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Abstract 6 

By classifying patients into subgroups, clinicians can provide more effective care than using a uniform 7 

approach for all patients. Such subgroups might include patients with a particular disease subtype, 8 

patients with a good (or poor) prognosis, or patients most (or least) likely to respond to a particular 9 

therapy. Diverse types of biomarkers have been proposed for assigning patients to subgroups. For 10 

example, DNA variants in tumors show promise as biomarkers; however, tumors exhibit considerable 11 

genomic heterogeneity. As an alternative, transcriptomic measurements reflect the downstream effects of 12 

genomic and epigenomic variations. However, high-throughput technologies generate thousands of 13 

measurements per patient, and complex dependencies exist among genes, so it may be infeasible to 14 

classify patients using traditional statistical models. Machine-learning classification algorithms can help 15 

with this problem. However, hundreds of classification algorithms exist—and most support diverse 16 

hyperparameters—so it is difficult for researchers to know which are optimal for gene-expression 17 

biomarkers. We performed a benchmark comparison, applying 50 classification algorithms to 50 gene-18 

expression datasets (143 class variables). We evaluated algorithms that represent diverse machine-19 

learning methodologies and have been implemented in general-purpose, open-source, machine-learning 20 
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libraries. When available, we combined clinical predictors with gene-expression data. Additionally, we 21 

evaluated the effects of performing hyperparameter optimization and feature selection in nested cross-22 

validation folds. Kernel- and ensemble-based algorithms consistently outperformed other types of 23 

classification algorithms; however, even the top-performing algorithms performed poorly in some cases. 24 

Hyperparameter optimization and feature selection typically improved predictive performance, and 25 

univariate feature-selection algorithms outperformed more sophisticated methods. Together, our findings 26 

illustrate that algorithm performance varies considerably when other factors are held constant and thus 27 

that algorithm selection is a critical step in biomarker studies. 28 

Author Summary 29 

Keywords: biomarker, gene expression, classification, transcriptome, machine learning, data science, 30 

translational bioinformatics, predictive analytics 31 

Introduction 32 

Researchers use observational data to derive categories, or classes, into which patients can be assigned. 33 

Such classes might include patients who have a given disease subtype, patients at a particular disease 34 

stage, patients who respond to a particular treatment, patients who have poor outcomes, patients who have 35 

a particular genomic lesion, etc. Subsequently, a physician may use these classes to tailor patient care, 36 

rather than using a one-size-fits-all approach(1–3). However, physicians typically do not know in advance 37 

which classes are most relevant for each patient. Thus a key challenge is defining objective and reliable 38 

criteria for assigning individual patients to known classes. When such criteria have been identified and 39 

sufficiently validated, they can be used in medical “expert systems” for classifying individual patients(4). 40 
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Clinical observations are the principle form of data that physicians use to classify patients. Such data are 41 

collected through direct observation, interviews, imaging, laboratory tests, and other means. However, 42 

molecular observations have also begun to be used for classifying patients. For example, germline 43 

mutations in BRCA1 and BRCA2 predict responses to poly ADP ribose polymerase inhibitors(5–7). The 44 

BCR-ABL1 fusion gene (also known as the Philadelphia translocation)(8) is a biomarker for Imatinib 45 

response in diverse types of leukemias, especially chronic myeloid leukemias(9,10). In another example, 46 

patients with metastatic melanoma are candidates for proteasome inhibitors when they have a mutation in 47 

the BRAF gene(11,12). However, these single-mutation markers have limited utility because the 48 

mutations occur in a small subset of patients. Therefore, researchers are developing DNA panels and 49 

using “mutation signatures” to account for multiple mutations simultaneously(13–16). Despite the 50 

advantages of these approaches, DNA variation does not necessarily predict cellular activity or its 51 

downstream effects, nor does it account for epigenetic processes that regulate gene expression(17). As an 52 

alternative, protein expression may be used as a molecular biomarker. For example, prostate specific 53 

antigen is used in many countries to diagnose prostate cancer and to estimate disease progression; 54 

however, its sensitivity and specificity are limited, so it has not become a global standard of care(18). 55 

