- 1 Salvaging complete and high-quality genomes of novel microbial species from a
- 2 meromictic lake using a workflow combining long- and short-read sequencing
- 3 platforms
- 4 Yu-Hsiang Chen^{1,2,3}, Pei-Wen Chiang³, Denis Yu Rogozin^{4,5}, Andrey G.
- 5 Degermendzhy⁴, Hsiu-Hui Chiu³, Sen-Lin Tang^{2,3#}
- 6
- ¹Bioinformatics Program, Taiwan International Graduate Program, National Taiwan
- 8 University, Taipei, Taiwan
- 9 ²Bioinformatics Program, Institute of Information Science, Taiwan International
- 10 Graduate Program, Academia Sinica, Taipei, Taiwan
- ³Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- ⁴Institute of Biophysics, Siberian Division of Russian Academy of Sciences,
- 13 Krasnoyarsk, Russia
- ⁵Siberian Federal University, Krasnoyarsk, Russia
- 15
- 16 # Corresponding author
- 17 Biodiversity Research Center, Academia Sinica
- 18 E-mail: sltang@gate.sinica.edu.tw
- 19 Tel: +886-2-27893863

20 Fax: +886-2-27890844

21 Abstract

22 Background

23	Most of Earth's bacteria have yet to be cultivated. The metabolic and functional
24	potentials of these uncultivated microorganisms thus remain mysterious, and the
25	metagenome-assembled genome (MAG) approach is the most robust method for
26	uncovering these potentials. However, MAGs discovered by conventional
27	metagenomic assembly and binning methods are usually highly fragmented genomes
28	with heterogeneous sequence contamination, and this affects the accuracy and
29	sensitivity of genomic analyses. Though the maturation of long-read sequencing
30	technologies provides a good opportunity to fix the problem of highly fragmented
31	MAGs as mentioned above, the method's error-prone nature causes severe problems
32	of long-read-alone metagenomics. Hence, methods are urgently needed to retrieve
33	MAGs by a combination of both long- and short-read technologies to advance
34	genome-centric metagenomics.

35 **Results**

In this study, we combined Illumina and Nanopore data to develop a new workflow to
reconstruct 233 MAGs—six novel bacterial orders, 20 families, 66 genera, and 154
species—from Lake Shunet, a secluded meromictic lake in Siberia. Those new MAGs

39	were underrepresented or undetectable in other MAGs studies using metagenomes
40	from human or other common organisms or habitats. Using this newly developed
41	workflow and strategy, the average N50 of reconstructed MAGs greatly increased
42	10-40-fold compared to when the conventional Illumina assembly and binning
43	method were used. More importantly, six complete MAGs were recovered from our
44	datasets, five of which belong to novel species. We used these as examples to
45	demonstrate many novel and intriguing genomic characteristics discovered in these
46	newly complete genomes and proved the importance of high-quality complete MAGs
47	in microbial genomics and metagenomics studies.
10	Conclusions
48	Conclusions
48 49	The results show that it is feasible to apply our workflow with a few additional long
49	The results show that it is feasible to apply our workflow with a few additional long
49 50	The results show that it is feasible to apply our workflow with a few additional long reads to recover numerous complete and high-quality MAGs from short-read
49 50 51	The results show that it is feasible to apply our workflow with a few additional long reads to recover numerous complete and high-quality MAGs from short-read metagenomes of high microbial diversity environment samples. The unique features
49 50 51 52	The results show that it is feasible to apply our workflow with a few additional long reads to recover numerous complete and high-quality MAGs from short-read metagenomes of high microbial diversity environment samples. The unique features we identified from five complete genomes highlight the robustness of this method in
49 50 51 52 53	The results show that it is feasible to apply our workflow with a few additional long reads to recover numerous complete and high-quality MAGs from short-read metagenomes of high microbial diversity environment samples. The unique features we identified from five complete genomes highlight the robustness of this method in genome-centric metagenomic research. The recovery of 154 novel species MAGs
49 50 51 52 53 54	The results show that it is feasible to apply our workflow with a few additional long reads to recover numerous complete and high-quality MAGs from short-read metagenomes of high microbial diversity environment samples. The unique features we identified from five complete genomes highlight the robustness of this method in genome-centric metagenomic research. The recovery of 154 novel species MAGs from a rarely explored lake greatly expands the current bacterial genome

58 Keywords: Metagenome-assembled genome, metagenomics, saline lake,
59 microbiology, and Nanopore sequencing.

60

61 Background

62 Rapid developments in bioinformatics and sequencing methods enable us to 63 reconstruct genomes directly from environmental samples using a culture-independent 64 whole-genome-shotgun metagenomic approach. These genomes, also called 65 metagenome-assembled genomes (MAGs), have become a crucial information source 66 to explore metabolic and functional potentials of uncultivated microorganisms [1-4]. 67 Mining MAGs quickly expands our knowledge of microbial genome, diversity, 68 phylogeny, evolution, and taxonomy [1-4]. For example, 18,365 MAGs were 69 identified out of a total of 410,784 microorganisms in the Genomes OnLine Database 70 (GOLD) [5]. A total of 52,515 MAGs were assembled from diverse habitats, and the 71 MAG collection contains 12,556 potentially novel species and expands the known 72 phylogenetic diversity in bacterial and archaeal domains by 44% [3].

Although genome-resolved metagenomics has revolutionized research in microbiology, significant challenges need to be overcome to make MAGs more accurate, reliable, and informative [1]. First, most MAGs are derived from the metagenomic assembly of short reads [1, 6], and these short-read-derived MAGs

77	usually comprise numerous short contigs rather than complete or nearly-complete
78	genomic sequences, and thus important information on genomic characters is missed,
79	such as operons, gene order, gene synteny, and promoter/regulatory regions. As of
80	March 2021, only 177 out of 84,768 MAGs released in NCBI were complete. Second,
81	fragmented MAGs usually miss some gene sequences and comprise unknown
82	contaminant sequences, mistakenly assembled into the contigs [1]. Hence, low
83	contiguity, high fragmentation, and unwanted contamination in short-read MAGs
84	greatly affect further analyses in a variety of microbial genome-related studies.
85	The emergence of long-read sequencing platforms (also called third-generation
86	sequencing platforms) such as Nanopore and PacBio provides an opportunity to
87	improve the contiguity of MAGs and even reconstruct complete MAGs from
88	extremely complex microbial communities [7, 8]. Recently, researchers started to
89	develop new assemblers to reconstruct microbial genomes with high accuracy and
90	long contiguous fragments from long-read metagenomic datasets. In 2019, Nagarajan
91	et al. developed a hybrid assembler called OPERA-MS [9]. The assembler yielded
92	MAGs with 200 times higher contiguity than short-read assemblers used on human
93	gut microbiomes. In October 2020, Pevzner et al. developed metaFlye, a long-read
94	metagenome assembler that can produce highly accurate assemblies (approximately
95	99% assembly accuracy) [10, 11]. The success of these newly developed assemblers

96 becomes an important stepping-stone for reconstruction of complete MAGs with high 97 accuracy. However, there is still much room to improve the procedures around data 98 processing and assembling MAGs with long reads. The current study presents a new 99 workflow for this purpose. 100 Our workflow combines Illumina sequencing reads and Nanopore long 101 sequencing reads to recover many novel high-quality and high-contiguity prokaryotic 102 MAGs from Lake Shunet, southern Siberia, one of only four meromictic lakes in all 103 of Siberia. The lake contains stratified water layers, including a mixolimnion layer at 104 3.0 m, chemocline at 5.0 m, and monimolimnion at 5.5 m. From our previous 16 105 rRNA amplicon survey, we know that the lake comprises at least hundreds of 106 unknown bacteria and archaea [12], highlighting the importance of mining microbial 107 MAGs from this rarely explored lake. However, though we attempted to recover 108 MAGs from these layers using deep Illumina sequencing with approximately 150 Gb, 109 only one high-quality but still fragmented MAG was obtained [12]. Hence, in this 110 study, we developed a new workflow combining Illumina and Nanopore sequencing 111 reads by integrating several cutting-edge bioinformatics tools to recover and 112 reconstruct MAGs with high contiguity and accuracy. We demonstrate that our newly 113 built workflow can be used to reconstruct hundreds of complete high-quality MAGs 114 from environmental samples in a high-complexity microbial community.

115 **Results and Discussions**

116 Reconstruction of metagenome-assembled genomes with high contiguity from

117 Lake Shunet by combining Nanopore and Illumina sequences

118	To recover novel metagenome-assembled genomes (MAGs) with high contiguity
119	without compromising accuracy, 3.0-, 5.0-, and 5.5-m deep Lake Shunet samples
120	were sequenced by Nanopore machines individually, and the resulting long reads
121	(LRs) were analyzed together with short reads (SRs) using a workflow we developed
122	for this study (Fig. 1a). Originally, we only used metaFlye, a state-of-art long-read
123	metagenome assembler that can provide 99% accuracy [10, 11], to assemble the LRs.
124	However, recent studies found that assemblies from long reads contain numerous
125	in-del errors, leading to erroneous predictions of open reading frames and biosynthetic
126	gene clusters [1, 10]. Incorrectly predicting open reading frames also affects the
127	estimation of genome completeness by single-copy marker gene method, such as
128	checkM [13]. Hence, we used SRs from Illumina sequencing to correct the contigs
129	generated by LRs.

