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Abstract 16

Identifying crop loss at field parcel scale using satellite images is challenging: first, crop 17

loss is caused by many factors during the growing season; second, reliable reference data 18

about crop loss are lacking; third, there are many ways to define crop loss. This study 19

investigates the feasibility of using satellite images to train machine learning (ML) 20

models to classify agricultural field parcels into those with and without crop loss. The 21

reference data for this study was provided by Finnish Food Authority (FFA) containing 22

crop loss information of approximately 1.4 million field parcels in Finland covering about 23

3.5 million ha from 2000 to 2015. This reference data was combined with Normalised 24

Difference Vegetation Index (NDVI) derived from Landsat 7 images, in which more than 25

80% of the possible data are missing. Despite the hard problem with extremely noisy 26

data, among the four ML models we tested, random forest (with mean imputation and 27
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missing value indicators) achieved the average AUC (area under the ROC curve) of 28

0.688± 0.059 over all 16 years with the range [0.602, 0.795] in identifying new crop-loss 29

fields based on reference fields of the same year. To our knowledge, this is one of the 30

first large scale benchmark study of using machine learning for crop loss classification at 31

field parcel scale. The classification setting and trained models have numerous potential 32

applications, for example, allowing government agencies or insurance companies to 33

verify crop-loss claims by farmers and realise efficient agricultural monitoring. 34

1 Introduction 35

Future food production is challenged by increasing demand for more sustainable 36

agricultural systems that consider environmental, economic and social dimensions of 37

sustainability. To address these challenges, the European Union reformed the Common 38

Agricultural Policy (CAP) in 2013, and concluded that satellite Earth Observation (EO) 39

technologies are essential to improve the effectiveness of implementation [1]. The CAP 40

is an agricultural support system for farmers across the EU to help stabilise their 41

income against farming risks and to maintain a balanced agricultural market across the 42

EU. This support is administered mainly through subsidies which the farmers receive, 43

provided they comply with the CAP regulations. Compliance is evaluated through an 44

annual inspection of a small number of farms either manually or through using high 45

resolution (5 m) satellite images on specific dates. This on-the-spot monitoring is 46

expensive and inefficient, but notable improvements are expected to be achieved with 47

new EO technologies [2]. Also, insurance companies that provide crop loss insurances 48

have a need to reduce costs caused by crop loss verification and solutions are sought 49

from satellite-based approaches. 50

Remote sensing applications in agriculture dates back to early 1970s with the launch 51

of Landsat 1 by the National Aeronautics and Space Agency (NASA). Bauer et al. [3] 52

were one of the first to use Landsat 1 images to classify agricultural lands into maize or 53

soybean fields. Since then, there has been a steady increase in the use of optical satellite 54

image data in agriculture. Applications include agriculture land use mapping [4], 55

agricultural monitoring [5], leaf area index (LAI) and biomass estimation [6,7], precision 56

agriculture [8], agricultural water management [9], estimation of crop yield [10–15], and 57
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crop damage assessment caused by floods [16,17] and lodging [18]. These studies have 58

focused mostly on the regional scale due to a lack of data at field parcel scale. 59

Only a few studies have considered the use of EO data to assess crop loss at field 60

parcel scale. For example, remote sensing was used to study the effect of sowing date 61

and weed control during fallow period on spring wheat yield in Mexico by [21]. Based 62

on experiments on 100 fields across three seasons they concluded that the effect of 63

sowing data and weed contron on yield can be estimated using remote sensing data. 64

Tapia-Silva et al. [22] studied crop losses due to flood using remote sensing on 132 field 65

parcels across 15 seasons and concluded that modelling crop loss was challenging. Data 66

from Sentinel-1 and 2 satellites were used by [24] for cyclone damage assessment on 200 67

coconut and 200 rice fields in India with promising results. Crop damages on 600 wheat 68

fields were also studied by [25] in Greece using geographic information system (GIS) 69

and satellite images, but they faced the challenge of defining field parcels based on 70

satellite images. Two recent studies [26,27] used Synthetic Aperture Radar (SAR) 71

images to assess crop damage due the 2020 wind storm Derecho. They apply their 72

method across the state Iowa, United States to estimate the area of crop damage and 73

verify their methods with few tens of fields. A common theme across many of the above 74

studies is the limited number of ground truth data from field parcels used to evaluate 75

the proposed methods. This is understandable because collecting large amount of 76

ground truth data from many field parcels is challenging. In summary, to the best of 77

our knowledge, research conducted so far has been on rather specific issues related with 78

crop loss, and also has been unable to clearly resolve the challenges associated with crop 79

loss mapping at field parcel scale. 80

There are many reasons for crop loss. Yield potential in a given field and region 81

depends on the crop and cultivar. In addition to a soil type and weather conditions, 82

farmer’s decisions have an impact on yield potential and the risk for crop loss. Using 83

quality seeds [28], cultivation of well-adapted cultivars [29], and allocation of crops for 84

the most appropriate field parcels [30], as well as with timely and accurate measures 85

