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Abstract  
Phosphorylation based signalling is a complicated and intertwined series of pathways critical to all 
domains of life. This interconnectivity, though essential to life, makes understanding and decoding the 
interactions difficult. Large datasets of phosphorylation interactions through the activity of kinases on 
their numerous effectors are now being generated, however interpretation of the network 
environment remains challenging. In humans, many phosphorylation interactions have been 
identified across published works to form the known phosphorylation interaction network. We 
overlayed phosphorylation datasets onto this network which provided information to each of the 
connections. To analyse the datasets now mapped into a network, we designed a pathway analysis 
that uses random walks to identify chains of phosphorylation events occurring much more or much 
less frequently than expected. This analysis highlights pathways of phosphorylation that work 
synergistically, providing a rapid interpretation of the most critical pathways in a given dataset. Here 
we used datasets of human red blood cells infected with the notable stages of Plasmodium falciparum 
asexual development. The analysis identified several known signalling interactions, and additional 
interactions which could form the basis of numerous future studies. The network analysis designed 
here is widely applicable to any comparative phosphorylation dataset across infection and disease and 
can provide a rapid and reliable analysis to guide validation studies.  
 
Introduction 
Protein phosphorylation is one of several post-translational modifications which alter the functionality 
of affected proteins. Protein phosphorylation is achieved by a diverse family of enzymes known as 
kinases, which transfer the gamma phosphate of adenosine triphosphate (ATP) onto hydroxyl groups 
of amino acids (protein kinases) 1. In humans, protein kinases make up approximately 2% of encoded 
genes, yet over 50% of all proteins are phosphorylated across >200,000 known phosphorylation sites 
2,3. However, the inclusion of putative phosphorylation would put the number of potential 
phosphorylation sites in the human proteome closer to a million (see www.phosphonet.ca). 
Therefore, it is not surprising that kinases play essential roles in a plethora of intra- and extracellular 
processes 4-6. The dynamic activation of kinases, along with the activity of protein phosphatases 
(enzymes which remove the phosphate groups from proteins) enable the fine control of numerous 
cellular functions ranging from regulating metabolism, transcription and translation, protein transport 
and cell growth, division and differentiation 3,7. The capacity of protein kinases to be the substrate of 
other protein kinases underlies a complex interconnected web of signal transduction.  

In a recent study, Olow et al. mapped a large number of these phosphorylation interactions in human 
cells, cataloguing 1733 functionally interconnected proteins into a network denoted as PhosphoAtlas 
8. This groundwork enabled large phosphorylation datasets to be mapped into sophisticated networks, 
and has allowed for the exploration of how each phosphorylation on a given protein can impact its 
immediate neighbours in the network. Additionally, datasets that report on phosphorylation changes 
under various conditions (e.g. infection of a cell by a pathogen or treatment with a drug) can be 
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analysed holistically to provide a more detailed understanding of how particular intracellular 
conditions impact on the phosphorylation-based signalling environment. 

Large amounts of signalling information can be obtained through antibody microarrays, which report 
on phosphorylation changes across a large number of proteins. Antibody microarrays are highly 
sensitive quantitative tools capable of analysing a sample without complicated or expensive 
enrichment protocols, which is one of the drawbacks of mass spectrometry-based techniques 
(Reviewed in 9). This positions the antibody microarray as an ideal system to assess the signalling 
environment inside human cells in disease and infection settings. We have applied microarrays in our 
efforts to understand how intracellular pathogens alter their host cells during development and 
identified a number of key host proteins essential to the proliferation of various pathogens 10-12. 
However, the datasets obtained from antibody microarray experiments are quite complex and 
ultimately difficult to interpret holistically.  

Currently, typical analysis consists of identifying the key phosphorylation/protein changes manually, 
and the focus of any follow-up analysis is often based on the phosphorylation events that cause the 
largest changes observed on the array. This often leads to less obvious changes being disregarded, 
despite the potential that some of these changes may play important signalling roles. To address this 
fundamental problem, we have developed a high-performance computational model that ‘traverses’ 
through a provided phospho-signalling network. This algorithm uses a random walks-based function, 
which is influenced by the magnitude of the phosphorylation differences observed in the biological 
dataset. The network analysis strategy designed here was formulated using PhosphoAtlas 8 as a 
framework, which was adapted to includes the effect of the phosphorylation interactions and curated 
to include connections provided by the microarray developer (Kinexus). To develop a random walks-
based function, we used the published datasets on the blood-stage develop of the human malaria 
parasite, Plasmodium falciparum 10. This consisted of; a control dataset (uninfected red blood cells) 
and three parasite-infected datasets which coincide with the major distinguishable stages of parasite 
development (see published work for more detail 10).  