Quantitative proteomics can be used for multimarker panels and may eventually become the preferred 56 

medium for molecular signatures because protein levels reflect the downstream effects of genomic, 57 

epigenomic, and transcriptional events(19). Proteomics technologies are already being used to guide 58 

disease-related classification(20), but these efforts are still in their infancy(21), in part due to the time-59 

consuming and expensive processes required to generate proteomic data(21,22). In contrast, gene-60 

expression profiling technologies are relatively mature and used widely in research(23,24). In addition, 61 

gene-expression profiling is now used in clinical settings. For example, physicians use the PAM50 62 

classifier, based on the expression of 58 genes, to assign breast-cancer patients to “intrinsic 63 

subtypes”(25,26). This classifier has received approval from both the US Food and Drug Administration 64 

and the European Medicines Agency(27–29), and physicians use it to match patients with treatments and 65 

to predict metastasis risk. The success of the PAM50 classifier has motivated much additional research. In 66 
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breast cancer alone, more than 100 gene-expression profiles have been proposed for predicting breast-67 

cancer prognosis(30). 68 

Classification algorithms learn from data much as a physician does—past observations inform decisions 69 

about new patients. Thus the first step in developing a gene-expression biomarker is to profile a patient 70 

cohort that represents the population of interest. Alternatively, a researcher may use publicly available 71 

data for this step. Second, the researcher performs a preliminary evaluation of the potential to assign 72 

patients to a particular clinically relevant class based on gene-expression profiles and accompanying 73 

clinical information. Furthermore, the researcher may undergo an effort to select a classification 74 

algorithm that will perform relatively well for this particular task. Such efforts may be informed by prior 75 

experience, a literature review, or trial and error. Using some form of subsampling(31) and a given 76 

classification algorithm, the researcher derives a classification model from a subset of the patients’ data 77 

(training data); to derive this model, the researcher exposes the classification algorithm to the true class 78 

labels for each patient. Then, using a disjoint subset of patient observations for which the true class labels 79 

have been withheld (test data), the model predicts the label of each patient. Finally, the researcher 80 

compares the predictions against the true labels. If the predictive performance approaches or exceeds 81 

what can be attained using currently available models, the researcher may continue to refine and test the 82 

model. Such steps might include tuning the algorithm, reducing the number of predictor variables, and 83 

testing it on multiple, independent cohorts. In this study, we focus on the preliminary processes of 84 

selecting algorithm(s). 85 

Modern, high-throughput technologies can produce more than 10,000 gene-expression measurements per 86 

biological sample. Thus instead of a traditional approach that uses prior knowledge to determine which 87 

genes are included in a predictive model, researchers can use a data-driven approach to infer which genes 88 

are most relevant and to identify expression patterns that differ among patient groups(32). These patterns 89 

may be highly complex, representing subtle differences in expression that span many genes(33). Due to 90 

dependencies among biomolecules and limitations in measurement technologies, high-throughput gene-91 
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expression measurements are often redundant and noisy(34). Thus, to be effective at inferring relevant 92 

patterns, classification algorithms must be able to overcome these challenges. 93 

The machine-learning community has developed hundreds of classification algorithms, spanning diverse 94 

methodological approaches(35). Historically, most datasets available for testing had fewer than 100 95 

predictor variables, so most algorithms were created and optimized for that use case(36). Consequently, 96 

the execution time and predictive performance of many classification algorithms may be unsatisfactory 97 

when datasets consist of thousands of predictor variables–the algorithms may have difficulty identifying 98 

the most informative features in the data(37,38). When gene-expression microarrays became common in 99 

biomedical research in the early 2000s, researchers began exploring the potential to make clinically 100 

relevant predictions and overcome these challenges(39–43). As a result of data-sharing policies, gene-101 

expression datasets were increasingly available in the public domain, and researchers performed 102 

benchmark studies, comparing the effectiveness of classification algorithms on gene-expression 103 

data(32,44–46). Each of these studies evaluated between 5 and 21 algorithmic variants. In addition, the 104 

authors typically used at least one method of feature selection, a way to reduce the number of predictor 105 

variables. The studies used as many as 7 datasets, primarily from tumor cells (and often adjacent normal 106 

cells). The authors focused mostly on classical algorithms, including k-Nearest Neighbors(47), linear 107 

discriminant analysis(48), and the multi-layer perceptron(49). Pochet, et al. also explored the potential for 108 

nonlinear Support Vector Machine (SVM) classifiers to increase predictive performance relative to linear 109 

methods(45,50). 110 

Later benchmark studies highlighted two types of algorithm—SVM and random forests(51)—that 111 

perform relatively well on gene-expression data(38,52–54). Statnikov, et al. examined 22 datasets and 112 

specifically compared the predictive capability of these two algorithm types. Overall, they found that 113 