(sowing, crop protection, harvesting) can reduce the risk for crop loss. Especially for 86

high-latitude agricultural systems risks caused by variable weather are substantial, and 87

total large scale crop failures may occur once or twice a decade [31]. In this study, we 88

use the definition of crop loss of the Finnish crop damage compensation program, which, 89
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Fig 1. Overview of the study as a flowchart

until 2015, compensated farmers in Finland for crop losses due to extraordinary weather 90

conditions. 91

This study aims to test the feasibility of combining machine learning (ML) models 92

with optical satellite data to classify field parcels with and without crop loss. The 93

reference data used consists of approximately 1.4 million barley (Hordeum vulgare L.) 94

fields covering 3.5 million ha in Finland. The time period of the study is sixteen years 95

from 2000 to 2015. Two settings are considered: 1) within-year classification, where 96

training and test data are from the same year and 2) between-year classification, where 97

training and test data are from different years. Both can be applied to the task of 98

verifying a crop loss reported by a farmer, while 1) corresponds to the situation where 99

data from other fields are available in the respective year, whereas in 2) no such data 100

are available. The overview of the study is illustrated in the form of a flowchart in Fig 1. 101

Performance results (AUC) obtained for within-year classification was approximately 0.7 102

on average over 16 years, while the regression line estimated by the projection of our 103

results implied this performance can be improved if the missing data ratio was reduced. 104

Analysis of the results revealed high amount of missing data in satellite image time 105

series (more than 80% in our case) can have a significant impact on the classification 106

performance. Thanks to the very comprehensive data set and wide spread of the area of 107

investigation, we expect that our conclusions regarding the classification performance of 108

the methods to be robust and generalisable for Barley in other countries. 109

2 Materials and methods 110

2.1 Study area and crop loss data 111

The study area includes southern and western regions of Finland from 2000 to 2015. 112

The area investigated covers the coastal agricultural land area in Finland comprising of 113

1.4 million field parcels growing barley and covering approximately 3.5 million ha. The 114

size of the field parcels varied from 1 to 90 ha with an average of 2.4 ha. The study area 115

and the distribution of the field parcels are shown in Fig 2. 116

The reference data on crop loss was provided by Finnish Food Authority (FFA). The 117
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Fig 2. Study area. Landsat-7 tiles (red) over South-Western Finland utilised in this
study with barley fields of the year 2000 added in grey. Centre coordinates (latitude,
longitude) of the Landsat 7 tiles from North to South: 19015: 64.22478116, 25.13267424;
19116: 62.85736322, 22.45274870 ; 19017: 61.48156017, 22.95909640; 18918
(southwestern): 60.10043047, 23.54123385; 18718 (southeastern): 60.09748833,
26.63623269

data consisted of field parcel ID, field boundary, area, crop type and variety, crop loss 118

(as area of the field parcel) and farm ID for the years from 2000 to 2015. The data 119

originates from the crop damage compensation system in Finland that started in 1976 120

and lasted until 2015 (for further info see [32]). The analysis was made with barley, 121

which is currently the most important cereal crop in Finland. 122

The crop loss data were collected through a self-reporting survey where the farmers 123

reported crop loss as percentage of the area of the field. This was processed into a 124

binary variable where anything greater than zero percent indicated crop loss (1) and 125

everything else as indicated no loss (0). The number of field parcels with and without 126

crop loss for each year from 2000 to 2015 is shown in Table 1. Over all years and the 127

whole area of investigation, there were 33,840 field parcels (2.38%) with crop loss and 128

1,418,872 (97.62%) with no loss. In general, field parcels with loss did not seem to be 129

spatially clustered. One interesting observation was that larger fields had reported loss 130

more often than smaller fields, which may reflect the bias in data due to greater 131

motivation of farmers to report losses for larger fields (See the last part of Section 3.2, 132

where we examined the effect of field size on crop loss classification performance). 133

The reference data also includes reasons for crop loss that were sporadically provided 134

by the farmer. Fig 3 shows the numbers of barley fields affected by different types of 135

crop losses. It can be seen that the main reasons for crop loss reported by farmers for 136

barley in Finland were related to an over- or under-supply of water. 137

Fig 3. Reasons for crop loss of barley in Finland between 2000-2015. 1: frost , 2:
hail, 3: heavy rain, 4: storm, 5: flood, 6: drought, 7: exceptional winter conditions, 8: failure to
sow due to flooding or rainfall, 9: exceptionally long period of continuous rainfall, 10:
qualitative damage caused over a large area due to exceptional weather conditions, 11: other.
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Table 1. Percentage of field parcels for which crop loss was reported for each year.