To recover more MAGs and improve contiguity, the assemblies from SRs and LRs were combined before binning. The contiguity of MAGs generated by combining two sequencing reads was dramatically higher than that from the Illumina assembly alone. The average N50 of MAGs from SRs only were 12.4 kb, 6.0 kb, and 7.2 kb in

134	the 3.0, 5.0, and 5.5-m dataset, respectively. Average N50 increased to 476.5 kb, 269.5
135	kb, and 91.2 kb (Fig. 1b), respectively, when assembling with a combination of the
136	two sequencing methods. A previous study showed that the qualities of MAGs can be
137	improved by reassembly [14], so the step was incorporated into our workflow. When
138	the MAGs were reassembled and selected, the average N50 increased from 476.5 kb
139	to 530.0 kb in the 3.0 m dataset and 91.2 kb to 107.3 kb in the 5.5 m datasets (Fig.
140	1b).

141 The correlations between read coverages and contiguity were determined (Fig. 142 1c, d). The results revealed that the N50 values were more correlated with the 143 Nanopore read coverage (Spearman's r = 0.7) than the Illumina coverage (Spearman's 144 r=0.33). This is consistent with the previous observation that contiguity plateaued 145 when the coverage of SRs reached a certain point because the assembly of SRs cannot 146 solve repetitive sequences [9]. Nevertheless, LRs can address the issue by spanning 147 repetitive regions. We also found that using SR assembly only, we cannot obtain 148 MAGs with N50 >100kbp. By comparison, using our workflow, we can obtain 73 149 MAGs with N50 > 100kbp. The mean SR coverage of these MAGs was 187 times, 150 and mean LR coverage of them was only 67. Additionally, our data size of LRs is 151 about 1/3 that of SRs. Taken together, it represents that the contiguity of MAGs can 152 be greatly improved with one-third LRs. The results highlighted that 1) combining

153	two sequencing methods yield significant improvements in the qualities of MAGs that
154	are recovered from high-complexity metagenomic datasets, and 2) With only extra
155	one-third LRs, we could retrieve genome information, such gene order, from previous
156	SR-derived MAG collections.
157	Using our workflow, a total of 233 MAGs with completeness $> 50\%$ and
158	contamination < 10% were reconstructed. For Genome Taxonomy Database (GTDB)
159	species representatives, the genome quality index, defined as
160	completeness \Box - \Box 5 \Box × \Box contamination, should be larger than 50. To meet the GTDB
161	standard, the MAGs were filtered by this criterion, and the MAGs with low SR
162	coverages (<80%) were discarded, resulting in 187 MAGs (Dataset S1). All the
163	MAGs satisfied or surpassed the MIMAG standard for a medium-quality draft [15].
164	The median completeness of MAGs was 81%, and the median contamination was
165	1.1% (Fig. 1e). Moreover, 45.3% of the MAGs contained 16S rRNA gene sequences,
166	and 34.5% of MAGs had 23S, 16S, and 5S rRNA gene sequences (Fig. 1f). The
167	median GC ratio of MAGs from 3.0, 5.0, and 5.5 m were 52.75, 44.1, and 46.4%,
168	respectively (Fig. 1g). We also used OPERA-MS to retrieve MAGs from SRs and LRs.
169	However, only 26 medium-quality or high-quality MAGs were recovered, indicating
170	that the method is suboptimal in our case.

172 Phylogenetic diversity and novelty of MAGs

173	To explore the diversity of MAGs, we clustered and de-duplicated the genomes
174	based on a 95% ANI cutoff for bacterial species demarcation [16], since identical
175	microbial species may be detected and assembled from the three different layers. The
176	procedure led to 165 species-level non-redundant MAGs (Dataset S1). The majority
177	(93%) of the species-level MAGs could not be assigned to any known species after
178	taxonomy annotation by the GTDB-Tk, revealing that a great deal of novel MAGs at
179	the species and higher taxonomic ranks were detected (Dataset S2). The novel MAGs
180	comprised six unknown bacterial orders, 20 families, and 66 genera (Fig. 2a).
181	To examine the phylogenetic diversity in the novel MAGs, a phylogenomic tree
182	was reconstructed using all these bacterial MAGs and representative bacterial
183	genomes in GTDB (Fig. 2b). The result demonstrated that the MAGs widely span the
184	bacterial phylogeny. The MAGs were distributed across 24 phyla, including unusual
185	and poorly-characterized phyla, such as Armatimonadota, Margulisbacteria,
186	Bipolaricaulota, Cloacimonadota, and Caldatribacteriota. The phylum frequencies
187	differed between the genome collections of the standard database and the Shunet
188	datasets (Fig. 2c). The GTDB mainly comprised Proteobacteria. In contrast, in
189	genome collections from the Shunet datasets, the phylum frequency was enriched in
190	the Desulfobacterota, Verrucomicrobiota, Bacteroidota, and Omnitrophota. The

191	difference can also be seen by comparing Shunet datasets with a genomic catalog of
192	Earth's microbiomes and 8,000 MAGs recovered by Tyson et al. [17, 18], which also
193	had a higher proportion of Proteobacteria, but limited in the other four phyla enriched
194	in Lake Shunet. The results suggest that, to gain a comprehensive picture of the
195	microbial genomes on earth, there is a strong need for future studies to explore
196	microbiomes from various habitats, especially overlooked or understudied habitats
197	[17, 19].
198	
199	Novel predicted secondary-metabolite biosynthetic clusters and
200	carbohydrate-active enzymes from newly recovered MAGs
200	carbonyarate active enzymes from newry recovered wires
200	Here we demonstrate a) the value of recovering MAGs from rarely investigated
201	Here we demonstrate a) the value of recovering MAGs from rarely investigated
201 202	Here we demonstrate a) the value of recovering MAGs from rarely investigated habitats to mine novel microbial function potentials and b) the advantage of
201 202 203	Here we demonstrate a) the value of recovering MAGs from rarely investigated habitats to mine novel microbial function potentials and b) the advantage of combining SRs and LRs using two examples: secondary metabolite biosynthetic gene
201 202 203 204	Here we demonstrate a) the value of recovering MAGs from rarely investigated habitats to mine novel microbial function potentials and b) the advantage of combining SRs and LRs using two examples: secondary metabolite biosynthetic gene clusters (BGCs) and carbohydrate-active enzymes (CAZymes). Secondary
201 202 203 204 205	Here we demonstrate a) the value of recovering MAGs from rarely investigated habitats to mine novel microbial function potentials and b) the advantage of combining SRs and LRs using two examples: secondary metabolite biosynthetic gene clusters (BGCs) and carbohydrate-active enzymes (CAZymes). Secondary metabolites are usually unique in one or a few species, and not related to the normal
201 202 203 204 205 206	Here we demonstrate a) the value of recovering MAGs from rarely investigated habitats to mine novel microbial function potentials and b) the advantage of combining SRs and LRs using two examples: secondary metabolite biosynthetic gene clusters (BGCs) and carbohydrate-active enzymes (CAZymes). Secondary metabolites are usually unique in one or a few species, and not related to the normal growth of the organisms [20]. The secondary metabolites, associated with ecological

210 remain uncultivated, so mining novel BGCs in metagenomes provides the opportunity

to discover new secondary metabolites [22, 2]

212	In our MAG collection, we identified 414 putative BGCs from 140 MAGs (Fig.
213	S1a). Among them, 134 BGCs were annotated as terpenes and 64 BGCs as
214	bacteriocins. To determine the novelty of these BGCs, the BGCs were searched
215	against the NCBI database using the cutoffs of 75% identity and 80% query coverage
216	based on a previous study [17]. The results demonstrated that 384 BGCs (92%) could
217	not be matched with these thresholds, indicating that most of these could be novel
218	BGCs. Comparably, only 83% of BGCs were predicted to be novel BGCs in the
219	recently-published Genomes from Earth's Microbiome catalog (GEM) [17].
220	Complete BGCs are important because they help us identify the metabolites that
221	these BGCs produce using molecular approaches [21]. 72% of BGCs identified from
222	MAGs in the 3.0 m dataset were not on the edge of the contigs, suggesting that the
223	majority of BGCs may be complete. However, only 22% of BGCs in the 5.0 and 5.5
224	m datasets were not on the edges, which could be because the MAGs from 3.0 m were
225	more contiguous because they had a 10-fold larger median N50 (Fig. 1b). In total, 213
226	BGCs (51%) we recovered were not on the edges. By comparison, only 34% BGCs
227	predicted in the GEM MAG collection were not on the edge. In the 414 BGCs, 552
228	core biosynthetic genes, 1,224 additional biosynthetic genes, 205 regulator genes, and

229	185 transporter genes were identified. This information will enable us to examine the
230	products of the BGC, the function of these genes, and the roles of the products in the
231	individual bacterium. On the other hand, the results also showed that the increased
232	contiguity of MAGs by LRs enables us to obtain more complete BGCs.
233	Carbohydrate-active enzymes have a range of applications. For instance,
234	CAZymes are used for food processing and food production [24-27]. Exploring novel
235	CAZymes in the metagenome can benefit food industries [24, 25]. On the other hand,
236	identifying novel CAZymes modules enables us to produce novel bioactive
237	oligosaccharides that can be used to develop new drugs and supplements [26, 27].
238	From the MAGs reconstructed in this study, we identified 8,750 putative CAZymes:
239	3,918 glycosyltransferases, 3,304 glycoside hydrolases, 738 carbohydrate esterases,
240	and 92 polysaccharide lyases (Fig. S1b). Previous studies indicated that 60~70%
241	protein identity can be used as a threshold for the conservation of the enzymatic
242	function [28-30]. Among the CAZymes we identified, 1,745 (44%)
243	glycosyltransferases, 1,456 (44%) glycoside hydrolases, 267 (36%) carbohydrate
244	esterases, and 57 (62%) polysaccharide lyases shared less than 60% protein identity
245	with their closest homologs in the NCBI nr database (Fig. S1c). This indicates that
246	these CAZymes could have novel carbohydrate-active functions, which future
247	research efforts can explore further.

