CVW: 27.13%) together with high

between-subject variability (median CVB: 100.35%), although this compared

favourably to the results seen with TDI analysis. Similar ICC coefficients and

improved coefficients of variation were shown for mean length per vertex (me-

dian ICC: 0.666, median CVW: 12.51%, median CVB: 38.48%) and mean FA

per vertex (median ICC: 0.685, median CVW: 8.02%, median CVB: 22.31%).

Fronto- and temporo-basal areas showed the least consistency, likely a result

of susceptibility distortions arising from the EPI-readout used for the dMRI

and T1-dMRI misalignment in those regions. Gyral bias appeared to also

contribute to regional differences in consistency, with sulcal areas exhibiting

higher reproducibility and reliability (Table 4).

4.5. Graph theory metrics

SAF tractograms were also examined from a network perspective using

graph theory properties (Table 5). As SAF are structured to subserve local

connectivity, it is likely that the vast majority of edges occurred between the

neighbouring nodes only, creating a network that can be viewed as a regular

lattice (low cost, low efficiency). As expected, irrespective of the parcellation

used these networks resulted in a very low clustering coefficient, global effi-

ciency and averaged local efficiency, with a similar average network strength.

Additionally, HCP-MMP1 had more parcels each having fewer immediate

neighbours which further reduced lattice dimensionality; as such, lower aver-

age network density, decreased average betweenness centrality and a longer
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Data on the surface1 CVW: gyri (%) CVW: sulci (%) p2

Termination count after filtering: 31.87±19.41 30.97±18.12 0.000

Mean streamline length per vertex: 16.43±15.25 15.95±15.14 0.000

Mean streamline FA per vertex: 11.56±13.14 11.19±13.02 0.000

Data on the surface1 CVB: gyri (%) CVB: sulci (%) p2

Termination count after filtering: 106.92±42.87 106.32±44.21 0.000

Mean streamline length per vertex: 47.4±32.99 46.47±34.21 0.000

Mean streamline FA per vertex: 32.3±30.53 31.88±32.17 0.000

Data on the surface1 ICC: gyri ICC: sulci p2

Termination count after filtering: 0.723±0.200 0.728±0.195 0.000

Mean streamline length per vertex: 0.666±0.205 0.666±0.202 0.913

Mean streamline FA per vertex: 0.641±0.209 0.646±0.205 0.000

1 Definitions as in Table 3

2 Two-sample T-test (two-tailed)

Table 4: Reproducibility of surface-projected streamline data in relation to cortical mor-

phology and the effects of the gyral bias. Data are presented as mean±SD across all

gyral or sulcal vertices. CVW, coefficient of variation within subjects. CVB, coefficient of

variation between subjects. ICC, intraclass correlation coefficient.

characteristic path length were observed with this parcellation. For either of

the two schemes, network properties were similar across hemispheres.

From the tractogram consistency perspective, it is worth noting that due

to DKT’s larger parcel areas more streamlines were discarded as they oc-

curred within, not between, parcels. In general, DKT demonstrated moder-

ate reproducibility (CVW: 3.49-13.02%) and variable reliability (ICC: 0.000-

0.838) depending on the metric used. On the other hand, HCP-MMP1

showed slightly lower reproducibility (CVW: 2.54-20.09%) but higher reli-

ability (ICC: 0.496-0.945). Further, on the whole the metrics appeared more

consistent in the left hemisphere compared to the right when DKT was used
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while with HCP-MMP1 the right hemisphere exhibited greater reproducibil-

ity but lower reliability.

DKT Right hemisphere Left hemisphere

Mean1 SD1 CVW(%) CVB(%) ICC Mean1 SD1 CVW(%) CVB(%) ICC

Network density2 0.30 0.01 3.49 13.39 0.809 0.31 0.01 3.98 16.81 0.838

Network strength2 0.24 0.02 9.66 17.03 0.424 0.28 0.02 7.55 24.68 0.751

Betweenness centrality2 0.11 0.00 4.64 14.26 0.725 0.10 0.00 4.78 13.76 0.696

Clustering coefficient 0.01 0.00 13.02 10.54 0.000 0.01 0.00 11.98 29.74 0.623

Characteristic path length 69.70 6.54 12.25 22.23 0.442 56.88 3.55 7.93 13.42 0.398