SVMs significantly outperformed random forests, although random forests outperformed SVMs in some 114 

cases(38). Perhaps in part due to these highly cited studies, SVMs and random forests have been used 115 

heavily in diverse types of biomedical research over the past two decades(55). 116 
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Community efforts—especially the Sage Bionetworks DREAM Challenges and Critical Assessment of 117 

Massive Data Analysis challenges(56–58)—have encouraged the development and refinement of 118 

predictive models to address biomedical questions. In these benchmark studies, the priority is to 119 

maximize predictive performance and thus increase the potential that the models will have practical use. 120 

Accordingly, participants have flexibility to use alternative normalization or summarization methods, to 121 

use alternative subsets of the training data, to combine algorithms, etc. These strategies often prove 122 

useful; however, this heterogeneity of approaches makes it difficult to deconvolve the relationship 123 

between a given solution’s performance and the underlying algorithm(s) used. 124 

In recent years, new algorithms and algorithmic variants have been developed and are available in open-125 

source software packages. These include classification algorithms as well as feature-selection algorithms. 126 

Gene-expression datasets are more abundant in public repositories, affording opportunities for larger-127 

scale benchmark comparisons. Furthermore, many of these datasets are accompanied by clinically 128 

oriented predictor variables. To our knowledge, no benchmark study to date has systematically compared 129 

the ability to classify patients using clinical data versus gene-expression data—or combined these two 130 

types of data—for a large number of datasets. Moreover, previous benchmarks have not systematically 131 

evaluated the benefits of optimizing an algorithm’s hyperparameters versus using defaults. Accordingly, 132 

we address these gaps with a benchmark study spanning 50 datasets (143 class variables covering diverse 133 

phenotypes), 50 classification algorithms (1008 hyperparameter combinations), and 14 feature-selection 134 

algorithms. We perform this study in a staged design, allowing us to compare the ability to classify 135 

patients using gene-expression data alone, clinical data alone, or both data types together. In addition, we 136 

evaluate the effects of performing hyperparameter optimization or feature selection. 137 

Our primary motivation is to provide helpful advice for practitioners. Identifying algorithm(s) and 138 

hyperparameter(s) that perform consistently well in this setting may ultimately lead to patient benefits. 139 

Accordingly, we questioned whether SVM and random forests algorithms would continue to be the top 140 

performers when compared against diverse types of classification algorithms. We also questioned whether 141 
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there would be scenarios in which these algorithms would perform poorly. Furthermore, relatively little is 142 

known about the extent to which algorithm choice affects predictive success for a given dataset. Thus we 143 

questioned how much variance in predictive performance we would see across the algorithms. In addition, 144 

we evaluated practical matters such as tradeoffs between predictive performance and execution time, the 145 

extent to which algorithm rankings are affected by the performance metric used, and which algorithms 146 

behave most similarly—or differently—to each other. 147 

Results 148 

General trends 149 

We evaluated the predictive performance of 50 classification algorithms on 50 gene-expression datasets. 150 

Across the 50 datasets, we made predictions for a total of 143 class variables. We divided the analysis 151 

into 5 stages as a way to assess benefits that might come from including clinical predictors, optimizing an 152 

algorithm’s hyperparameters, or performing feature selection (Figure 1). 153 

In Analysis 1, we used only gene-expression data as predictors and used default hyperparameters for each 154 

classification algorithm. Figure S1 illustrates the performance of these algorithms using area under the 155 

receiver operating characteristic curve (AUROC) as a performance metric. As a method of normalization, 156 

we ranked the classification algorithms for each combination of dataset and class variable. Two patterns 157 

emerged. Firstly, the top-15 algorithms use linear-decision boundaries, kernel functions, and/or ensembles 158 

of decision trees. Secondly, though some algorithms performed consistently well overall, they performed 159 

quite poorly in some cases. For example, the sklearn/logistic_regression algorithm—which 160 

used the LibLinear solver[Fan2008], a C value of 1.0, and no class weighting—resulted in the best 161 

average rank; yet for 7 (4.9%) of the dataset/class combinations, its performance ranked in the bottom 162 

quartile. The mlr/randomForestSRC algorithm resulted in the second-best average rank; yet for 8 163 