248

249 Novel candidate archaeal families identified from Lake Shunet

250	From the 5.5 m dataset, we identified two MAGs belonging to candidate novel
251	families under Methanomassiliicoccales and Iainarchaeales (MAG ID: M55A1 and
252	M55A2, respectively) and one MAG belonging to a potential novel species under
253	Nanoarchaeota, according to the GTDB taxonomy assignment based on the
254	phylogenomic tree and relative evolutionary divergence (RED) (Dataset S2). In the
255	archaeal phylogenomic tree, M55A1 formed a clade basal to the clade containing
256	species within the Methanomethylophilaceae family, a group of host-associated
257	methanogens, and the branch was supported by a 94.7% UFBoot value (probability
258	that a clade is true) [31]. The M55A1 and Methanomethylophilaceae-related clade
259	formed a superclade that is adjacent to Methanomassiliicoccaceae-related clade, a
260	group of environmental methanogens [32]. These clades formed the order
261	Methanomassiliicoccales, the hallmark of which is the ability to produce methane.
262	However, M55A1 did not contain genes encoding for a methane-producing key
263	enzyme complex (Fig. S2). For example, genes encoding methyl-coenzyme M
264	reductase alpha (mcrA), beta (mcrB), and gamma subunit (mcrG), a key enzyme
265	complex involved in methane production, were absent in the M55A1. On the other
266	hand, we did not find Methanomassiliicoccaceae-related mcrA, mcrB, or mcrG genes

267 in the other bins and unbinned sequences in the 5.5 m dataset. Furthermore, M55A1 268 lacks most of the core methanogenesis marker genes identified in 269 Methanomassiliicoccales. 270 The absence of these methanogenesis marker genes implies that the archaea may 271 have lost their methane-producing ability. If this is true, then a phylogenetic group of 272 *Methanomassiliicoccales* may have lost the ability to perform methanogenesis after its 273 ancestor evolved the ability to produce methane. The results not only showed the 274 potential functional diversity in this clade but also highlighted how much such a 275 little-studied environment can reveal about functional diversity in known microbial 276 lineages.

277

278 Five complete MAGs of a candidate novel genus and species from Lake Shunet

The assemblies of Shunet datasets yielded six complete and circulated bacterial genomes. Among these six complete MAG, two belonged to a novel *Simkaniaceae* genus, and there were classified as novel *Cyanobium* species, *Thiocapsa* species, and species under GCA-2401735 (an uncharacterized genus defined previously based on phylogeny), according to the GTDB taxonomy inference based on ANI and phylogenomic analyses (Dataset S1 and S2). The following are individual descriptions of their unique taxonomic and metabolic features. The nitrogen, carbon, sulfur, and energy metabolisms are described in Figure S3.

287	Candidate novel Simkaniaceae genus. According to GTDB-TK, there were two
288	complete MAGs-M30B1 and M30B2-assigned as an unclassified genus under
289	Simkaniaceae, a family in the class Chlamydiia, based on the topology of the
290	phylogenetic tree. M30B1 and M30B2 formed a monophyletic group and shared
291	72.48% percentage of conserved protein (PCOP), above the genus boundary of 50%
292	PCOP [33]. The genomes shared 77% ANI, below the 95% cutoff for the same species
293	[16], and the identity of their rRNA gene sequences was 98.45%. Together, the results
294	showed that the two MAGs were two different new species under a novel genus.
295	Therefore, we propose a new genus, Candidatus Andegerimia, to include the two
296	MAGs, and renamed the two MAGs as Candidatus Andegerimia shunetia M30B1 and
297	Candidatus Andegerimia siberian M30B2, abbreviated as M30B1 and M30B2,
298	respectively.
299	Simkaniaceae, like all Chlamydia, are obligately intracellular bacteria that live in
300	eukaryotic cells [34]. Validated natural hosts include various multicellular eukaryotic
301	organisms like vertebrates. That some Simkaniaceae PCR clones were identified from

drinking water implies that *Simkaniaceae* may also live in unicellular eukaryotes [35].

303 Our samples were collected from saline water, and a membrane was used to filter

large organisms. Hence, *Ca.* A. shunetia and *Ca.* A. siberian may be derived from tiny

305 or unicellular eukaryotic organisms.

306	The reconstruction of complete MAGs enables us to compare genomes in a
307	precise and comprehensive manner by avoiding contamination caused by binning.
308	The two Simkaniaceae MAGs we recovered contained five KEGG orthologues that
309	were not present in known Simkaniaceae genomes (Table 1). First, the genomes have
310	cold shock protein genes, and the genes were highly conserved (93% amino acid
311	identity) between the two Simkaniaceae genomes. Cold shock proteins are used to
312	deal with the sudden drop in temperature [36]. The proteins are thought to be able to
313	bind with nucleic acids to prevent the disruption of mRNA transcription and protein
314	translation caused by the formation of mRNA secondary structures due to low
315	temperature [36]. The existence of the genes in the genomes may confer cold
316	resistance on the Simkaniaceae bacteria in Lake Shunet, allowing them to withstand
317	extremely cold environments.

Besides the cold shock protein genes, the two *Simkaniaceae* also had glutamate decarboxylase (GAD) genes. GAD is an enzyme that catalyzes the conversion of glutamate into γ -aminobutyric acid (GABA) and carbon dioxide. Many bacteria can utilize the GAD system to tolerate acidic stress by consuming protons during a chemical reaction [37]. The system usually accompanies glutamate/GABA antiporters, responsible for coupling the efflux of GABA and influx of glutamate. The antiporter

324 can also be found in the two novel *Simkaniaceae* genomes, indicating that the bacteria

325 can use the system to tolerate acidic environments.

326	Along with the unique features in the genus, we identified a difference between
327	the two MAGs in terms of metabolism. Taking sulfur metabolism as an example, the
328	M30B2 had all the genes for assimilatory sulfate reduction (ASR), except for cysH,
329	and contained the sulfate permease gene (Fig. S3). On the contrary, M30B1 did not
330	contain ASR or the sulfate permease gene. This indicates that M30B2 can take up and
331	use sulfate as a sulfur source, but M30B1 cannot. In summary, the recovery of these
332	genomes broadens our knowledge of the metabolic versatility in Simkaniaceae.
333	Candidate novel Cyanobium species. The MAG M30B3 was classified as a
334	novel Cyanobacteria species genome under the genus Cyanobium, based on
335	phylogenomic tree and 84.28% ANI shared with the Cyanobium_A sp007135755
336	genome (GCA_007135755.1), its closest phylogenetic neighbor. We named the
337	genome Candidatus Cyanobium sp. M30B3, abbreviated as M30B3. The M30B3 is
338	the predominant bacterium in Lake Shunet at 3.0 m and plays a pivotal role in
339	providing organic carbon in the lake ecosystem [12].
340	Our analysis of the M30B3 genome revealed that the bacterium harbors an

340 Our analysis of the M30B3 genome revealed that the bacterium harbors an 341 anti-phage system that its known relatives lack. In the novel cyanobacterial genome 342 under the *Cyanobium* genus, we found that the genome harbored several