Global efficiency 0.02 0.00 9.02 16.18 0.435 0.03 0.00 7.61 29.08 0.807

Local efficiency2 0.01 0.00 12.67 10.26 0.000 0.01 0.00 11.73 30.67 0.650

HCP-MMP1 Right hemisphere Left hemisphere

Mean1 SD1 CVW(%) CVB(%) ICC Mean1 SD1 CVW(%) CVB(%) ICC

Network density2 0.11 0.00 2.54 19.26 0.945 0.11 0.00 3.12 20.76 0.929

Network strength2 0.25 0.03 13.87 27.55 0.496 0.27 0.04 18.87 47.85 0.634

Betweenness centrality2 0.04 0.00 4.49 18.10 0.824 0.04 0.00 4.96 17.55 0.781

Clustering coefficient 0.00 0.00 15.56 49.35 0.738 0.00 0.00 19.19 80.04 0.834

Characteristic path length 184.71 24.41 17.66 36.61 0.522 175.06 26.59 20.09 42.82 0.538

Global efficiency 0.01 0.00 14.61 31.75 0.550 0.01 0.00 20.05 56.79 0.689

Local efficiency2 0.01 0.00 15.70 50.07 0.740 0.01 0.00 19.34 80.79 0.834

1 Averaged within subjects

2 Averaged across all nodes

Table 5: Graph theory metrics using two different parcellation schemes. By definition,

hemispheres shared no connections and were examined separately. DKT, Desikan-Killiany

parcellation. HCP-MMP1, Human Connectome Project multi-modal parcellation. SD,

standard deviation. CVW, coefficient of variation within subjects. CVB, coefficient of

variation between subjects. ICC, intraclass correlation coefficient.
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5. Discussion

5.1. Novelty of the work

The work presented herein offers a novel approach to short association

fibre analysis by marrying tractography with mesh representation of the cor-

tex motivated by the close association of SAF with the latter. We were

specifically interested in studying the shorter pathways (consistent with the

definition in Schüz and Braitenberg (2002) as these pathways are particu-

larly sensitive to inter-individual cortical folding variations (Bajada et al.

(2019)) and harder to study using the more established approaches (Román

et al. (2017); Zhang et al. (2018); Guevara et al. (2017); Van Essen et al.

(2014)). We believe that this study adds a number of useful contributions to

the literature.

First, the framework introduces simple yet strong anatomical constraints

which operate in an unbiased fashion on a whole-brain level and require no

filters that could lead to exclusion of otherwise valid structures (e.g., not

dependent on streamline shape or cortical parcellation). The resulting trac-

tograms show streamline distribution and trajectories in keeping with an

anatomical definition (Schüz and Braitenberg (2002)) of SAF without the

need for manual pruning of noisy streamlines. The framework is modular

and easily adaptable, enabling its use for studying SAF across a range of

physiological and pathological conditions. It supports the use of a surface-

based seeding approach as employed here but will also filter tractograms that

were obtained with other means if desired. Using a bespoke algorithm, ter-

mination points of each streamline on the cortical mesh are registered during

filtering, allowing direct interfacing between any streamline- and surface-
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related metrics (without reliance on the voxel grid) for subsequent analyses.

Second, we present a thorough evaluation of the tractograms generated

with this method using state-of-the-art repeatability data (Koller et al. (2020)).

The description process is broadly divided into streamline-, voxel-, surface-

and network-wise assessments, to our knowledge representing the most com-

plete characterisation of whole-brain SAF tractograms to date. This includes

measures of fractional anisotropy chosen as exemplar scalar to showcase per-

formance of the pipeline for microstructure analysis; in future studies, a more

exhaustive profiling of SAF microstructure may be conducted. The use of

volume- and surface-based approaches allows to examine the differences in

SAF properties on a regional level. We also conceptualised SAF as a net-

work and provided graph theory analysis comparing two different parcellation

schemes, which to our knowledge has not been done before. While we did not

utilise semi-global streamline optimisation algorithms (Smith et al. (2015);

Daducci et al. (2015)) nor normalise edge weights by parcel areas, this still

forms a useful baseline and informs future work.