year #parcels #parcels loss ratio (%)
with loss

2000 90,020 627 0.70
2001 85,592 2,227 2.60
2002 88,293 936 1.06
2003 86,387 1,311 1.52
2004 51,199 5,870 11.47
2005 96,503 414 0.43
2006 96,636 2,892 2.99
2007 68,599 125 0.18
2008 103,887 3,544 3.41
2009 103,315 91 0.09
2010 81,899 883 1.08
2011 85,097 1,056 1.24
2012 87,554 6,017 6.87
2013 94,583 488 0.52
2014 86,967 783 0.90
2015 112,341 6,576 5.85
Total 1,418,872 33,840 2.38

2.2 Satellite data 138

Landsat 7 ETM+ (Enhanced Thematic Mapper [33]) satellite data was chosen for the 139

study to cover the area and time frame of the reference data. Landsat 7 was launched in 140

April 1999 and is still operating as of May 2020. It carries a multispectral sensor, which 141

provides 8 bands covering the visible range, near-infrared and mid-infrared range as well 142

as one thermal infrared and one panchromatic band. All bands are provided with a 143

spatial resolution of 30 m except panchromatic and thermal infrared bands, which are 144

provided with 15 m and 60 m resolution, respectively. The revisit time of the satellite to 145

a specific point on earth is 16 days. 146

All available surface reflectance products [34] from January 2000 to December 2015 147

were requested from the United States Geological Survey (USGS) and downloaded using 148

the ESPA1 bulk downloader. No filters were applied to the query other than the path 149

and row indicators for the area of interest with least spatial overlap. The query resulted 150

in 597 scenes. An overview of the number of scenes acquired per year can be found in 151

Table 2. The surface reflectance product also includes a Quality Assessment (QA) band 152

indicating the cloud cover based on the CFMask algorithm [35]. The QA band was used 153

to generate a binary cloud mask. Note that, the surface reflectance product is not 154

1ESPA stands for EROS Science Processing Architecture, and EROS stands for Earth Resources
Observation and Science.
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Table 2. Number of Landsat 7 ETM+ surface reflectance products acquired per year
(January - December) per tile (cf. Fig 2 for location of tiles).

year/tile 18718 18918 19015 19017 19116
2000 15 14 13 16 15
2001 10 13 10 11 10
2002 11 13 10 11 12
2003 9 7 5 6 4
2004 4 4 2 1 4
2005 5 5 4 4 5
2006 5 4 4 5 2
2007 3 4 1 1 6
2008 4 6 5 5 6
2009 6 8 5 6 5
2010 4 5 4 3 4
2011 5 8 6 9 8
2012 6 11 6 7 10
2013 11 10 7 8 11
2014 7 8 11 11 9
2015 14 13 10 14 12

processed when the solar zenith angle is larger than 76 degrees. Thus data availability is 155

limited, since the study area is above 60°North. 156

In 2003, Landsat 7 experienced a scan line corrector malfunction, which influenced 157

later acquisitions by introducing gaps with missing data in the scenes. However, field 158

parcels in Finland are much smaller than this gap, and, therefore, no correction or 159

filling of the gaps was performed. The gaps were interpreted as missing data for each 160

field located within the gap. 161

2.3 Data preparation 162

All Landsat 7 scenes were processed to create a data set in the required format to train 163

and test the classification models, by four steps: extracting image sequences, computing 164

NDVI time series, aggregating NDVI across time and imputing missing data. Fig 4 165

schematically shows these steps, which are described in detail below. 166

Fig 4. Data preparation workflow. Workflow (top to bottom) of computing time
series x (= (0.3, 0.8, 0.5) in the green box), starting from raw Landsat 7 scenes (top) for
part of a time series (DOY 158-238 2000). The 0.8 (marked in red) is the imputed mean
value (of all other fields at the same time point) for t7. In the end, the time series is
forwarded to the classification as independent features. DOY: day of year, NIR: near
infrared and QA: Quality Assessment/cloud mask.
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2.3.1 Extracting image sequences 167

For each field parcel, the boundary information from the reference data was used to 168

extract the corresponding image segments from the raster files. An image segment 169

consists of all pixels within the field-parcel boundary. If a field parcel was in two 170

Landsat 7 tiles, only one was kept to avoid overlap. This yielded a sequence of images 171

(of seven bands - the six spectral bands and the pixel QA band) that were further 172

processed to discard invalid pixels using the QA mask. These were mainly cloud pixels. 173

2.3.2 Computing NDVI time series 174

The multispectral images were used to compute Normalised Difference Vegetation Index 175

(NDVI) band according to the formula: 176

NDVI =
ρnir − ρred
ρnir + ρred

, (1)

where ρnir and ρred are the pixel values of the near infrared (central wavelength 0.77 - 177