343	CRISPR-associated (Cas) protein genes that were not in other Cyanobium genomes
344	(Table 1). The CRISPR-Cas system is a prokaryotic immune system that enables
345	prokaryotic cells to defend against phages [38]. The system can be classified into six
346	types and several subtypes according to protein content. The signature protein of type
347	I is Cas3, which has endonuclease and helicase activities [38]. cas3 genes can be
348	found in the novel Cyanobium genome but not in other known Cyanobium genomes.
349	Furthermore, the genome also had csel and csel proteins, signature proteins for the
350	I-E subtype. Our results show that the novel genome harbors a type I-E CRISPR
351	system and that this system is absent in its phylogenetic-close relatives.
352	Candidate novel Thiocapsa species M50B4. Lake Shunet features the extremely
353	dense purple sulfur bacteria (PSB) in its chemocline (5.0 m) layer, and the density of
353	dense purple sulfur bacteria (PSB) in its chemocline (5.0 m) layer, and the density of
353 354	dense purple sulfur bacteria (PSB) in its chemocline (5.0 m) layer, and the density of these PSB is comparable to that of Lake Mahoney (Canada), renowned for containing
353 354 355	dense purple sulfur bacteria (PSB) in its chemocline (5.0 m) layer, and the density of these PSB is comparable to that of Lake Mahoney (Canada), renowned for containing the most purple sulfur bacteria of any lake in the world [39]. A complete MAG of
353 354 355 356	dense purple sulfur bacteria (PSB) in its chemocline (5.0 m) layer, and the density of these PSB is comparable to that of Lake Mahoney (Canada), renowned for containing the most purple sulfur bacteria of any lake in the world [39]. A complete MAG of <i>Thiocapsa</i> species, the predominant PSB in the 5.0 m layer, was recovered from the
353 354 355 356 357	dense purple sulfur bacteria (PSB) in its chemocline (5.0 m) layer, and the density of these PSB is comparable to that of Lake Mahoney (Canada), renowned for containing the most purple sulfur bacteria of any lake in the world [39]. A complete MAG of <i>Thiocapsa</i> species, the predominant PSB in the 5.0 m layer, was recovered from the 5.0 m dataset. The MAG was classified as a candidate novel species because it shared
353 354 355 356 357 358	dense purple sulfur bacteria (PSB) in its chemocline (5.0 m) layer, and the density of these PSB is comparable to that of Lake Mahoney (Canada), renowned for containing the most purple sulfur bacteria of any lake in the world [39]. A complete MAG of <i>Thiocapsa</i> species, the predominant PSB in the 5.0 m layer, was recovered from the 5.0 m dataset. The MAG was classified as a candidate novel species because it shared 90.71% ANI with the genome of <i>Thiocapsa rosea</i> . Therefore, we propose the creation

362	photosynthesis by reducing sulfur as an electron donor, and Thiocapsa can fix
363	nitrogen [40, 41]. M50B4 contained genes for bacteriochlorophyll synthesis and the
364	Calvin cycle for carbon fixation. A previous study revealed that Thioflavicoccus
365	mobilis, a bacterium close to Thiocapsa, can utilize rTCA and the Calvin cycle to fix
366	carbon [42]. In M50B4, all genes for the reverse TCA cycle (rTCA), except for the
367	ATP citrate lyase gene, were identified. Whether the M50B4 can use both rTCA and
368	the Calvin cycle like T. mobilis needs to be determined. For sulfur metabolism, the
369	MAG carried intact gene sets involved in SOX system dissimilatory sulfate
370	reduction/oxidation. The sulfate importer gene was also seen in the MAG, which
371	equipped the bacterium with the ability to import extracellular thiosulfate and sulfate
372	and to use them as sulfur sources. In terms of nitrogen metabolism, like other
373	Thiocapsa, the bacterium had a gene cluster to conduct nitrogen fixation and a urea
374	transporter and urease gene cluster to utilize urea. Besides nitrogen fixation, currently
375	available Thiocapsa have all genes for denitrification, and some Thiocapsa have
376	genes to convert nitrite to nitrate. However, the genes were not seen in our MAG.
377	There are currently five cultured <i>Thiocapsa</i> species. Two of these, <i>T. rosea</i> and <i>T.</i>
378	pendens, contain gas vesicles. Our genomic analysis revealed gas vesicle structure
379	protein genes in M50B4. These genes are also present in T. rosea and T. pendens, but
380	not in any other Thiocapsa genomes, indicating that the genes are critical for vesicles

381	to exist in Thiocapsa, and therefore the novel species have gas vesicles. Gas vesicles
382	enable T. sp. M50B4 cells to modulate their buoyancy so they can move to the
383	locations with optimal light intensity or oxygen concentration [43]. Environmental
384	conditions of Lake Shunet are known to be dynamic and change with seasons, and
385	this function could be critical for M50B4.
386	We found that the novel Thiocapsa complete MAG have genes that encode
387	dimethyl sulfoxide (DMSO) reductase subunits A and B (Table S2). DMSO reductase
388	is an enzyme that catalyzes the reduction of DMSO into dimethyl sulfide (DMS). The
389	reductase enables bacteria to use DMSO as terminal electron acceptors instead of
390	oxygen during cellular respiration [44]. The DMSO reduction reaction could impact
391	the environment. DMS, the product of the reaction, can be emitted into the
392	atmosphere and be oxidized into sulfuric acid [45]. Sulfuric acid can act as a cloud
393	condensation nucleus and leads to cloud formation, blocking radiation from the sun.
394	The flux of the anti-greenhouse gas DMS is mainly investigated and discussed in
395	oceanic environments [46, 47]. The flux and role of DMS in lake ecosystems are
396	overlooked and rarely documented [48]. Our finding that the extremely dense PSB in
397	Lake Shunet carried DMS metabolism shows the need to investigate the impact and
398	importance of DMS from bacteria in lake ecosystems and sulfur cycling.
399	Candidate novel Methylophilaceae species M30B5. A complete MAG, named

400	M30B5, was classified as a novel Methylophilaceae species under a genus-level
401	lineage, called GCA-2401735, which was defined based on phylogenetic placement
402	[49]. The GCA-2401735 lineage currently only comprises two
403	genomes—GCA-2401735 sp006844635 and GCA-2401735 sp002401735—neither of
404	which meet high-quality genome standards due to their low completeness and lack of
405	16S rRNA gene sequence. The novel complete genome can serve as a representative
406	species of the genus and can be used to infer the capability of the genus (Table S2).
407	Here, we propose the genus Candidatus Methylofavorus to include the three
408	GCA-2401735 genomes, and the M30B5 was renamed as Candidatus Methylofavorus
409	khakassia.
410	The isolation locations of the three genomes imply that their habitats were
411	distinct from those of other Methylophilaceae. The three "Methylofavorus" genomes
412	were isolated from a cold subseafloor aquifer, shallow marine methane seep, and
413	saline lake, indicating that the bacteria can live in saline environments. By
414	comparison, most other Methylophilaceae members live in soil and freshwater or are
415	

416 ancestor of "Methylofavorus" gained the ability to live in saline habitats and diverged

417 from the ancestor of the genus *Methylophilus*, its closest phylogenetic relatives.

418 The complete genome of M30B5 enables us to comprehensively study metabolic

419	potentials. Methylophilaceae is a family of Proteobacteria that can use methylamine
420	or methanol as carbon or energy sources [51, 52]. In our analysis, methanol
421	dehydrogenase gene existed in our genome, and methylamine dehydrogenase gene
422	was absent, indicating that the bacteria use methanol as a carbon source instead of
423	methylamine. For motility, flagella are found in some Methylophilaceae. Interestingly,
424	flagella- and chemotaxis-related genes were not identified in the MAG but were
425	identified in the other two "Methylofavorus" species, suggesting that M30B5 lacks
426	mobility comparing to the other two "Methylofavorus" species (Fig. S4).
427	The comparative analysis of M30B5 and other "Methylofavorus" species
428	revealed that the bacteria use different types of machinery to obtain nitrogen (Fig. S4).
429	The formamidase, urease, and urea transporters were present in M30B5 but not the
430	other two "Methylofavorus" species. Instead, the two "Methylofavorus" species had
431	nitrite reductase, which was not in our MAG. The results indicate that M30B5 can
432	convert formamide into ammonia and formate, and take up extracellular urea as a
433	nitrogen source. On the contrary, the other two "Methylofavorus" can use nitrite as
434	nitrogen resources. Our analysis revealed that "Methylofavorus" is metabolically
435	heterogeneous.

436

437 Conclusions

438	In this study, we successfully developed a workflow to recover MAGs by
439	combining SRs and LRs. This workflow reconstructed hundreds of high-quality and
440	six complete MAGs-including six candidate novel bacterial orders, 20 families, 66
441	genera, and 154 species-from water samples of Lake Shunet, a meromictic lake with
442	a highly complex microbial community. It demonstrates that with extra less LRs, we
443	can salvage important genome information from previous SR metagenomes. Using
444	comparative genomics, unique and intriguing metabolic features are identified in
445	these complete MAGs, including two predominant novel species: Thiocapsa sp, and
446	Cyanobium sp. [12]. The findings show that it is advantageous to apply this method in
447	studies of microbial ecology and microbial genomics by revising and improving the
448	shortcomings of SRs-based metagenomes. Additionally, we show that the MAGs
449	contain a high proportion of potential novel BGCs and CAZymes, which can be
450	valuable resources to validate and examine the metabolic flexibility of various
451	microbial lineages through further experimental approaches and comparative
452	genomics. Finally, this study found a high ratio of poorly detectable taxa in the public
453	databases, suggesting that the investigation into rarely explored environments is
454	necessary to populate the genomic encyclopedia of the microbial world, explore
455	microbial metabolic diversity, and fill the missing gaps in microbial evolution.

457 Materials and Methods

458 Sample collection

459	Water samples at 3.0, 5.0, and 5.5 m deep were collected from Lake Shunet (54 $^{\circ}$
460	25'N, 90° 13'E) on July 21, 2010. The collection procedure was described in our
461	previous research [12]. Briefly, water was pumped from each depth into sterile
462	containers. Part of the water was transferred into sterile 2.0-ml screw tubes (SSIbio [®])
463	and stored at -80°C until DNA extraction. The rest of the water was filtered through
464	10-µm plankton and concentrated using tangential flow filtration (TFF) system
465	(Millipore) with 0.22- μ m polycarbonate membrane filters. The bacteria in the
466	retentate were then retained on cellulose acetate membranes (0.2 μm pore size;
467	ADVANTEC, Tokyo, Japan) and stored at -80°C until DNA extraction.