The benefits of this network-based analysis approach were threefold; (i) it enabled the identification 
of pathways of signalling which went unnoticed in traditional analysis strategies, shedding light on 
some of the more elusive signalling dynamics; (ii) provides a greatly accelerated starting point for 
future analysis of similar signalling datasets; (iii) enabled the identification of pivotal kinases in the 
network that functioned as major nodes of downstream signalling events. This approach provided 
numerous new hypotheses on the host signalling dynamics during blood-stage development of the 
malaria parasite and is applicable to any phosphorylation-based dataset. 

Results and discussion 
The datasets used to design this network-based analysis strategy were sourced from Adderley et al. 
2020 10. This publication provided unique datasets that represent host erythrocyte signalling in the 
context of three stages of P. falciparum asexual development, namely ring-stage parasites (n=3), 
representing the early stages of development, trophozoite-stage parasites (n=3), representing the 
most metabolically active form, and schizont stage parasites (n=2), when the parasites daughter cells 
are assembled. This asexual development cycle is completed in 48 hours for P. falciparum (Figure 1). 
Each dataset reports the fold change from an uninfected red blood cell control which was used as the 
baseline in this comparison. Details about the datasets and further background information are 
available in the source article 10;  see 13  for succinct review of the P. falciparum lifecycle. The analysis 
pipeline from sample generation through to the network analysis output is represented as a flow chart 
in Figure 1. 
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Figure 1. Overview of data generation, processing, modelling and output using antibody microarrays and a 
network analysis strategy. 1) Sample generation, samples used for the development of the network analysis 
approach used here were of human red blood cells following infection with Plasmodium falciparum. 2) 
Application of the samples onto the antibody microarrays. 3) Selection of reliable antibodies based on the signal 
intensity observed, the error observed between the replicates and removal of signals identified as cross reactive 
to parasite material (See methods for more detail). 4) The reliable signals are split into positive (green) and 
negative (red) networks and mapped to the known global phosphorylation interactions. 5) Network analysis is 
performed in Python using a random walk-based function designed in this study, which compares walk results 
to a control run of the algorithm. The edges which are more frequently used by the function using the microarray 
data are selected (green positive network, red negative network). 6) Data is output as an edge list in as comma-
separated values (.csv) which can be visualised in programs such as Cystoscope 14. Here we have represented 
the more frequent edges for the positive network (green) and the negative network (red) Figure adapted from 
15 and modified using BioRender.com. 
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The datasets were generated using the KAM-900 series antibody microarray produced by the kinomics 
company Kinexus, which contains 613 phosphorylation-specific antibodies. Additionally, a further 265 
antibodies recognising both the phosphorylated and unphosphorylated forms of a target protein (pan-
specific) are present, which provided information of abundance changes between the compared 
samples. As detailed in 10, a number of these signals were deemed unsuitable for analysis and were 
therefore removed from the present analysis as well (Figure 1.3). These signals fell into at least one of 
the following three categories; (i) low signal intensity, (ii) relatively high error (compared to the change 
observed from uninfected control) and (iii) cross-reactivity to parasite proteins. This reduced the 
overall number of phosphorylation-specific antibody signals of each dataset to; 69 (ring), 184 
(trophozoite) and 135 (schizont) (see methods section for detailed description of these categories). To 
account for degradation or expression of signalling proteins, each of the phosphorylation-specific 
signals on the array was normalised by a relevant pan-specific signal if available. Protein expression 
does not occur in human red blood cells as the cellular machinery required is no longer available, 
though protein degradation is likely, given the parasite digests haemoglobin as a source of amino acids 
13. 

Network construction and mapping to biological datasets 
Phosphorylation signalling is a highly interconnected network that contains numerous feedback loops 
which enables finely tuned responses to external/internal stimuli. Most of the globally identified 
phosphorylation’s have unknown functions. Additionally, the kinase responsible for many of these 
phosphorylation events often remain elusive. These factors prove challenging in the understanding of 
how various phosphorylation events come together into a greater network. Despite this, in a study by 
Olow et al. 8 a network containing 1733 proteins interconnected through phosphorylation interactions 
was pieced together. Using this study as a framework, we made further annotations to this network 
map to include; the target proteins response following phosphorylation at a specific site 
(activation/inhibition) and to further annotate phosphorylation’s reported on the microarray which 
were missing from the network map (See methods section for further detail). The subsequent 
phosphorylation network is made up of kinases/substrates which are represented as nodes, while the 
specific phosphorylation events are represented as the network’s edges (arrows). The networks edges 
are directed and point towards the phosphorylated substrate, an arrowhead indicates an activation 
effect and a square indicating that phosphorylation causes inhibition of the substrate’s activity (Figure 
2a).  
 