Third, our approach to the representation of SAF metrics on the surface

merits its own mention. Projection of streamline-related data on surface ver-

tices is not new (Li et al. (2010); Chen et al. (2012); Bajada et al. (2019);

Padula et al. (2017)); however, usually this has been achieved by searching

for all streamlines within a (typically) large sphere around a WSM vertex

which risks decreased specificity and leads to overlaps. In regions where

non-continuous parts of the cortical mantle lie in close proximity with each

other (such as the opposite banks of a narrow gyrus), erroneous inclusion of

streamlines that terminate near remote vertices may occur. Alternatively,
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streamline density (Li et al. (2010); Nie et al. (2011)) and orientation ter-

mination (Chen et al. (2012)) around a surface vertex have been quantified

as the number/orientation of streamlines penetrating the adjacent faces nor-

malised by the combined surface area of the faces. While representing a more

robust way to record these data on the surface, the latter approach allows

for overlapping between adjacent vertices and, more importantly, on its own

does not account for the streamlines not reaching the cortical mesh resulting

in strong gyral bias. On the other hand, our method represents a significant

improvement through the following combination: (1) allowing some propa-

gation of streamlines into the cortex during seeding (later truncated at the

interface) ensures more intersections of streamlines with the surface occur;

(2) limiting the inclusion sphere to the local cortical thickness during filtering

increases specificity of streamline-surface mapping; (3) subsequent fine-scale

searching for intersections at the grey-white interface results in unique allo-

cation of vertices based on proximity such that each streamline end is only

associated with one vertex. This combination may lead to rejection of stream-

lines approaching but not entering the cortex (Yeh et al. (2019)); however,

the proportion of such streamlines appeared negligible based on the distri-

bution of rejected termination points (??) with an overall weak gyral bias

(Table 3 and Table 4). Further, increased sensitivity could be achieved by

expanding the WSM inwards during filtering using e.g. mean-curvature flow

(St-Onge et al. (2018)), although this may lead to false positives in certain

regions as, for example, the predominant orientation of axonal fibres around

sulcal fundi is near-tangential and thus the “passing” fibres may be erro-

neously included; hence this extra step was not pursued. Depending on the

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.443084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443084
http://creativecommons.org/licenses/by/4.0/


analyses of interest, subsequent smoothing on the surface may be applied as

performed in this study. Further, projection of certain types of data (such as

mean scalar measures along a streamline, e.g. fractional anisotropy) may not

be justified in the context of whole-brain or deep-bundle tractography where

many streamlines run at a distance from the cortex and exhibit vastly vary-

ing trajectories; on the other hand, this “collapsing” of data seems natural

with SAF due to their short length and course that is inevitably local to the

vertex to which data are being projected. Comparison of data represented

in this way is achieved through surface registration which can handle corti-

cal folding differences better than volume registration (critical when dealing

with the immediate subcortical structures) with all other steps performed

in native dMRI space. Finally, surface-based analysis provides the option

of using per-vertex or cluster-based statistical comparison methods, circum-

venting the use of cortical parcellation if desired and therefore avoiding the

associated issues of lower sensitivity within and artificial boundaries between

cortical regions.

5.2. Consistency of SAF tractograms

Our analysis is complemented by a detailed evaluation of whole-brain

SAF for consistency, including evaluation of reproducibility, reliability and

between-subject variability. This demonstrated varying results depending on

the approach taken. High overall reproducibility and reliability of stream-

line counts in the initial (not SAF-specific) tractograms dropped slightly as

a result of filtering while still remaining within a good range. Streamline

count is influenced by a multitude of factors, most of which can play a role

at both the initial tractogram generation and filtering. Hence, on its own
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this may not be a good indicator of tractogram consistency. Instead, the