468 DNA extraction and sequencing

Reads from Illumina and Nanopore sequencing platforms were used in this study. The sequencing reads from Illumina were described in our previous study [12] (Table S1). DNA for Illumina sequencing was extracted from a TFF-concentrated sample using the cetyltrimethylammonium bromide (CTAB) method [53]. In terms of Nanopore sequencing for 3.0-m samples, the same DNA batch used for Illumina sequencing of 3.0-m was sent to Health GeneTech Corp. (Taiwan) for Nanopore sequencing. For 5.0- and 5.5-m samples, there was no DNA remaining after Illumina

476	sequencing, so in 2020 the DNA was extracted again from frozen water samples using
477	the CTAB method by retaining the bacteria on cellulose acetate membranes without
478	TFF concentration. The amounts of DNA were still insufficient for Nanopore
479	sequencing, so the DNA samples were mixed with the DNA of a known bacterium,
480	Endozoicomonas isolate, at a 1:2 ratio. No Endozoicomonas was detected in the water
481	samples according to our 16S rRNA amplicon survey [12]. The mixed DNA was then
482	sent to the NGS High Throughput Genomics Core at Biodiversity Research Center,
483	Academia Sinica for Nanopore sequencing. To remove reads that had originated from
484	the Endozoicomonas isolate, Kaiju web server [54] and Kraken 2 [55] were used to
485	assign the taxonomy for each read; reads that were classified as Endozoicomonas by
486	Kaiju or Kraken were removed from our sequencing results. The Nanopore
487	sequencing and processing yielded 13.83, 12.57, and 4.79 Gbp of reads from the 3.0,
488	5.0, and 5.5 m samples, respectively (Table S1).

489 Metagenome assembly

490 MAG assembly was performed by combining short reads (SRs) from Illumina 491 sequencing and long reads (LRs) from Nanopore sequencing; this workflow is 492 described in Figure 1a. First, the LRs from 3.0, 5.0, and 5.5 m datasets were 493 individually assembled by metaFlye v2.8 [11] with default settings, and the 494 assemblies were polished with corresponding SRs using Pilon v1.23 [56]. On the

495	other hand, SRs were also assembled by MEGAHIT v1.2.9 with k-mer of 21, 31, 41,
496	and 51 [57]. The assemblies from SRs and LRs were then merged by quickmerge v0.3
497	with parameters -ml 7500 -c 3 -hco 8 [58]. The merge assemblies were then binned
498	using MaxBin2 [59], MetaBAT2 [60], and CONCOCT [61] in metaWRAP v1.3 [14].
499	The bins from the three bin sets were then refined by the bin refinement module in
500	metaWRAP v1.3. The resulting bins were then polished again by Pilon v1.23 five
501	times. To reassemble the bin, sorted reads that belonged to individual bin were
502	extracted by BWA-MEM v0.7.17 [62] for SRs and by minimap2 for LRs [63]. The
503	extracted long reads were assembled by Flye v2.8, or metaFlye v2.8 if the assembly
504	failed using Flye v2.8 [11, 64]. The bins were then reassembled individually using
505	Unicycler v0.4.8 using the extracted reads and reassembled long-read contigs which
506	were used as bridges [65]. To determine whether the original or reassembled bin was
507	better, the bin with higher value of genome completeness - 2.5 \times contamination,
508	estimated by checkM v1.1.3 [13], was chosen and retained. Contigs labeled as circular
509	by Flye or metaFlye, >2.0 Mb in size, and completeness >95% were considered
510	"complete" MAGs. The complete MAGs were visualized using CGView Server [66].
511	While we were preparing this manuscript, Damme et al. published a hybrid
512	assembler, called MUFFIN, that also integrates metaFlye and metaWRAP to recover
513	MAGs and Unicycler for reassembly [67]. However, our workflow has a step to

merge the assemblies from SRs and LRs to increase the contiguity and assembly size.
Moreover, for the reassembly, we use contigs from metaFlye, instead of default
setting: miniasm, as the bridge, which we found can produce a better quality
reassembly.

518 Annotation of metagenome-assembly genomes

519 The completeness, contamination, and other statistics on metagenome-assembled 520 genomes (MAGs) were evaluated using CheckM v1.1.3 [13]. The genome statistics 521 were processed in R [68] and visualized using the ggplot2 package [69]. The 522 taxonomy of MAGs was inferred by GTDB-Tk v1.3.0 [70]. Average Nucleotide 523 Identities (ANIs) between MAGs were determined by FastANI v1.32 [16]. MAGs 524 were annotated using Prokka v1.14.5 with 'rfam' options [71]. To annotate MAGs 525 with KEGG functional orthologs (K numbers), putative protein sequences predicted 526 by Prodigal v2.6.3 [72] were annotated using EnrichM v0.6.0 [73]. The K number 527 annotation results were then used to reconstruct the transporter systems and metabolic 528 pathways using KEGG mapper [74], and the completeness of KEGG modules was 529 evaluated using EnrichM. Secondary metabolite biosynthetic gene clusters in each 530 MAG were identified using antiSMASH v5.0 [75]. Ribosomal RNA sequences were 531 inferred by barrnap v0.9 [76].

532 Phylogenetic analysis

533	Bacterial and archaeal phylogenomic trees were inferred by a de novo workflow
534	in GTDB-Tk v1.3.0 [70]. All species-level non-redundant MAGs recovered in this
535	study were analyzed together with the reference genomes in Genome Taxonomy
536	Database (GTDB) [49]. In the <i>de novo</i> workflow, marker genes in each genome were
537	identified using HMMER 3.1b2 [77]. Multiple sequence alignments based on the
538	bacterial or archaeal marker sets were then generated and masked with default settings.
539	Trees of bacteria and archaea were then inferred from the masked multiple sequence
540	alignment using FastTree with the WAG+GAMMA models and 1,000 bootstraps [78].
541	The trees were visualized with the interactive Tree of Life (iTOL) v4 [79].
542	
543	
544	
545	Declarations
546	Ethics approval and consent to participate
547	Not applicable
548	
549	Consent for publication
550	Not applicable
551	

552 Availability of data and materials

553	All sequencing data and assembled genomes are available through National Center for
554	Biotechnology Information (NCBI) repositories under BioProject ID: PRJNA721826.
555	Sequence reads of metagenomes from samples at 3.0, 5.0, and 5.5 m deep can be
556	found under SRA accession numbers SRR14300307, SRR14300308, SRR14300309,
557	SRR14307495, SRR14307795, and SRR14307796. The accession numbers of MAGs
558	can be found in dataset S1 and S2.
559	
560	Conflict of Interest
561	The authors declare that they have no conflict of interest.
562	
563	Funding
564	The study was supported by the Ministry of Science and Technology in Taiwan
565	through the Taiwan-Russia Joint Project Grant NSC 102-2923-B-001-004-MY3 and
566	MOST 105-2923-B-001-001-MY3.
567	
568	Author's contributions
569	Y.H.C. and S.L.T. conceived the idea for this study. Y.H.C. assembled the genomes,
570	performed the bioinformatics analysis, and wrote the manuscript. P.W.C. and H.H.C.

571	prepare	ed the DNA samples. D.R. and A.D. collected water samples. S.L.T. supervised
572	the ove	erall study. All authors read and approved the manuscript.
573		
574	Ackno	wledgements
575	This st	tudy was supported by funding from the Ministry of Science and Technology,
576	Taiwar	n. Y.H.C. would like to acknowledge the Taiwan International Graduate
577	Progra	m (TIGP) for its fellowship towards his graduate studies. We would like to
578	thank l	Noah Last of Third Draft Editing for his English language editing.
579		
580	1.	Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF: Accurate and
581		complete genomes from metagenomes. Genome Res 2020, 30(3):315-333.
582	2.	Che Y, Xia Y, Liu L, Li AD, Yang Y, Zhang T: Mobile antibiotic resistome in
583		wastewater treatment plants revealed by Nanopore metagenomic
584		sequencing. Microbiome 2019, 7(1):44.
585	3.	Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC: New insights from
586		uncultivated genomes of the global human gut microbiome. Nature 2019,
587		568 (7753):505-510.
588	4.	Dong XY, Greening C, Rattray JE, Chakraborty A, Chuvochina M, Mayumi D,
589		Dolfing J, Li C, Brooks JM, Bernard BB et al: Metabolic potential of uncultured
590		bacteria and archaea associated with petroleum seepage in deep-sea
591		sediments. Nature Communications 2019, 10.
592	5.	Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC, Lee J,
593		Kandimalla M, Chen IA, Kyrpides NC, Reddy TBK: Genomes OnLine Database
594		(GOLD) v.8: overview and updates. Nucleic Acids Res 2021,
595		49 (D1):D723-D733.
596	6.	Ayling M, Clark MD, Leggett RM: New approaches for metagenome assembly
597		with short reads. Brief Bioinform 2020, 21 (2):584-594.
598	7.	Moss EL, Maghini DG, Bhatt AS: Complete, closed bacterial genomes from
599		microbiomes using nanopore sequencing. Nature Biotechnology 2020,