With the optimised phosphorylation network described above the next challenge was to overlay the 
reliable data from each of the malaria datasets. However, a number of antibody signals from the 
microarray reported on dual or triple phosphorylation sites for a given substrate. This is quite common 
among antibodies that target phosphorylation sites on proteins, as many phosphorylation sites are 
often in close proximity. In addition, these phosphorylation’s often share common roles for the 
substrate 16. The network used here was structured so that each individual phosphorylation site was 
associated with its own unique edge. Therefore, the dual and triple phosphorylation signals were split, 
and the associated signals reassigned to the now separated sites. Additionally, in the cases where 
more than one antibody on the microarray recognises the same phosphorylation site; the signals were 
averaged. The three datasets were then overlayed on the framework to generate unique networks for 
the ring, trophozoite and schizont time points. Each of the networks underwent an edge reduction 
step, reducing the number of parallel edges between the nodes, thereby simplifying the overall 
networks and enabling a straightforward integration in Python (Networkx package). We further 
separated each unique network into a positive and a negative network, to allow the independent 
assessment of the phosphorylation events that either increased (positive networks) or decreased 
(negative networks) during infection (depicted in Figure 1.4, also see methods section for more detail). 
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The complete positive trophozoite-stage network was exported as an edge list and rendered into a 
network map using Cystoscope v3.8.2 to provide a visual representation of these networks. This 
illustrated the level of the interconnectivity, while also illustrating the highly interconnected nature of 
the datasets (Figure 2b & c).  

As the phosphorylation-specific antibody signals report on substrate phosphorylation without 
indicating the causative kinase, we have assigned the biological data to each possible causative kinase 
available in the network (see methods section for more detail). To ascertain which of the possible 
kinase candidates was responsible for a given phosphorylation event at a given site, we devised a 
trails-based random walk function to analyse these networks. 

 
 

 

 
Figure 2. Example of the phosphorylation network structure and an overlay of trophozoite specific antibody 
microarray data analysed. a) Structure of the network utilised through this study. Kinases and substrates are 
represented as nodes (dark nodes = substrates, light nodes = kinases). Phosphorylation's events are represented 
as edges, designated with the specific phosphorylation site. The effect of the edge is represented in the 
arrowhead (arrow = activation, square = inhibition). b) The human phospho-signalling network used here 
containing 1156 proteins (nodes, dark = substrate, light = kinases) and 6224 phosphorylation connections (edges, 
grey = not in trophozoite dataset, red = in trophozoite dataset. c) Subnetwork of the connections in the human 
phosphorylation network which were assigned antibody microarray data from the trophozoite dataset. This 
subnetwork containing 167 proteins (nodes) and 237 phosphorylation connections (edges). These nodes and 
edges were identified as having reliable phosphorylation changes during the trophozoite stage of P. falciparum 
blood stage development following signal filtering. 
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Analysis strategy  
To analyse the flow of phosphorylation through each of the network datasets (ring, trophozoite, 
schizont) a random walk-based function was designed, which avoided repetition of self-loops in the 
network (caused by edges which connect to the incident node) and cycling through the same edges in 
highly interconnected regions. We achieved this by treating each edge as distinct; however, nodes 
could be repeated to allow differential pathway development through unique edges. This was critical 
as functions without distinct edge usage resulted in over reporting of self-loops (data not shown). Each 
dataset was assessed for walks that increased in phosphorylation during infection (positive network) 
and those that decreased (negative network) (Figure 1.4). The positive network analysis weighted 
edge selection towards larger positive phosphorylation changes and consider all negative 
phosphorylation changes as unusable edges. The inverse of this was performed for the negative 
network analysis. The goal of this analysis was to identify pathways of consistent signalling across the 
microarray dataset. The separation of the positive and negative networks accomplished this by 
enabling distinct and consistent pathways of signalling to emerge. With these considerations in mind 
a random trails-based function was devised. 
 