number vertices with streamlines (cortical coverage) or number of stream-

lines per vertex (termination density) are possibly more insightful; in this

work, reproducibility and reliability of both was high. On the other hand,

mean streamline length demonstrated very low reliability. Here, the overall

variance was so low that any within- and between-subject differences were

likely at the noise level, suggesting that the whole-brain averaged length was

not a useful measure for comparison. Indeed, examining streamline length

at the vertex level yielded more informative results. As expected (Zhang

et al. (2010)), track density imaging maps demonstrated large variability

in the spatial distribution of SAF between individuals but also within in-

dividuals; in the attempt to minimise the role of registration imperfections

and partial volume effects, alternative measures such as regional density and

mean streamline length of SAF were compared by projecting them on the

surface resulting in improved consistency. Our approach does not perform

a dedicated removal of noisy (false positive) streamlines relying only on the

anatomical constraints, and it is therefore probable that a proportion of vari-

ability within and between subjects is explained by the occurrence of such

streamlines owing to the fundamental limitations of a chosen tractography

algorithm. The lack of detailed histological or tracer injection validation

data for SAF on the whole-brain scale makes identification and exclusion

of such streamlines difficult; development of better scanning hardware and

tractography/optimisation algorithms will facilitate greater fidelity of the

tractograms.

Consistency of whole-brain SAF representation with dMRI-based stream-
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lines tractography approaches has previously been addressed. Zhang et al.

(2010) used diffusion tensor imaging (DTI)-based deterministic tractography

to create an atlas and a probabilistic spatial map of multiple white matter

tracts, including all short association fibres connecting 24 regions obtained

from a superficial white matter parcellation. Having detected 29 connec-

tions present in all 20 individuals studied, they emphasised large spatial

variability (demonstrated but not quantified) and the difficulty in manual

region-of-interest segmentation of these tracts advocating for an automated

approach. In another study (Zhang et al. (2014)), shape-driven filtering and

a further criterion of proximity to sulcal fundi were used to examine U-fibres

across diffusion spectrum imaging (DSI), high angular resolution diffusion

imaging (HARDI) and DTI data sets with deterministic streamlines track-

ing. Based on normalised streamline counts, the authors demonstrated an

overall stronger short-range than middle-range connectivity with HARDI and

DSI data and the reverse with DTI data, proposing the inability of the lat-

ter to detect crossing fibres and therefore more false negatives as the likely

mechanism. Guevara et al. (2017) used DKT-based parcellation and shape-

and distance-based clustering of larger streamlines (centroids 20-80 mm) in

Talairach space to identify 100 distinct bundles (50 per hemisphere, 35 com-

mon to both) that were considered to have low-to-moderate variability (rela-

tive standard deviation (RSD) ≤ 0.9) in streamline counts and shape across

two test and one validation data sets. This method was further improved

by using non-linear registration and ability to detect within-region connec-

tions (Román et al. (2017)); clustering larger (centroids 35-85 mm) stream-

lines and using a bagging strategy, the authors successfully constructed an
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atlas of 93 SAF bundles (44 in left hemisphere, 49 in right, 33 common)

with repeatability of individual bundles ranging between 8/10 and 10/10.

Zhang et al. (2018) generated an atlas of white matter pathways based on

100 Human Connectome Project (HCP) subjects using two-tensor unscented

Kalman filter for tracking and groupwise tractography registration followed

by groupwise spectral clustering. Their approach did not require the use of

a cortical parcellation. A total of 58 deep and 198 short and medium range

superficial clusters were identified, although no further detailed description

of the latter was provided. The classification was subsequently applied to

a number of additional data sets with variable acquisition methods, span-

ning different age ranges and including clinical cohorts. Depending on the

data set examined, this approach identified 92.28-99.96% of the “superficial”

clusters on the subject level, with the average between-subject CV of 0.488-

0.919 for streamline counts/cluster, and the average overlap between subject

and atlas clusters of 0.747-0.783 (as determined using intersected FreeSurfer

regions). Subsequent work (Guevara et al. (2020)) compared the three at-

lases (Guevara et al. (2017); Román et al. (2017); Zhang et al. (2018)) in

MNI space for bundle similarity by computing the maximum Euclidean dis-

tance between corresponding points for each streamline in a bundle to all

the streamlines in another bundle. With cut-offs for distance and percentage

of similar streamlines of 8 mm and ≤ 80%, respectively, there was a good

overlap between the bundles, particularly in frontal and parietal areas, the

atlas of Zhang et al. (2018) contained 96 bundles not present in the other two

atlases. The same paper compared the impact of different tractography al-

gorithms (DTI, generalized Q-sampling imaging or GQI and MRtrix iFOD2
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using ACT+SIFT) on consistency of clustering, showing that the probabilis-