600		38 (6):701-+.
601	8.	Liu L, Wang YL, Che Y, Chen YQ, Xia Y, Luo RB, Cheng SH, Zheng CM, Zhang T:
602	0.	High-quality bacterial genomes of a partial-nitritation/anammox system by
603		an iterative hybrid assembly method. <i>Microbiome</i> 2020, 8 (1).
604	9.	Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS, Li C, Dvornicic M,
605	5.	Soldo JP, Koh JY, Tong C <i>et al</i> : Hybrid metagenomic assembly enables
606		high-resolution analysis of resistance determinants and mobile elements in
607		human microbiomes. Nat Biotechnol 2019, 37 (8):937-944.
608	10.	Latorre-Perez A, Villalba-Bermell P, Pascual J, Vilanova C: Assembly methods
609	10.	for nanopore-based metagenomic sequencing: a comparative study. Sci Rep
610		2020, 10 (1):13588.
611	11.	Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K,
612		Yuan J, Polevikov E, Smith TPL <i>et al</i> : metaFlye: scalable long-read
613		metagenome assembly using repeat graphs. Nat Methods 2020,
614		17 (11):1103-1110.
615	12.	Wu YT, Yang CY, Chiang PW, Tseng CH, Chiu HH, Saeed I, Baatar B, Rogozin D,
616		Halgamuge S, Degermendzhi A <i>et al</i> : Comprehensive Insights Into
617		Composition, Metabolic Potentials, and Interactions Among Archaeal,
618		Bacterial, and Viral Assemblages in Meromictic Lake Shunet in Siberia.
619		Frontiers in Microbiology 2018, 9 .
620	13.	Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW: CheckM:
621		assessing the quality of microbial genomes recovered from isolates, single
622		cells, and metagenomes. Genome Res 2015, 25(7):1043-1055.
623	14.	Uritskiy GV, DiRuggiero J, Taylor J: MetaWRAP-a flexible pipeline for
624		genome-resolved metagenomic data analysis. Microbiome 2018, 6(1):158.
625	15.	Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy
626		TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA <i>et al</i> : Minimum information
627		about a single amplified genome (MISAG) and a metagenome-assembled
628		genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017,
629		35 (8):725-731.
630	16.	Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S: High
631		throughput ANI analysis of 90K prokaryotic genomes reveals clear species
632		boundaries. Nat Commun 2018, 9 (1):5114.
633	17.	Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D,
634		Paez-Espino D, Chen IM, Huntemann M et al: A genomic catalog of Earth's
635		microbiomes. Nat Biotechnol 2020.
636	18.	Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN,
637		Hugenholtz P, Tyson GW: Recovery of nearly 8,000 metagenome-assembled

638		genomes substantially expands the tree of life. Nat Microbiol 2017,
639		2 (11):1533-1542.
640	19.	Obbels D, Verleyen E, Mano MJ, Namsaraev Z, Sweetlove M, Tytgat B,
641		Fernandez-Carazo R, De Wever A, D'hondt S, Ertz D et al: Bacterial and
642		eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sor
643		Rondane Mountains, Dronning Maud Land, East Antarctica. Fems Microbiol
644		Ecol 2016, 92 (6).
645	20.	Demain AL, Fang A: The natural functions of secondary metabolites. Adv
646		Biochem Eng Biotechnol 2000, 69 :1-39.
647	21.	Beedessee G, Hisata K, Roy MC, Van Dolah FM, Satoh N, Shoguchi E:
648		Diversified secondary metabolite biosynthesis gene repertoire revealed in
649		symbiotic dinoflagellates. Sci Rep-Uk 2019, 9 .
650	22.	Medema MH, Fischbach MA: Computational approaches to natural product
651		discovery. Nat Chem Biol 2015, 11(9):639-648.
652	23.	Chavali AK, Rhee SY: Bioinformatics tools for the identification of gene
653		clusters that biosynthesize specialized metabolites. Brief Bioinform 2018,
654		19(5):1022-1034.
655	24.	Gong G, Zhou SS, Luo RB, Gesang Z, Suolang S: Metagenomic insights into the
656		diversity of carbohydrate-degrading enzymes in the yak fecal microbial
657		community. Bmc Microbiol 2020, 20 (1).
658	25.	Sathya TA, Khan M: Diversity of Glycosyl Hydrolase Enzymes from
659		Metagenome and Their Application in Food Industry. J Food Sci 2014,
660		79 (11):R2149-R2156.
661	26.	Nakamura AM, Nascimento AS, Polikarpov I: Structural diversity of
662		carbohydrate esterases. Biotechnology Research and Innovation 2017,
663		1(1):35-51.
664	27.	Alagawany M, Elnesr SS, Farag MR: The role of exogenous enzymes in
665		promoting growth and improving nutrient digestibility in poultry. Iran J Vet
666		<i>Res</i> 2018, 19 (3):157-164.
667	28.	Espadaler J, Eswar N, Querol E, Aviles FX, Sali A, Marti-Renom MA, Oliva B:
668		Prediction of enzyme function by combining sequence similarity and protein
669		interactions. Bmc Bioinformatics 2008, 9.
670	29.	Addou S, Rentzsch R, Lee D, Orengo CA: Domain-Based and Family-Specific
671		Sequence Identity Thresholds Increase the Levels of Reliable Protein
672		Function Transfer. Journal of Molecular Biology 2009, 387(2):416-430.
673	30.	Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K,
674		Funk C, Verspoor K, Ben-Hur A <i>et al</i> : A large-scale evaluation of
675		computational protein function prediction. Nature Methods 2013,

676		10 (3):221-227.	
677	31.	Minh BQ, Nguyen MAT, von Haeseler A: Ultrafast Approximation for	
678		Phylogenetic Bootstrap. Mol Biol Evol 2013, 30 (5):1188-1195.	
679	32.	Borrel G, Parisot N, Harris HMB, Peyretaillade E, Gaci N, Tottey W, Bardot O,	
680		Raymann K, Gribaldo S, Peyret P et al: Comparative genomics highlights the	
681		unique biology of Methanomassiliicoccales, a Thermoplasmatales-related	
682		seventh order of methanogenic archaea that encodes pyrrolysine. Bmc	
683		Genomics 2014, 15 .	
684	33.	Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ: A	
685		proposed genus boundary for the prokaryotes based on genomic insights. J	
686		Bacteriol 2014, 196 (12):2210-2215.	
687	34.	Everett KDE, Bush RM, Andersen AA: Emended description of the order	
688		Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae	
689		fam. nov., each containing one monotypic genus, revised taxonomy of the	
690		family Chlamydiaceae, including a new genus and five new species, and	
691		standards for the identification of organisms. Int J Syst Bacteriol 1999,	
692		49 :415-440.	
693	35.	Lienard J, Croxatto A, Gervaix A, Levi Y, Loret JF, Posfay-Barbe KM, Greub G:	
694		Prevalence and diversity of Chlamydiales and other amoeba-resisting	
695		bacteria in domestic drinking water systems. New Microbes New Infect 2017,	
696		15 :107-116.	
697	36.	Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindstrom M, Korkeala H:	
698		Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of	
699		Enteropathogenic Yersinia. Front Microbiol 2016, 7:1151.	
700	37.	Feehily C, Karatzas KA: Role of glutamate metabolism in bacterial responses	
701		towards acid and other stresses. J Appl Microbiol 2013, 114 (1):11-24.	
702	38.	Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P,	
703		Moineau S, Mojica FJM, Wolf YI, Yakunin AF <i>et al</i> : Evolution and classification	
704		of the CRISPR-Cas systems. Nat Rev Microbiol 2011, 9(6):467-477.	
705	39.	Overmann J, Beatty JT, Hall KJ, Pfennig N, Northcote TG: Characterization of a	
706		Dense, Purple Sulfur Bacterial Layer in a Meromictic Salt Lake. Limnol	
707		Oceanogr 1991, 36 (5):846-859.	
708	40.	Caumette P, Guyoneaud R, Imhoff JF, Suling J, Gorlenko V: Thiocapsa marina	
709		sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from	
710		brackish coastal and marine environments. Int J Syst Evol Microbiol 2004,	
711	<i>.</i> -	54 (Pt 4):1031-1036.	
712	41.	Schott J, Griffin BM, Schink B: Anaerobic phototrophic nitrite oxidation by	
713		Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17.	