Random Walks function - The function begins through the selection of a random node in the network. 
The function then identifies all possible outbound edges (phosphorylation’s) and selects one by 
weighting its decision on the magnitude of the associated biological signals (represented as fold 
change). This enabled preference to the largest signals in the dataset. Once selected the function 
moves down the edge to the next node and repeats this process until terminated, at which point a 
new walk is started. A walk is terminated under three circumstances; (i) there are no available edges 
which have not previously been used in the current walk, (ii) the last edge used is an inhibitory 
phosphorylation event (depicted in Figure 2a) or (iii) the edge fails the termination check. The 
termination check provides a 0 - 20% chance that a walk is terminated and is based on the strength of 
the biological signal (This was set at a flat 20% chance for the control networks, see below for more 
detail). The strongest signals in the data have a lower likelihood to result in termination with increasing 
likelihood for signals which were weaker. This was implemented to distinguish edge choices where 
only a single edge was ultimately available at any given edge selection stage. Without this parameter 
the fold change value assigned to an edge in this circumstance was irrelevant due to the lack of 
completing choices (for more detail see methods section). The function repeats random walks until it 
reaches the desired iterations (this was set at one million in this study). notably, the output with the 
given parameters resulted in a significant number of walks with a length <3 (data not shown). This was 
not surprising as the node selection was random, and therefore will select nodes with no outbound 
edges (non-kinases). The optimal output for this analysis was to distinguish pathways of 
phosphorylation interactions and to not just highlight fragmented singular phosphorylation events. To 
this end, a minimum walk length of 3 edges was introduced, thereby disregarding walks that 
terminated shorter than this. Once the desired number of walks were completed the walks of length 
>2 were split into their individual edges and tallied. These values were denoted as the total edge 
usage.   
 
Analysis of the total edge usage values indicated that there was a wide variation of edge usage that 
occurred for every dataset analysed. Upon further analysis it was clear that certain edges were 
overwhelmingly more traverse regardless of the underlying fold change data (data not shown). This 
was a consequence of the network interconnectivity and accessibility for a small number of kinases, 
which was due to their numerous inbound/outbound edges. To address this, control networks were 
included as a base for comparison of the effect that the fold change data caused (Figure 1.5). The 
control networks were identical to the respective Positive or Negative networks; however, the edges 
were not assigned fold change data. Therefore, when analysed by the random walks function, these 
control networks had no inherent biological preference for any particular edge. They did however 
provide a baseline usage of each edge in the respective networks and therefore provided a means to 
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account for the different interconnectivity of the nodes. The total edge usage for each of the edges in 
the positive network, negative network and their respective control networks were compared to 
determine the percentage change from control (% CFC). We remove edges which were less frequently 
used in the random walks with the microarray data (edges <0 % CFC) as these edges were being 
selected against in the random walk’s analysis (Figure 1.6). This threshold was further extended to 
remove edges which had <5% CFC due to their marginal change, enabling the output to focus on the 
predominantly selected pathways. To integrate the results in a single network via an edge list, the 
negative walk %CFC values were inversed, and the output converted to a csv file. The resultant 
pathways were then rendering using Cystoscope v3.8.2 green edges (phosphorylation’s) represent the 
more frequently used edges in the positive network analysis, while red edges represent those more 
frequent in the negative network analysis (Figures 3-5).   
 
Network analysis results 
The pathways yielded by this analysis for each of the developmental stages are presented in Figures 3 
- 5.  In each case, the analysis yielded pathways whose components have previously been implicated 
in infection with Plasmodium, providing a positive control and validation with respect to the ability of 
the approach to detect kinases that are modulated by infection. The analysis also revealed additional 
pathways, providing a well-grounded rationale for further experimental work and potential novel 
targets. Detailed below are the key findings from each of the developmental stage analysed. 

Ring stage network – The ring stage, which takes approximately 24 hours to complete 17, begins as a 
merozoite invades a red blood cell and establishes the infection. The antibody microarray dataset used 
in this analysis covered a time window of 8 – 16 hours after invasion and compared a population of 
33% infected erythrocytes to an uninfected control, because it is not feasible to purify infected cells 
from uninfected cells at this early stage of infection, in contrast to the trophozoite and schizont stages, 
for which we can obtain preparation of >95% infected cells (see below). Despite this limitation, a 
number of changes in ring-infected versus uninfected erythrocyte signalling components were 
identified. The output of the ring stage network analysis contained 20 nodes (proteins/kinases) and 
21 edges (phosphorylation’s) (Figure 3). The most notably host signalling elements of the positive 
network were the kinases Src, FAK1/2 and the receptor RET (connected by green edges). In the 
negative network are the kinases Lck, Lyn, Syk and PKCα/δ/µ/ε and the protein PEA15 (connected by 
red edges), discussed below. 
 