(5.6%) of dataset/class combinations, its performance ranked in the bottom quartile. 164 
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Performance rankings differed considerably depending on which evaluation metric we used. For example, 165 

in Analysis 1, many of the same algorithms that performed well according to AUROC also performed 166 

well according to classification accuracy (Figure S2). However, classification accuracy does not account 167 

for class imbalance and thus may rank algorithms in a misleading way. For example, the weka/ZeroR 168 

algorithm is ranked 17th among the algorithms according to classification accuracy, even though the 169 

algorithm simply selects the majority class. (Our analysis included two-class and multi-class problems.) 170 

Rankings for the Matthews correlation coefficient were relatively similar to AUROC. For example, 171 

sklearn/logistic_regression had the 2nd-best average rank according to this metric. 172 

However, in other cases, the rankings were considerably different. For example, the mlr/sda algorithm 173 

performed 3rd-best according to MCC but 26th according to AUROC (Figure S3). Figure 2 shows the 174 

rankings for each algorithm across all metrics that we evaluated, highlighting the reality that conclusions 175 

drawn from benchmark comparisons of classification algorithms depend heavily on which metric(s) are 176 

considered important. 177 

Execution times differed substantially across the algorithms. For Analysis 1, Figure 3 categorizes each 178 

algorithm according to its ability to make effective predictions in combination with the computer time 179 

required to execute the classification tasks. The sklearn/logistic_regression algorithm not 180 

only outperformed other algorithms in terms of predictive ability but also was one of the fastest 181 

algorithms. In contrast, the mlr/randomForest algorithm was among the most predictive algorithms 182 

but was orders-of-magnitude slower than other top-performing algorithms. 183 

Some classification algorithms are commonly used and thus have been implemented in multiple machine-184 

learning packages. For example, all three open-source libraries that we used in this study have 185 

implementations of the SVM and random forests algorithms. However, these implementations differ from 186 

each other, often supporting different hyperparameters or using different default values. For example, 187 

mlr/svm and weka/LibSVM both use the LibSVM package(59), a value of 1.0 for the C parameter, 188 

and the Radial Basis Function kernel. However, by default, mlr/svm scales numeric values to zero 189 
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mean and unit variance, whereas weka/LibSVM performs no normalization by default. In Analysis 1, 190 

the predictive performance was similar for these different implementations. Their AUROC values were 191 

significantly correlated (r = 0.87; CI = 0.82-0.90; p = 2.2e-16). However, in some instances, their 192 

performance differed dramatically. For example, when predicting drug responses for dataset GSE20181, 193 

weka/LibSVM performed 2nd best, but mlr/svm performed worst among all algorithms. Figures S4-194 

S5 illustrate for two representative datasets that algorithms with similar methodologies often produced 195 

similar predictions; but these predictions were never perfectly correlated. Execution times also differed 196 

from one implementation to another; for example, the median execution time for weka/LibSVM was 197 

27.9 seconds, while mlr/svm was 114.4 seconds. Overall, the median execution times differed 198 

significantly across the software packages (Kruskal-Wallis test; p-value = 5.0e-07); the sklearn algorithms 199 

executed faster than algorithms from other packages (Figure 3). 200 

Some classification labels were easier to predict than others. Across the dataset/class combinations in 201 

Analysis 1, the median AUROC across all algorithms ranged between 0.441 and 0.966 (Additional Data 202 