0.90 µm) and red (central wavelength 0.63 - 0.69 µm) bands, respectively. This process 178

resulted in a sequence of NDVI images for each field parcel. From these (NDVI) image 179

sequences, we get NDVI time series x′′ by taking the median (NDVI) pixel. 180

2.3.3 Aggregating NDVI across time 181

The temporal resolution of x′′ refers to the frequency at which Landsat 7 scenes were 182

captured. This is mainly a function of revisit frequency (16 days) of the satellite and 183

cloud cover. As a result, time series x′′ of different fields have different lengths and their 184

time indices are not aligned. To address these two problems, we perform temporal 185

averaging as follows: First, we form a new time scale from 1 to 365 (corresponding to 186

each day of a year) within which each time series x′′ is located based on the time of 187

capture. Then, the new time scale is divided into d bins. The NDVI values within each 188

bin are the mean aggregated to yield a new time series x′. We set d = 12, by which 189

edges for 12 bins are given by t1 = [1, 30], t2 = [31, 60], t3 = [61, 90], . . . , t12 = [331, 360]. 190

Some example time series x′ are shown in Fig 5, where red and blue lines represent 191

fields with and without crop loss, respectively. It can be seen that, unlike a typical time 192

series, there are many holes in x′. That is, even after temporal averaging the time series 193
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of each field parcel has many missing values. If we take the average of all the red and all 194

the blue curves, then we see a general pattern of the aggregated NDVI time series for 195

the two classes as shown in Fig 6. In each year, the top-right value shows the Pearson 196

correlation (referred to as NDVI-corr) between the red and blue curves, indicating a 197

high correlation between them in each year. These high correlations imply the hardness 198

of classifying the parcels into those with loss or without loss. NDVI-corr is used later in 199

Section 3.2 for exploring the factors to explain classification performance. 200

Fig 5. NDVI time series examples. Time series plots for some example field
parcels with and without crop loss in red and blue, respectively.

Fig 6. Average NDVI time series. Average NDVI time series of each year for each
class (red=loss, blue=no-loss). The top-right (NDVI-corr) value in each year shows the
Pearson correlation between the two curves.

2.3.4 Imputing missing data 201

Missing data problem Missing data is a common problem when dealing with 202

satellite images due to cloud cover and other data acquisition problems. This is 203

especially problematic for northern countries like Finland due to the low sun angle. In 204

ideal circumstances such as no cloud cover and no acquisition problems, the time series 205

length is approximately 22 time steps (assuming an average revisit period is 16 days for 206

Landsat 7). However, in our case, the average length of the time series is 4 due to 207

missing data, i.e., around 82% of the data is missing. Fig 7 shows the missing data 208

profile for different years (as the percentage of field parcels with missing values on the 209

y-axis, and the time point on the x-axis). In some years e.g. 2003 and 2004, the 210

problem is more severe where more than 90% of the data are missing. We observe that 211

for all the years, the data in the beginning and end of the year are likely to be missing. 212

This phenomenon can be explained by the low illumination angle during winter for 213

which no surface reflectance product is processed. For barley, these missing data points 214

during winter should have little effect since its heading time is around beginning of July, 215

while maturity is reached around the middle of August in this part of Finland [36]. We 216

also see that the pattern of missing data is different for the two classes in all years, 217

suggesting that information on the location of missing values can help improving the 218
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Fig 7. Missing data profile. Percentage of missing data (at time point) for each
year. The red and blue curves indicate crop loss and no crop loss, respectively. The
top-right value in each year shows the Pearson correlation between the two curves,
referred to as MD-corr (used later in Section 3.2)

classification. In Section 3.1 we experimentally show this to be the case, where using 219

the missing value indicator as an additional input improves the performance of all the 220

classification algorithms. 221

Imputation methods for missing data We address the missing data problem in 222

x′ through mean imputation (Mean). The procedure is described using the following 223

matrix notation for clarity. The time series x′ of all the fields form a matrix X′ where 224

columns are the new time indices described in Section 2.3.3 and the missing entries 225

correspond to the holes in the times series. These missing values are filled by the 226

corresponding column mean of X′ yielding the matrix X. Each row xi in the matrix X 227

is the imputed time series of the field i. 228

Apart from mean imputation we also experiment with two other imputation methods: 229

1) missing data indicator (MI), and 2) multiple imputation by chained equation (MICE). 230

MI generates a binary matrix M of the same size as the data matrix X, indicating the 231

absence of a value. MICE is an iterative method which regresses each variable (column of 232

X′) over the other in a round-robin fashion to compute the missing values [37]. These 233

methods are compared in Section 3.1 to identify the best imputation strategy for 234

classification. The imputation methods are implemented using Scikit-learn library [38]. 235

Note that due to the severity of missing data, time series interpolation methods to 236

fill the missing values were not considered. This is because the time series were short 237

(average length is 4) with many instances consisting of only one or two observations. In 238

these cases interpolation is not meaningful. Whereas imputing missing values is a 239

simple way of using information from other time series where data is available. 240