Syk/Lyn – Phosphorylation of the membrane protein Band 3 by the Syk tyrosine kinase is essential to 
destabilise the erythrocyte membrane during parasite egress, and Syk inhibitors have been shown to 
block this process 18. Our network analysis detected a decrease in Syk phosphorylation of the 
activation associated residue Y323 during ring stage infection. The decrease in Syk phosphorylation in 
the early stages of infection is consistent with the parasite preventing the premature lysis of the RBC. 
This block may simply be released at the end of schizont stage development to allow parasite egress; 
this would explain why there is no detected increase (relative to uninfected red blood cells) in 
schizonts. The network analysis indicates that the kinases Lck or Lyn may be implicated in the 
reduction of Syk phosphorylation in rings. Both Lck and Lyn are non-receptor tyrosine kinases that 
belong to the Src family, with wide functionality from proliferation through to apoptosis and metabolic 
signalling 19. Lck is primarily expressed in T-cells and the brain 20, while Lyn has been identified to have 
roles across several cells types of hematopoietic origin 21. Consequently, as the datasets analysed in 
this study were conducted on red blood cells, it is more likely that Lyn is responsible for Syk 
phosphorylation observed; however, this may reveal a novel function for Lck in the erythroid lineage 
. Lyn was previously suggested to be involved in Band 3 phosphorylation in uninfected erythrocytes, 
implicating a possible role in P. falciparum infection that warrants further exploration 22,23. 
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Protein kinase C (PKC) – The human PKC family comprises 10 isoforms of serine/threonine kinases 
that function in the phosphoinositide pathway to regulate a range of cellular processes. A decrease in 
overall host PKC activity during P. falciparum infection of red blood cells was first reported more than 
20 years ago 24. These findings are consistent with the decrease in PKCα, PKCδ, PKCµ and PKCε 
phosphorylation detected by our analysis. PKCδ phosphorylation was also decreased in the 
trophozoite analysis as well (see Figure 4).  The biological function of this decrease is not understood. 

Focal adhesion kinases (FAK1/2) – FAKs are non-receptor tyrosine kinases which serve to promote 
signalling through recruitment to activated cell surface receptors, notably of the integrin family 25.  
Our analysis indicated that FAK1/2 are phosphorylated on the activating residues Y397/Y402 during 
infection. Further, the activation of FAK1 was notable across all time points examined during parasite 
development, suggesting it may have a continuous role in the infected host cell. These activating 
phosphorylation event can be mediated by a number of kinases, including the aforementioned Src 
tyrosine kinase 26.  No implication of FAKs or RET in infection has been reported, but our data suggest 
it may be of interest to explore this further (Figure 3 and 4). Indeed, FAKs can be activated by 
membrane deformation, therefore, it is tempting to speculate that the ontogeny of knobs (made of 
proteins exported by P. falciparum to the red blood cell membrane to provide cytoadherence, see 27) 
in the plasma membrane of infected red blood cells may trigger FAK signalling.  
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Figure 3. Subnetwork of the analysis performed on P. falciparum ring stage microarray dataset. The network contains 20 nodes with 21 connecting edges. Kinases and 
substrates are represented as nodes (dark nodes = substrates, light nodes = kinases) and phosphorylation events are represented as edges, which are designated with the 
specific phosphorylation site. Edges are represented in a colour gradient from grey to green (positive edges) and grey to red (negative edges) and a size gradient which 
corresponds to the percentage change from the control network trails (%CFC). The effect of the edge is represented in the arrowhead (arrow = activation, square = inhibition). 
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Trophozoite stage network –Trophozoite are the most metabolically active stage of development and 
are notable for extensive host cell modification and increased haemoglobin digestion 28. The antibody 
microarray dataset used in this analysis covered a window of 24 – 28 hours post invasion and 
compared a population of >95% infected cells to an uninfected counterpart 10. This was possible 
through the parasite’s digestion of host red blood cell haemoglobin to produce a paramagnetic 
structure known as hemozoin, enabling enrichment of infected cells 29. The higher level of activity of 
the parasite at its trophozoite stage combined with the greater level of enrichment achieved in the 
microarray study resulted in a greater number of signals being included in this analysis. The output of 
the trophozoite stage analysis contained a subnetwork of 53 nodes (proteins/kinases) and 66 edges 
(phosphorylation’s) (Figure 4). The most notable host signalling elements of the positive network were 
the kinases FAK, Ret and MAPKs (connected by green edges). In the negative network were the kinases 
Syk and PAK1, and the protein RPS6 (connected by red edges), discussed below. 
 