714 Microbiology (Reading) 2010, 156(Pt 8):2428-2437. 715 42. Rubin-Blum M, Dubilier N, Kleiner M: Genetic Evidence for Two Carbon 716 Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse 717 Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria. mSphere 718 2019. 4(1). 719 Walsby AE: Gas vesicles. Microbiol Rev 1994, 58(1):94-144. 43. 720 Bilous PT, Weiner JH: Dimethyl sulfoxide reductase activity by anaerobically 44. 721 grown Escherichia coli HB101. J Bacteriol 1985, 162(3):1151-1155. 722 Veres PR, Neuman JA, Bertram TH, Assaf E, Wolfe GM, Williamson CJ, 45. 723 Weinzierl B, Tilmes S, Thompson CR, Thames AB et al: Global airborne 724 sampling reveals a previously unobserved dimethyl sulfide oxidation 725 mechanism in the marine atmosphere. P Natl Acad Sci USA 2020, 726 **117**(9):4505-4510. 727 Andreae MO, Raemdonck H: Dimethyl Sulfide in the Surface Ocean and the 46. 728 Marine Atmosphere - a Global View. Science 1983, 221(4612):744-747. 729 Yoch DC: Dimethylsulfoniopropionate: Its sources, role in the marine food 47. 730 web, and biological degradation to dimethylsulfide. Appl Environ Microb 731 2002, 68(12):5804-5815. 732 Steinke M, Hodapp B, Subhan R, Bell TG, Martin-Creuzburg D: Flux of the 48. 733 biogenic volatiles isoprene and dimethyl sulfide from an oligotrophic lake. 734 Sci Rep-Uk 2018, 8. 735 Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, 49. 736 Hugenholtz P: A standardized bacterial taxonomy based on genome 737 phylogeny substantially revises the tree of life. Nat Biotechnol 2018, 738 36(10):996-1004. 739 50. Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R: Evolution in 740 action: habitat transition from sediment to the pelagial leads to genome 741 streamlining in Methylophilaceae. Isme Journal 2019, 13(11):2764-2777. 742 51. Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R: Evolution in 743 action: habitat transition from sediment to the pelagial leads to genome 744 streamlining in Methylophilaceae. ISME J 2019, 13(11):2764-2777. 745 52. Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L: 746 Methylotenera mobilis gen. nov., sp nov., an obligately 747 methylamine-utilizing bacterium within the family Methylophilaceae. Int J 748 Syst Evol Micr 2006, 56:2819-2823. 749 Wilson K: Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 53. 750 2001, Chapter 2: Unit 2 4. 751 54. Menzel P, Ng KL, Krogh A: Fast and sensitive taxonomic classification for

752 metagenomics with Kaiju. Nat Commun 2016, 7:11257. 753 55. Wood DE, Lu J, Langmead B: Improved metagenomic analysis with Kraken 2. 754 Genome Biol 2019, **20**(1):257. 755 56. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, 756 Zeng Q, Wortman J, Young SK et al: Pilon: an integrated tool for 757 comprehensive microbial variant detection and genome assembly 758 improvement. PLoS One 2014, 9(11):e112963. 759 57. Li D, Liu CM, Luo R, Sadakane K, Lam TW: MEGAHIT: an ultra-fast single-node 760 solution for large and complex metagenomics assembly via succinct de 761 Bruijn graph. Bioinformatics 2015, 31(10):1674-1676. 762 58. Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ: Contiguous and 763 accurate de novo assembly of metazoan genomes with modest long read 764 coverage. Nucleic Acids Res 2016, 44(19):e147. 765 59. Wu YW, Simmons BA, Singer SW: MaxBin 2.0: an automated binning 766 algorithm to recover genomes from multiple metagenomic datasets. 767 Bioinformatics 2016, 32(4):605-607. 768 Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z: MetaBAT 2: an 60. 769 adaptive binning algorithm for robust and efficient genome reconstruction 770 from metagenome assemblies. PeerJ 2019, 7:e7359. 771 Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, 61. 772 Loman NJ, Andersson AF, Quince C: Binning metagenomic contigs by 773 coverage and composition. Nat Methods 2014, 11(11):1144-1146. 774 62. Li H, Durbin R: Fast and accurate short read alignment with 775 Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760. 776 63. Li H: Minimap2: pairwise alignment for nucleotide sequences. 777 Bioinformatics 2018, 34(18):3094-3100. 778 64. Kolmogorov M, Yuan J, Lin Y, Pevzner PA: Assembly of long, error-prone reads 779 using repeat graphs. Nature Biotechnology 2019, 37(5):540-+. 780 65. Wick RR, Judd LM, Gorrie CL, Holt KE: Unicycler: Resolving bacterial genome 781 assemblies from short and long sequencing reads. PLoS Comput Biol 2017, 782 13(6):e1005595. 783 Grant JR, Stothard P: The CGView Server: a comparative genomics tool for 66. 784 circular genomes. Nucleic Acids Research 2008, 36:W181-W184. 785 Van Damme R, Holzer M, Viehweger A, Muller B, Bongcam-Rudloff E, Brandt C: 67. 786 Metagenomics workflow for hybrid assembly, differential coverage binning, 787 metatranscriptomics and pathway analysis (MUFFIN). Plos Computational 788 Biology 2021, 17(2). 789 68. Team RDC: R: A Language and Environment for Statistical Computing. In.: R

790 Foundation for Statistical Computing; 2020. 791 69. Villanueva RAM, Chen ZJ: ggplot2: Elegant Graphics for Data Analysis, 2nd 792 edition. Meas-Interdiscip Res 2019, 17(3):160-167. 793 70. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH: GTDB-Tk: a toolkit to 794 classify genomes with the Genome Taxonomy Database. Bioinformatics 795 2019. 796 71. Seemann T: Prokka: rapid prokaryotic genome annotation. Bioinformatics 797 2014, **30**(14):2068-2069. 798 Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: 72. 799 prokaryotic gene recognition and translation initiation site identification. 800 BMC Bioinformatics 2010, **11**:119. 801 73. Joel A Boyd, Ben J Woodcroft, Tyson. GW: Comparative genomics using 802 EnrichM. In preparation 2019. 803 74. Kanehisa M, Sato Y: KEGG Mapper for inferring cellular functions from 804 protein sequences. Protein Sci 2020, 29(1):28-35. 805 75. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T: 806 antiSMASH 5.0: updates to the secondary metabolite genome mining 807 pipeline. Nucleic Acids Res 2019, 47(W1):W81-W87. 808 76. Seemann T: barrnap 0.9: rapid ribosomal RNA prediction. Google Scholar 809 2013. 810 77. Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol 2011, 811 7(10):e1002195. 812 78. Price MN, Dehal PS, Arkin AP: FastTree 2--approximately 813 maximum-likelihood trees for large alignments. PLoS One 2010, 5(3):e9490. 814 79. Letunic I, Bork P: Interactive Tree Of Life (iTOL) v4: recent updates and new 815 developments. Nucleic Acids Res 2019, 47(W1):W256-W259. 816 **Figure legends** 817 Figure 1. Recovery of genomes from Lake Shunet using long- and short-read 818 sequencing. a. The workflow for assembling metagenome-assembled genomes 819 (MAGs). b. The value of log (N50) at 3.0, 5.0, and 5.5 m deep using SRs only, 820 combining SRs an LRs (Hybrid), and reassembly of bins using the hybrid method. c. 821 The correlation between SR coverage and log (N50) in the final Shunet MAG

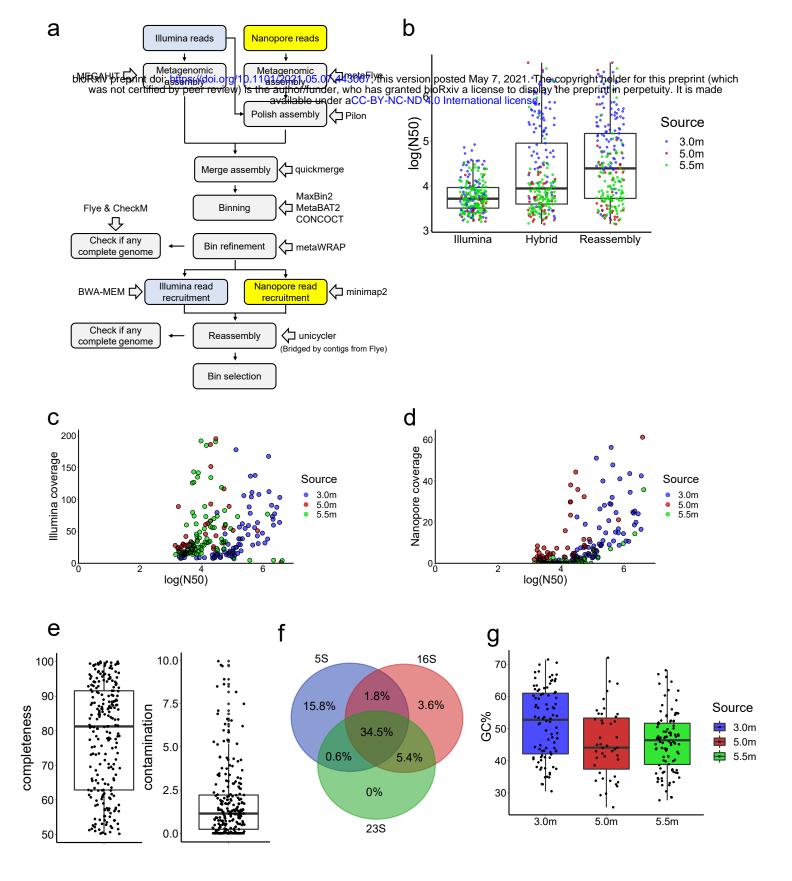
822	collection (Reassembly). d. The correlation between LR coverage and log (N50) in
823	the final Shunet MAG collection (Reassembly). e. The completeness and
824	contamination of recovered MAGs. f. Venn diagram from the ratio of MAGs,
825	containing 5S, 16S, and 23S rRNA gene sequences. g. The GC ratio of MAGs
826	recovered from the 3.0, 5.0, and 5.5 m deep datasets.