2.4 Classification models and performance metrics 241

Given data set {D = (xi, yi)}ni=1 with n observations, the task is to learn a model 242

f : x 7→ y such that p(yi) = f(xi; θ) where θ is a set of hyperparameters. We compared 243

several classification models namely Logistic Regression (LR), Decision Trees (DT), 244
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Random Forest (RF) and Multilayer Perceptrons (MLP) [39]. Due to a large amount of 245

missing data, which makes time series very short, we model the time points as 246

independent features, and did not consider time series models (such as autoregressive 247

models or recurrent neural networks) in this work. All models are implemented using 248

Scikit-learn (version 0.22.1) Python library [38] and the details of their optimisation and 249

model comparison is given in Section 3.1. 250

The performance measure used to evaluate the classification models was “area under 251

the receiver operating characteristic (ROC) curve” (AUC) [40]. AUC takes a value in 252

the interval [0, 1], where a random classifier has a score of around 0.5 and a perfect 253

classifier has score 1. AUC is insensitive to class imbalance which is important for this 254

study as class imbalance is high. Further, it has a standard scale independent of the 255

number of data points and the distribution of classes, so models trained on data from 256

different years are directly comparable even though the number of loss and no-loss fields 257

are different in each year. We used 10× 10-fold cross-validation (CV) to compute the 258

AUC of each model in all experiments (except in Section 3.3): In K-fold cross-validation 259

first the data into K non-overlapping folds. Then the model is trained on K − 1 folds 260

and tested on the remaining fold. This is repeated K times so that model is tested on 261

each of the K folds. The model performance is given by average of the K AUC values. 262

We used K = 10 and repeat 10-fold cross-validation 10 times with different random 263

permutation of the data. 264

3 Results 265

3.1 Model comparison 266

We first compared machine learning models and imputation methods, to find the most 267

appropriate model and imputation strategy to be used throughout this work. As part of 268

identifying the optimal imputation strategy, we also decide whether or not to include 269

indicators specifying the locations of missing values as part of the input to the model. 270

To compare the models, we focused on the data from year 2015 because it has the 271

least amount of missing data (see Fig 7). Also class imbalanceness in 2015 is relatively 272

better than other years (see Table 1). We then created a balanced data set (with 13,152 273
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Table 3. Model hyperparameters, their ranges and optimal values obtained.

Model Parameters and Range Optimal value
LR regularisation penalty = {1, 10} 1
DT maximum tree depth = {5, 10, 50} 5
RF maximum tree depth = {5, 10, 50} 10

#trees = {10, 50 } 50
MLP #hidden units = {10, 5 } 10

fields), with all 6,576 crop-loss fields and the equal number of no-crop-loss fields (which 274

were sampled out of all no-crop-loss parcels by means of undersampling). This balanced 275

data set was used for cross-validation in this section. 276

Before comparing the models, we first optimised the hyperparameters of each model. 277

Table 3 shows hyperparameters that were optimised, along with their respective ranges 278

considered and the optimal values. 279

Table 4 shows AUCs for the different combinations of the model and imputation 280

strategy. The method with the highest AUC was the combination of RF and Mean+MI 281

(mean imputation and missing value indicators), followed by the pair of MLP and 282

Mean+MI. Table 5 shows computation time of different methods, indicating the 283

significant computational advantage of Mean and Mean+MI over MICE. Focusing on 284

Mean+MI, we further studied model comparison over all 15 years (see Appendix 3.3 in 285

detail). From this result, although RF and MLP were overall the two most accurate 286

methods, taking computation time into account, we concluded that the combination of 287

RF and Mean+MI is the recommended model for crop-loss classification, and used this 288

combination for the remainder of the experiments in this study. 289

Table 4. Mean AUC of 10x10-fold CV for different models and imputation methods.

Mean Mean+MI MICE MICE+MI

LR 0.6903± 0.009 0.7377± 0.008 0.6473± 0.010 0.7128± 0.008
DT 0.7080± 0.008 0.7187± 0.007 0.6364± 0.010 0.7223± 0.008
MLP 0.7322± 0.009 0.7546± 0.008 0.6458± 0.010 0.7469± 0.008
RF 0.7514± 0.008 0.7602± 0.008 0.6515± 0.010 0.7505± 0.008

Table 5. Ratio of training time of four models relative to RF.

Mean Mean+MI MICE MICE+MI

LR 0.03 0.05 10.12 10.03
DT 0.04 0.05 10.36 10.36
MLP 12.21 10 15.91 20.51
RF 0.97 1 11.42 11.88
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3.2 Within-year classification 290

Within-year classification situation is to determine if there was a crop loss in a field (for 291

which the crop loss information was unavailable in a year), by using fields for which 292

crop loss data are available in the same year. We used all data of each year for 293

cross-validation, meaning training and test parcels being from the same year. 294

Table 6 shows the within-year classification performance for 16 years. The average 295

AUC across all years is 0.6884± 0.027 with the best performance in 2008 with AUC = 296

0.795± 0.008 and the worst in 2004 with AUC= 0.602± 0.010. We investigated possible

Table 6. Within-year classification performance (AUC) for all the years.