Syk – Following from the reduction in Syk phosphorylation observed at ring stage, at the trophozoite 
stage a reduction in Syk phosphorylation is not observed. This suggests the possible inhibition 
mentioned above for ring begins to be alleviated at this stage, which is consistent with the appearance 
of Band 3 phosphorylation in mature trophozoites 30.  

FAK-Ret-MAPK – The FAK-RET phosphorylation was observed in the ring stage analysis (see above) 
appears to still be occurring at the trophozoite stage, though to a less extent (Figure 4). In addition to 
Src (see above), the hepatocyte growth factor receptor (MET) is activated in trophozoites and 
represents a possible additional activator of FAK1, which suggest multiple activation pathways for 
FAK1 (Figure 4). MET phosphorylation has been previously experimentally confirmed by Western blot 
10. Interestingly, a strong candidate for an effector of RET in trophozoites, the mitogen activated 
protein kinase 3 (MAPK3, or ERK1) was not observed in the ring stage analysis. ERK1 phosphorylation 
has not been investigated in the context of P. falciparum development in red blood cells. Two of the 
alternative activators of ERK1 from this analysis were MAP2K1 and MAP2K2 (otherwise known as 
MEK1/2). Though phosphorylation of MEK1/2 was not detected at the trophozoite stage, active ERK1 
strongly suggest they are active. MEK1/2 phosphorylation during the later stages of P. falciparum 
blood stage development has previously been report 31. however, the microarray dataset utilised here 
indicated that the antibodies used on the array were sub-optimal for our analysis therefore they were 
excluded (See 10). Interestingly, abnormal MEK1 phosphorylation of ERK signalling in erythrocytes of 
patients with sickle cell disease (SCD) is critical for the adhesive interactions of these cells with the 
endothelium 32. This may have profound implications with respect to the mechanisms of 
cytoadherence of P. falciparum infected red blood cells. 

P21 activated kinase 1 (PAK1) – PAK1 is a serine/threonine kinase with strong roles in regulation the 
cytoskeleton and apoptosis 33. The activation of PAK1 by Plasmodium infection has been reported 31, 
but the mechanism of its activation remains unclear. Our analysis suggest it may be of interest to 
determine whether PDK1 plays a role upstream of this pathway. 

Ribosomal protein S6 (RPS6) – While there are no published data on RPS6 during P. falciparum red 
blood cell infection, it has been shown that infected hepatocytes, during the liver stage of P. 
falciparum life cycle, show elevated levels of RPS6 phosphorylation 34. In our analysis we noted a 
decrease in phosphorylation of the S235 site during trophozoite development. The primary activator 
of RPS6 is the Ribosomal Protein S6 Kinase (S6K), however PKC phosphorylation as seen here, has also 
been reported to be involved in RPS6 phosphorylation 35.  Interestingly, the site T421/S424 on RPS6, 
which acts to enhance activation, can be phosphorylated by ERK1/2 36. The T421/S424 site was not 
part of the microarray dataset, however it would be of interest to investigate this site further in 
relation with RPS6 S235 phosphorylation.  
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Figure 4. Subnetwork of the analysis performed on P. falciparum trophozoite stage microarray dataset. The network contains 53 nodes with 66 connecting edges. Kinases 
and substrates are represented as nodes (dark nodes = substrates, light nodes = kinases) and phosphorylation events are represented as edges, which are designated with 
the specific phosphorylation site. Edges are represented in a colour gradient from grey to green (positive edges) and grey to red (negative edges) and a size gradient which 
corresponds to the percentage change from the control network trails (%CFC). The effect of the edge is represented in the arrowhead (arrow = activation, square = inhibition). 
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Schizont stage network – The final notable stage of P. falciparum asexual development within human 
erythrocytes is the schizont stage, which accounts for the final hours of the asexual lifecycle. schizont 
stage parasites are less metabolically active than the trophozoites, with a large proportion of the host 
cells cytosol now digested 37. The antibody microarray dataset used in this analysis was performed on 
infected red blood cells 44 – 48 hours post invasion, corresponding to the final few hours before 
daughter cell release. This dataset, like that of the trophozoite dataset compared a population of >95% 
infected cells to an uninfected counterpart 10. The output of the schizont stage network analysis 
contained a subnetwork of 42 nodes (proteins/kinases) and 45 edges (phosphorylation’s) (Figure 5). 
The trophozoite and schizont analysis shared a number of similar signalling connections, suggesting 
an overall signalling trend at the later stages of blood stage development. These commonalities 
include Src, FAK, RET MAPK3, MAPK14 (also known as p38α) and many of the PKC isoforms. The most 
striking pathway from the schizont stage analysis is the pathway from MAPK14 (p38α) to Mdm2, 
discussed below. 
 