tic tracking with MRtrix was able to reconstruct all bundles in 100% of cases

with a greater spatial coverage but with a higher streamline count RSD com-

pared to the other algorithms. As mentioned previously, these streamline

clustering approaches appear to show a good performance when classifying

the larger cortical connections but are not typically applied to the smaller

ones. While not studying SAF on a whole-brain scale, the study by Mova-

hedian Attar et al. (2020) is of special interest as similarly to our work it

relied on the length definition of Schüz and Braitenberg (2002) and used

dMRI data acquired using ultra-high gradient Connectom scanner (choosing

higher spatial resolution over higher b-values). The study evaluated connec-

tivity (using relative streamline counts) within the occipital cortex as defined

by fMRI regions-of-interest and demonstrated a test-retest ICC of 0.73±0.33

(0.88±0.70 for “retinotopic” and 0.69±0.35 for “non-retinotopic”, considered

false positive by design, bundles) and an averaged CoV of 0.23 (0.23±0.23

for “retinotopic” and 0.25±0.14 for “non-retinotopic” bundles). The use of

multimodal surface registration algorithms allowing integration of structural

and functional units of the cortex (Robinson et al. (2014)) resulting in similar

assessments on a whole-brain scale is a future interest to extend our work.

5.3. Limitations

Some limitations of the proposed approach should be mentioned. First,

the dMRI repeatability data used in this study had a voxel size of 2x2x2

mm3. While previous work has suggested the ideal voxel size below 0.9 mm

(isotropic) to remain sensitive to the smaller component of SAF (Song et al.

(2014); Movahedian Attar et al. (2020)), the voxel size used in our cohort is

36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.443084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443084
http://creativecommons.org/licenses/by/4.0/


representative of what is commonly used in diffusion studies; further, our data

were acquired with higher b-values and using high angular resolution, increas-

ing sensitivity to the intra-axonal component of the white matter (Novikov

et al. (2019); Vos et al. (2016)) while maintaining a good signal-to-noise ra-

tio due to the use of high gradient strength (Jones et al. (2018)). We also

upsampled our data as it has been shown to improve the geometrical repre-

sentation of white matter tracts (Dyrby et al. (2014); Shastin et al. (2019)).

The second limitation is the sensitivity of the framework to registration qual-

ity between T1-weighted and dMRI data. Data sets containing distortions

(such as susceptibility artifact) or unusual anatomy (e.g., tumours) are likely

to have a mismatch between the surfaces reconstructed from T1-weighted

images and the white matter signal on dMRI. As such, visual inspection

is crucial on an individual basis although we did not encounter any issues

with registration. dMRI-based surface extraction could offer an alternative

solution (Liu et al. (2007); Li et al. (2010); Shastin et al. (2020)) if per-

formed at sufficiently high resolution. Third, the current approach to surface

seeding precludes the use of semi-global streamline optimisation algorithms

(Smith et al. (2015); Daducci et al. (2015)) which require whole-brain trac-

tograms. This limitation can be easily overcome by including the remaining

grey matter structures (subcortical grey, cerebellar cortex, amygdalae, and

hippocampi) into the array of seeding coordinates and applying the optimi-

sation algorithms before subsequent filtering, preserving streamline weights

throughout the process. Finally, as mentioned previously, this paper used

the length definition of SAF as under 40 mm minus the variable intracortical

section (mean 19.11±0.14 mm). While application of our method without
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this additional criterion resulted in a similar (albeit denser) tractogram ap-

pearances and was dominated by short streamlines (mean ≈30 mm, data

not shown, consistent with Padula et al. (2017)), it could be similarly used

to study larger subcortical association fibres although extra filters such as

passage in the vicinity of sulci (Zhang et al. (2014)) may be needed.

6. Conclusions

Our novel superficial association fibres tractography framework consis-

tently showed large cortical coverage facilitating surface-based comparisons.

We characterised SAF and assessed their consistency using a variety of com-

plimentary approaches, supporting the framework as the plausible vehicle for

investigating SAF in health as well as in clinical cohorts.
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