Year AUC
2000 0.757± 0.028
2001 0.648± 0.018
2002 0.765± 0.022
2003 0.706± 0.021
2004 0.602± 0.010
2005 0.750± 0.031
2006 0.657± 0.015
2007 0.627± 0.070
2008 0.795± 0.008
2009 0.647± 0.070
2010 0.624± 0.027
2011 0.673± 0.023
2012 0.636± 0.010
2013 0.679± 0.033
2014 0.690± 0.292
2015 0.755± 0.008
Mean 0.684± 0.027

297

factors to explain the differences in those AUCs across years: 298

1) NDVI correlations: We first checked the correlation in NDVI between crop-loss 299

and no-crop-loss fields, i.e. the correlation (NDVI-corr) between blue and red 300

curves in Fig 6. Fig 8 shows a scatter plot of AUC against NDVI-corr for all years. 301

We see that AUC decreases as NDVI-corr increases. For example, 2004 had the 302

highest NDVI-corr=0.996 and the lowest AUC=0.602, whereas 2008 had the 303

lowest NDVI-corr=0.964 and the highest AUC=0.795. 304

2) Amount of missing data: We then examined the impact of missing data on AUC. 305

Fig 8 plots AUC against the percentage of missing data per year, where AUC 306

decreased with increasing amount of missing data. The linear regression line, 307
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y = −0.3x+ 1.0, indicates that the classification performance can improve when 308

the amount of missing data reduces. 309

3) Missing data profile correlations: We further checked the similarity in missing 310

data profiles of two classes by using MD-corr. Fig 8 plots AUC against MD-corr, 311

showing that AUC decreases with MD-corr is increasing, meaning that not only 312

the amount of missing data but also the pattern of missing data affects 313

classification performance. 314

Fig 8. Analysis of AUC values. Effect of NDVI-corr (left), % missing data (middle)
and MD-corr (right) on AUC of within-year classification. The Pearson correlation
between the quantities are given by r in the top right corner of the each plot. The
regression line and R2 are included for illustrative purpose only to highlight the inverse
relationship between the quantities.

We thus can see NDVI correlation, missing data ratio and missing data profile 315

correlation, are important factors in the data that affect classification performance. 316

Also we hypothesise that similar missing data patterns may indirectly indicate similar 317

weather conditions or geographical closeness of different fields, which might be useful for 318

classification. We note that using missing data indicators as input to the classification 319

model will be feasible in practice, as those will be available for the application at the 320

same time as the satellite images themselves. However, missing data can be based on 321

many reasons, such as cloud cover, data not processed to surface reflectance and scan 322

line error so we cannot draw a causal relationship between the missingness pattern and 323

crop-loss even when the classification accuracy is high. 324

We further examined the potential impact of field size on within-year classification, 325

since larger fields are more likely to be crop-loss fields and this bias may affect 326

classification performance. For this experiment, we focused on data from 2004, 2008, 327

2012 and 2015 (each had >3% crop-loss fields; see Table 1), to ensure that the class 328

imbalance problem is not exacerbated when the data is divided based on the area. The 329

field parcels are divided into three groups, depending on their size: small (< 1ha), 330

medium (≥1ha and <3ha), and large (≥3ha). Table 7 shows the number of fields in the 331

three groups for these four years. Table 8 shows the performance results, indicating that 332

in each year, AUCs were approximately consistent with those obtained by using all data 333

in Table 6 (2004: 0.602, 2008: 0.795, 2012: 0.636 and 2015: 0.755) and AUCs in 334
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different groups were close to each other. Hence, the field size would not play a 335

significant role in the results. 336

Table 7. Ratio (%) of crop loss parcels for three groups with different sizes and four years.

small medium large
#parcels #parcels ratio #parcels #parcels ratio #parcels #parcels ratio

with loss (%) with loss (%) with loss (%)
2004 15,050 1,676 11.13 22,267 2,511 11.28 13,882 1,683 12.12
2008 30,948 920 2.97 43,935 1,444 3.29 29,004 1,180 4.07
2012 25,282 1,558 6.19 36,532 2,537 6.94 25,841 1,922 7.44
2015 31,112 1,548 4.98 44,998 2,570 5.71 36,231 2,458 6.78

Table 8. Within-year AUC of three groups with different field parcel sizes.