P38α - MAPKAPK2 - Mdm2 pathway - p38α is a mitogen activate protein kinase with key 
responsibilities in erythroblast enucleation during stress erythropoiesis 38. Interestingly p38α activity 
has also been linked to stress responses in red blood cells with a suspected role in eryptosis (red blood 
cell apoptosis) 39. The reduction in phosphorylation observed in our analysis could indicate that this 
cell death pathway is being circumvented by the parasite to facilitate prolonged survival of its host 
cell. The downstream effector of p38α, Mdm2 is a E3 ubiquitin-protein ligase and is responsible for 
the ubiquitination of TP53 (or p53) which flags p53 for proteasomal degradation 40. Its role in red blood 
cells is unknown, but it is essential for regulating erythropoiesis 41. Our analysis points to a reduction 
in Mdm2 phosphorylation at S166, which is known to enhance the proteins capacity to inactivate p53 
signalling 42. Interestingly, p53 is shown to be activated from our analysis, which could be in part due 
to a reduction in Mdm2 activity. Together this illustrates a possible ‘pro survival’ pathway being 
activated, which could be the result of direct signalling manipulation by the parasite. This concept is 
intriguing and warrants further exploration as this could uncover novel forms of host direct 
antimalarial therapy. 
 
Concluding remarks 
Currently all deployed antimalarials and those in development target parasite-encoded proteins, with 
many derivatives of current or previous deployed compounds 43. Parasite resistance and ensuing 
treatment failure is becoming apparent for every deployed antimalarial 44. This calls for the 
development of next-generation drugs with (i) untapped modes of action to prevent cross-resistance 
and (ii) have low propensity for the emergence of de novo resistance. In recent years P. falciparum 
has been shown to require the activity of several of its host kinases 31,45,46, which when inhibited 
chemically, result in parasite death. This suggests that host targeted drug discovery (HDT) may be 
feasible avenue for malaria treatments as it has for other infectious diseases (reviewed in 47). The 
network-based analysis tool developed here has identified key host pathways during malaria blood 
stage development, which could be further explored in the context of novel HDTs. A notable 
proportion of the identified pathways are consistent with published host signalling studies, validating 
the strategy. Additionally, new and exciting host signalling interactions were observed, for example 
signalling pathways that implicate FAK, p38α and RET. However, this is essentially a hypothesis-
generating exercise, and these findings now need validation. Nonetheless, the method developed 
here is applicable to any antibody microarray or phospho-proteomic dataset comprising signalling 
proteins. This analysis strategy can be utilised to provide detailed pathway analysis on already 
published datasets and would be an effective tool to screen new datasets not only in the area of 
malaria, but more broadly across intracellular infections and other disease settings that have a 
signalling component. 
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Figure 5. Subnetwork of the network analysis performed on P. falciparum schizont stage infection. The network contains 42 nodes with 45 connecting edges. Kinases and 
substrates are represented as nodes (dark nodes = substrates, light nodes = kinases) and phosphorylation events are represented as edges, which are designated with the 
specific phosphorylation site. Edges are represented in a colour gradient from grey to green (positive edges) and grey to red (negative edges) and a size gradient which 
corresponds to the percentage change from the control network trails (%CFC). The effect of the edge is represented in the arrowhead (arrow = activation, square = inhibition). 
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Methods 
Microarray datasets – Datasets used to design this random walks-based network analysis were 
published in Adderley et al. 2020 10, containing a total of 8 datasets, including replicates. The replicate 
datasets were unified with the replicate values averaged for the analysis. These datasets were ring-
stage parasites (n=3), trophozoite-stage parasites (n=3), and schizont stage parasites (n=2). Each 
dataset reports the fold change from an uninfected red blood cell control which was used as the base 
line of signalling. See source article for further details on these samples and the manual data analysis 
performed 10.  
 