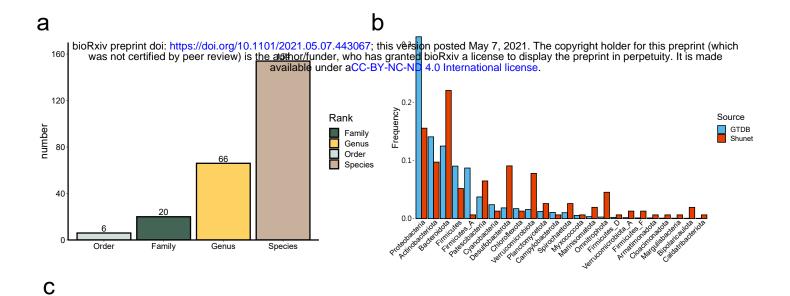
827

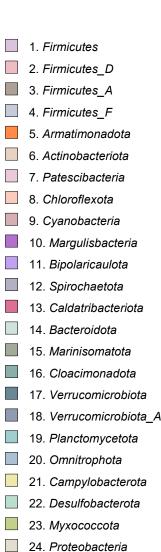
828 Figure 2. Taxonomical and molecular phylogenetic analyses of recovered 829 bacterial MAGs. a. The numbers of novel taxonomic ranks of MAGs assigned by 830 GTDB-Tk. **b.** The phylum frequencies in the MAG collection from the Shunet dataset 831 and GTDB representative genomes. c. A phylogenetic tree based on the concatenation 832 of 120 single-copy gene protein sequences. After masking, 5,040 amino acid sites 833 were used in the analysis. The phylogenetic tree includes 188 recovered bacterial 834 MAGs and 30,238 bacterial representative genomes in GTDB-r95. The blue points 835 represent the placement of MAGs that are classified as novel species, the green points 836 represent novel genera, the red points represent novel families, and the black points 837 represent novel orders. Scale bar represents changes per amino acid site.

838

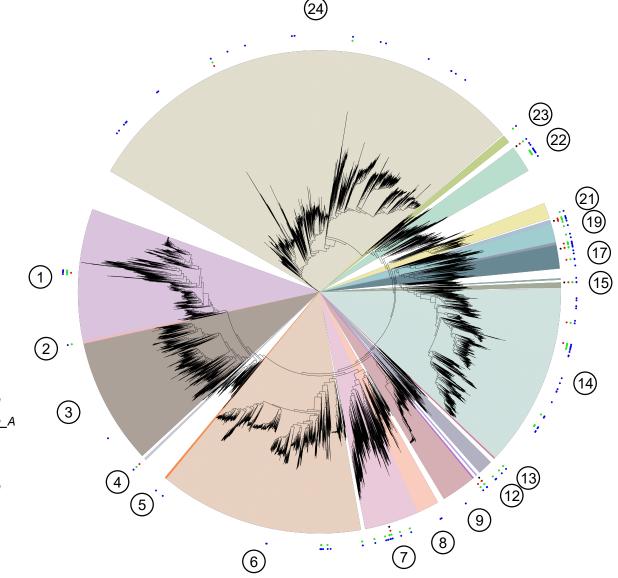
839 Figure 3. Molecular phylogenetic analysis of recovered archaeal MAGs. The 840 phylogenetic tree was reconstructed based on the concatenation of 122 single-copy

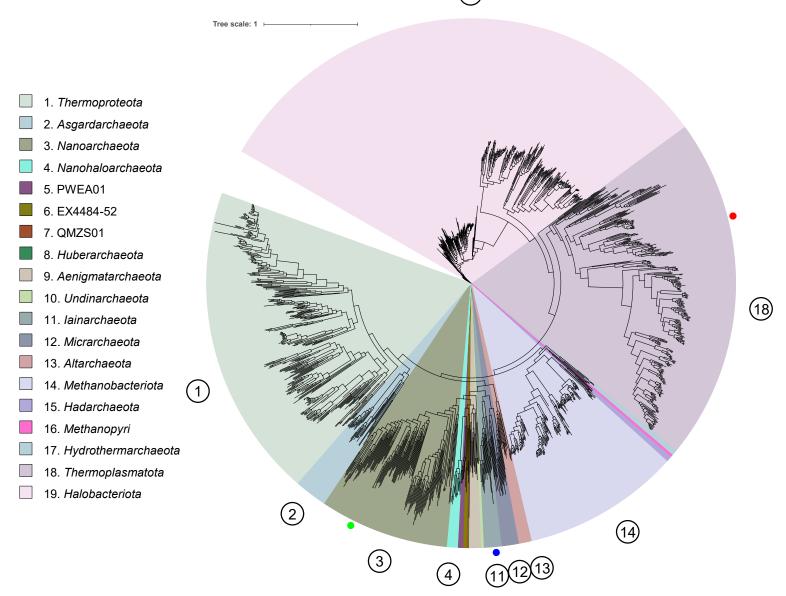

841	gene protein sequences. After masking, 5,124 amino acid sites were used in the
842	analysis. The phylogenetic tree including three MAGs from Lake Shunet and 1,672
843	archaeal representative genomes in GTDB-r95. The blue dot represents the placement
844	of MAG M55A2, the red dot represents MAG M55A1, and the green dot represents
845	MAG M55A3. Scale bar represents changes per amino acid site.
846	
847	Figure 4. Representation of the six complete MAGs.
848	The rings from the inside to outside represent GC content (black), GC skew- (purple),
849	GC skew + (green), coding sequence regions (blue), rRNA gene sequences (black),
850	transfer-messenger RNA (red), and secondary metabolite gene clusters (light blue).
851	MAG ID M30B6 is classified as Alcanivorax sp002354605, M30B1 and M30B2 are
852	Simkaniaceae sp., M30B3 is Cyanobium sp., M30B5 is "Methylofavorus khakassia".,
853	and M50B4 is "Thiocapsa halobium".

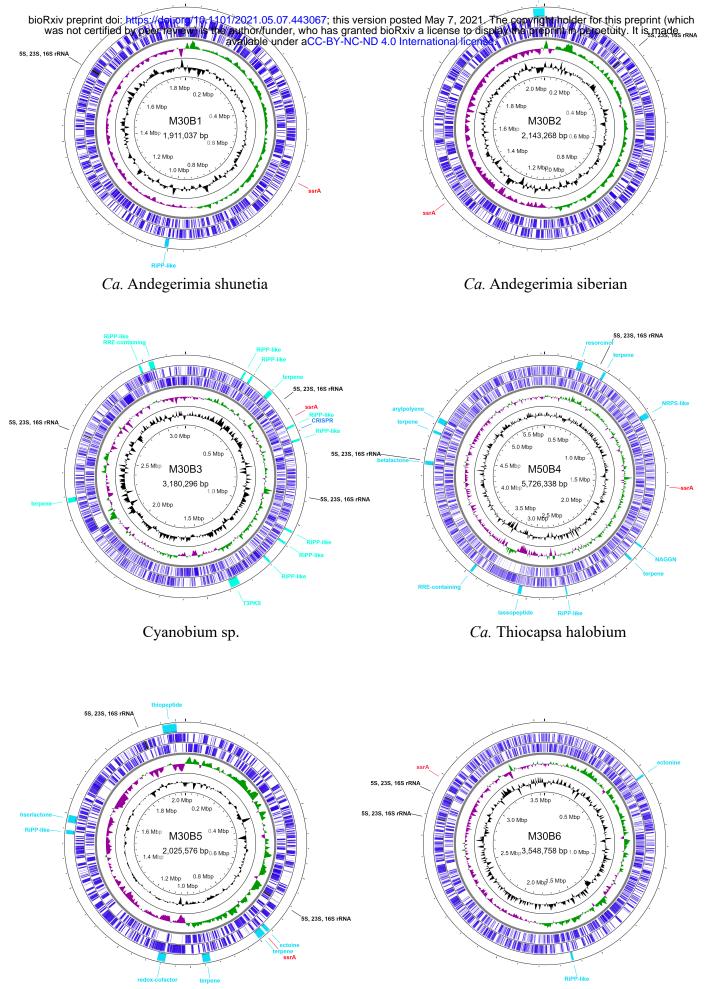

854 Table 1. KEGG orthologues that are present in the novel MAGs but absent in


855 their sister taxa

856


	KO number	Definition
Simkaniaceae		
	K00954	Pantetheine-phosphate adenylyltransferase
	K01580	glutamate decarboxylase
	K15736	L-2-hydroxyglutarate
	K01607	carboxymuconolactone decarboxylase
	K03704	cold shock protein
Thiocapsa		
	K07306	anaerobic DMSO reductase subunit A
	K07307	anaerobic DMSO reductase subunit B
	K01575	acetolactate decarboxylase
	K13730	internalin A
	K05793	tellurite resistance protein TerB
	K05794	tellurite resistance protein TerC
	K05791	tellurium resistance protein TerZ
Cyanobium		
	K07012	CRISPR-associated endonuclease/helicase
	K07475	Cas3
	K15342	CRISP-associated protein Cas1
	K19046	CRISPR system Cascade subunit CasB
	K19123	CRISPR system Cascade subunit CasA
	K19124	CRISPR system Cascade subunit CasC
	K19125	CRISPR system Cascade subunit CasD
	K19126	CRISPR system Cascade subunit CasE





Tree scale: 1 ⊢

Ca. Methylofavorus khakassia

Alcanivorax sp002354605