Year small medium large
2004 0.6071± 0.021 0.5878± 0.009 0.5938± 0.019
2008 0.8118± 0.018 0.7947± 0.010 0.7580± 0.014
2012 0.6314± 0.026 0.6387± 0.017 0.6237± 0.020
2015 0.7605± 0.023 0.7600± 0.010 0.7386± 0.015

3.3 Between-year classification 337

Collecting reference data is expensive so it would be useful to identify crop-loss fields in 338

a year based on reference data from a different year(s). This between-year classification 339

situation would be closer to future prediction of crop loss in a field, more than 340

within-year classification. We considered two cases: single-year training and 341

multiple-year training. Note that cross-validation was not used for between-year 342

classification. 343

Single-year training. We used all data from one year for training and all data from 344

another year for testing. Fig 9 visualises totally 240 AUCs of all combinations of sixteen 345

years, by using a heat map. Many AUC values were close to 0.5, and the average 346

AUC= 0.534± 0.051. The maximum AUC was 0.665 (2003 for training and 2005 for 347

testing) which is less than the average within-year AUC=0.688. These results indicate 348

that training data with only one year might not be informative enough for identifying 349

parcels with crop loss in between-year classification. 350

Fig 9. AUC values of single-year training experiment. The column and row
heading indicates the year on which the model is trained and tested, respectively.
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Multiple-year training. Here test data are from one year and training data are 351

from the remaining 15 years. For example, if test data is from 2015 then training data 352

are from 2000 to 2014. Table 9 shows sixteen AUC values (one for each test year) 353

obtained by this procedure, along with the corresponding average and best AUCs of 354

single-year training. We can see several years in which multiple-year AUC can be better 355

than the average single-year AUC, but for all years, multiple-year AUC is always worse 356

than the best single-year AUC. This result implies that combining data from multiple 357

years will not improve between-year classification. 358

Table 9. Multiple year training vs Single year training (AUC).

Year Multiple year Single year (average) Single year (best)
2000 0.6329 0.5608± 0.047 0.6335
2001 0.5226 0.5111± 0.015 0.5367
2002 0.4582 0.4764± 0.039 0.5576
2003 0.5319 0.5230± 0.035 0.5936
2004 0.5227 0.4967± 0.032 0.5529
2005 0.6287 0.5567± 0.068 0.6654
2006 0.4710 0.4921± 0.036 0.5811
2007 0.6362 0.5785± 0.037 0.6295
2008 0.6018 0.5027± 0.068 0.6226
2009 0.5703 0.5654± 0.044 0.6358
2010 0.5818 0.5184± 0.028 0.5636
2011 0.5423 0.5557± 0.021 0.5892
2012 0.4999 0.5382± 0.033 0.5872
2013 0.5548 0.5573± 0.043 0.6267
2014 0.5826 0.5437± 0.033 0.5853
2015 0.6093 0.5731± 0.052 0.6480

Discussion 359

We have trained machine learning models to classify field parcels with and without crop 360

loss, using NDVI values derived from Landsat 7 data. Several models were compared 361

and tested in two different scenarios, namely within-year and between-year classification. 362

The results showed that within-year classification is highly possible, while between-year 363

classification is still hard. The resulting models have many applications, for example, 364

they can be used by insurance companies or government agencies for verifying crop-loss 365

claims. 366

Section 3.2 showed that a major challenge to improve the classification performance 367

is the amount of missing data. Figure 8 shows the possibility of achieving high AUC if 368
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the missing data ratio was low. In our case more than 80% of data are missing and 369

despite that the average within-year AUC=0.688 with the possibility to increasing up to 370

90% when the problem is not severe. The issue might be improved by using newer 371

optical satellite data, such as those from Sentinel 2 which has higher temporal and 372

spatial resolution that can mitigate the effect of missing data. Furthermore, Sentinel 2 373

data can be combined with RADAR data from Sentinel 1 to get a denser time series 374

and avoid occlusion from clouds to provide more detailed information about the growing 375

pattern of agricultural fields. Obviously, such satellite data are available only from the 376

most recent years, and therefore cannot be combined with our crop loss data, which had 377

covered many years but until 2015. 378

Between-year classification allows identification of crop-loss fields without any 379

reference data in the same year so improving its performance would be a good future 380

target. Our result in Section 3.3 implies that NDVI data alone might not be sufficient 381

for improving the performance of between-year classification. This might not be 382

surprising as it is well known that satellite data is unable to capture all the information 383

about the seasonal variability of the weather and its effects on plants. Incorporating 384

temperature and precipitation data along with the crop-loss reasons can give a more 385

complete picture of the factors affecting the crop loss. Based on the promising results of 386

within-year classification, augmenting high resolution satellite data with weather 387

variables would be useful in achieving high performance for between-year classification. 388

Another direction in which our work could be extended is the use of more flexible 389

machine learning models. For example, convolutional neural networks could use the full 390

image as input and recurrent neural networks could explicitly model the time 391

dependency. These models have the potential to increase the classification performance. 392

However, these models require a large amount of data to train properly, and cannot be 393

directly applied to our data, which has a huge amount of missing data and consists of 394

relatively short time series. The machine learning models in our study are rather 395

simpler as they are more robust against the limitations in our data. 396
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Conclusion 397