Signal filtering – A number of signals reported by the antibody microarray were deemed unreliable. 
These signals fell into three categories, and were removed from the dataset and the subsequent 
analysis in the present work. These categories were; (i) low signal intensity, (ii) relatively high error 
(compared to change observed from control) and (iii) cross-reactivity to parasite proteins. Low 
intensity signals: were defined as signals were both the control (uninfected sample) and infected 
sample were below 1000 relative units. This threshold is recommended by the manufacturer, as 
signals below this intensity are often difficult to validate. High error relative to signal change: in some 
instances, signals appeared to vary notably between the biological replicates of that datasets. To 
account for this, we combined the uninfected and infected signals error for each unique antibody on 
the microarray (which are reported as percentage error) and disregarded any antibody whose total 
signal error was greater than the percentage change reported from the uninfected control. Cross-
reactive signals: we removed the antibodies that were identified as cross-reactive (see 10 for more 
detail on cross-reactive signal determination). 
 
The substrate effect for each phosphorylation in the network – As mentioned in the introduction, 
phosphorylation fundamentally results in either the activation or inhibition of the target substrate. 
The network we based our study on 8 did not record the effect that each phosphorylation event had 
on the target substrate. As this information is crucial biological interpretation of the output data, 
where possible we annotated this information into the network. This information provided by Kinexus, 
otherwise literature searching was undertaken to classify as many phosphorylation effects as possible 
as activation or inhibition. Despite these efforts, a number of phosphorylation sites have unknown 
effects, consequently these sites could not be annotated in our networks. To enable continuity of the 
trails analysis these sites are treated as though they were activation sites; whenever future studies 
uncover the function of these sites the base network used in this analysis can be updated accordingly. 
 
Assignment of biological data to duplicated edges – One limitation of this approach is that the 
upstream kinase responsible for each of the substrate phosphorylation’s is unknown. Consequently, 
as multiple kinases can often phosphorylate the same target substrate at the same phosphorylation 
site, the fold change data was assigned to each of these possible interactions in the network. This 
means that in some instances a single antibody signal is mapped to multiple edges. As it is unlikely 
that all possible kinases contribute to the phosphorylation of a single substrate at once, the random 
walk analysis (see analysis strategy section) was designed to determine which of the possible kinases 
was most likely resulting in the phosphorylation event observed.  
 
Developing a positive and negative network for independent dataset analysis – Once the biological 
data and network were combined, there were a hand full of nodes which were connected by multiple 
parallel directed edges. To enable a straightforward analysis strategy, we applied an edge reduction 
step that left a single directed edge between each of the two nodes. To account for the multiple 
directed edges that had varying phosphorylation-specific antibody signals, we developed two 
independent networks using the antibody microarray data. One of these networks was designated the 
positive network, which retained the phosphorylation-specific antibody signals which increased 
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during infection, while the other network was designated the negative network, which retained the 
decreasing signals during infection. In both instances the greater magnitude values were preferentially 
selected. This enabled the independent assessment of the phosphorylation interactions that increased 
during infection and those that decreased.  
 
Analysis strategy walk termination settings – There were three termination checks placed into the 
function used in this analysis:   
i) No edges to choose - If there were no remaining usable edges available the walk would terminate, 
this was to avoid self-loop and to stop cyclic connections being over reporting as described above.  

ii) Inhibitory signalling - If the last edge used during a walk was an inhibition phosphorylation (depicted 
in Figure 2a) the walk would terminate. Inhibitory phosphorylation results in the de-activation of the 
target protein or kinase. Therefore, walks were terminated following usage to remain consistent with 
what would happen in a biological setting. 

iii) Weighted termination chance – The weighted termination chance enabled the function to 
discriminate edge usage due to fold change data when a single edge was available during edge 
selection. In the circumstance where a single edge is available, the function will select it, as there are 
no other options. This was problematic, as situations where the edge option was 1 the output would 
report no change in edge usage between the control and microarray data networks, regardless of the 
strength of the microarray data. By including a weighted chance for edge termination based on the 
magnitude of the edges fold change we were able to account for this in our analysis. A weighted 
chance which scaled from 0 – 20% was applied after each step in a walk. This scaling was linearly 
assigned to the fold change data in the positive and negative networks with the largest magnitude 
fold changes being assigned no termination chance (0%) and smallest fold changes being assigned a 
chance of 20%. For the control networks, where no fold change values were assigned, the weighted 
termination chance was set at 20% globally.  
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