We have proved the feasibility of training a machine learning model to identify crop loss 398

at field parcel scale using NDVI data derived from Landsat 7 satellite images. 399

Experiments across sixteen years showed that field parcels from a given year can be 400

classified into those with and without crop loss when the model can be trained on data 401

from the same year. However, the ability to classify parcels from other years is limited. 402

Missing data, which occupied more than 80% of our satellite images, deteriorated the 403

classification performance. Preliminary analysis indicated that within-year classification 404

performance can be improved if the missing data ratio was reduced. Given that the 405

experiments were conducted using barley fields over a long time frame and a large 406

geographical area, we believe that these findings are robust and can be generalised to 407

barley fields in other countries. 408
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32. Liesivaara P, Meuwissen M, Myyrä S. Government Spending under Alternative 514

Yield Risk Management Schemes in Finland. Agricultural and Food Science. 515

2017;26(4). doi:10.23986/afsci.65247. 516

33. Survey UG. Landsat surface reflectance data. Reston, VA; 2015. 517

34. Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF, et al. A 518

Landsat surface reflectance dataset for North America, 1990-2000. IEEE 519

Geoscience and Remote Sensing Letters. 2006;3(1):68–72. 520

doi:10.1109/LGRS.2005.857030. 521

35. Foga S, Scaramuzza PL, Guo S, Zhu Z, Dilley RD, Beckmann T, et al. Cloud 522

detection algorithm comparison and validation for operational Landsat data 523

products. Remote Sensing of Environment. 2017;194:379–390. 524

doi:10.1016/j.rse.2017.03.026. 525

May 4, 2021 22/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.07.443072doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443072
http://creativecommons.org/licenses/by/4.0/


36. Peltonen-Sainio P, Jauhiainen L. Lessons from the Past in Weather Variability: 526

Sowing to Ripening Dynamics and Yield Penalties for Northern Agriculture from 527

1970 to 2012. Regional Environmental Change. 2014;14(4):1505–1516. 528

doi:10.1007/s10113-014-0594-z. 529

37. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained 530

equations: what is it and how does it work? International journal of methods in 531

psychiatric research. 2011;20(1):40–49. 532

38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. 533

Scikit-learn: machine learning in Python. Journal of Machine Learning Research. 534

2011;12:2825–2830. 535

39. Bishop CM. Pattern Recognition and Machine Learning. Berlin, Heidelberg: 536

Springer-Verlag; 2006. 537

40. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 538

2006;27:861–874. doi:10.1016/j.patrec.2005.10.010. 539

May 4, 2021 23/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.07.443072doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443072
http://creativecommons.org/licenses/by/4.0/


Appendix 540

Model comparison for all years. In Section 3.1, we performed model comparison 541

on 2015 data to determine the best model. Table 10 extends these results to the other 542

15 years. Here all models were implemented with Mean+MI imputation strategy. We see 543

that for all years, RF and MLP have have similar AUC values and outperform DT and LR. 544

However, MLP was less robust that RF, i.e., it did not converge even after 500 iterations 545

for several years (2005, 2007, 2009, 2011, 2013, 2014) and took longer to train (Table 5). 546

Thus, considering performance, stability and training time, we selected RF for further 547

experiments. 548

Table 10. AUC of different models with Mean+MI imputation strategy.

Year RF MLP DT LR

2000 0.7643± 0.029 0.7471± 0.037 0.6662± 0.044 0.7139± 0.046
2001 0.6509± 0.021 0.6409± 0.018 0.5735± 0.018 0.6223± 0.023
2002 0.7555± 0.036 0.7582± 0.025 0.6771± 0.053 0.7051± 0.031
2003 0.6954± 0.032 0.6779± 0.029 0.6602± 0.028 0.6625± 0.028
2004 0.5920± 0.015 0.5943± 0.015 0.5721± 0.012 0.5849± 0.007
2005 0.7699± 0.034 0.7552± 0.030 0.6935± 0.041 0.7452± 0.038
2006 0.6624± 0.021 0.6632± 0.024 0.6176± 0.026 0.6392± 0.025
2007 0.6844± 0.097 0.7048± 0.101 0.6029± 0.105 0.6824± 0.088
2008 0.7840± 0.012 0.7871± 0.012 0.7474± 0.012 0.7667± 0.016
2009 0.7146± 0.133 0.7548± 0.087 0.6242± 0.124 0.7046± 0.084
2010 0.6418± 0.031 0.6549± 0.036 0.6085± 0.024 0.6478± 0.041
2011 0.6839± 0.054 0.6708± 0.058 0.6333± 0.049 0.6624± 0.050
2012 0.6360± 0.016 0.6344± 0.014 0.5985± 0.015 0.6169± 0.020
2013 0.6771± 0.050 0.6729± 0.049 0.6354± 0.052 0.6888± 0.060
2014 0.7213± 0.030 0.7103± 0.035 0.6315± 0.046 0.6959± 0.032
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