File 1). For a given dataset/class combination, algorithm performance varied considerably, though this 203 

variation was influenced partially by the weka/ZeroR results, which we used as controls. To gain 204 

insight into predictive performance for different types of class labels, we assigned a category to each class 205 

variable (Figure S6); the best predictive performance was attained for class variables representing 206 

molecular markers, histological statuses, and diagnostic labels. Class variables in the “patient 207 

characteristics” category performed worst; these variables represented miscellaneous factors such as the 208 

patient’s family history of cancer, whether the patient had been diagnosed with multiple tumors, and the 209 

patient’s physical and cognitive “performance status” at the time of diagnosis. 210 

Effects of using gene-expression predictors, clinical predictors, or both 211 

In Analysis 2, we used only clinical predictors (for the dataset / class-variable combinations with 212 

available clinical data). These results differed considerably from Analysis 1, which used only gene-213 
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 10 

expression predictors. Three linear-discriminant classifiers performed particularly well: mlr/sda, 214 

sklearn/lda, and mlr/glmnet (Figure S7). Two Naïve Bayes algorithms also ranked among the 215 

top performers, whereas these algorithms had performed poorly in Analysis 1. Only two kernel-based 216 

algorithms were ranked among the top 10: weka/LibLINEAR and 217 

sklearn/logistic_regression. Both of these algorithms used the LibLINEAR solver. Most of 218 

the remaining kernel-based algorithms were among the worst performers. As with Analysis 1, most 219 

ensemble-based algorithms ranked in the top 25, but none ranked in the top 5. 220 

Additional Data File 2 shows the performance of each combination of dataset and class variable in 221 

Analysis 2. As with Analysis 1, we observed considerable variation in our ability to predict particular 222 

classes and categories (Figure S8). For approximately two-thirds of the dataset/class combinations, 223 

AUROC values decreased—sometimes by more than 0.3 (Figure 4A); however, in a few cases, predictive 224 

performance increased. The most dramatic improvement was for GSE58697, in which we predicted 225 

progression-free survival for desmoid tumors. The clinical predictors were age at diagnosis, biological 226 

sex, and tumor location. Salas, et al. previously found in a univariate analysis that age at diagnosis was 227 

significantly correlated with progression-free survival (60). We focused on patients who experienced 228 

relatively long or short survival times and used multivariate methods. 229 

In Analysis 3, we combined clinical and gene-expression predictors. We limited this analysis to the 108 230 

dataset / class-variable combinations for which clinical predictors were available (Additional Data File 3; 231 

Figure S9). As with Analysis 1, kernel- and ensemble-based algorithms performed best overall (Figure 232 

S10). For 90 (83.3%) of the dataset/ class-variable combinations, the AUROC values were identical to 233 

Analysis 1 (Figure 4B). Except in three cases, the absolute change in AUROC was smaller than 0.05, 234 

including for GSE58697 (0.026 increase). These results suggest that standard classification algorithms 235 

(using default parameters) are not well suited for datasets in which gene-expression and clinical predictors 236 

have simply been merged. The abundance of gene-expression variables may distract the algorithms and/or 237 
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obfuscate signal from the relatively few clinical variables. Additionally, gene-expression and clinical 238 

predictors may carry redundant signals. 239 

Effects of performing hyperparameter optimization 240 

In Analysis 4, we performed hyperparameter optimization via nested cross validation. Across all 50 241 

classification algorithms, we employed 1008 distinct hyperparameter combinations under the assumption 242 

that the default settings may be suboptimal for the datasets we evaluated. When clinical predictors were 243 

available, we included them (as in Analysis 3). When no clinical predictors were available, we used gene-244 

expression data only (as in Analysis 1). Again, kernel- and ensemble-based algorithms performed well 245 

overall (Figure S11), although the individual rankings differed modestly from the previous analyses. The 246 

weka/LibLINEAR algorithm had the best median rank, while algorithms based on random forests were 247 

generally ranked lower than in previous analyses. For a majority of dataset / class-variable combinations, 248 

the AUROC (median across all classification algorithms) improved with hyperparameter optimization 249 

(Figure 5A); however, in some cases, performance decreased. 250 

The best- and worst-performing class variables and categories were similar to the previous analyses 251 

(Figure S12; Additional Data File 4). We observed a positive trend in which datasets with larger sample 252 

sizes resulted in higher median AUROC values (Figure S13); however, this relationship was not 253 

statistically significant (Spearman’s rho = 0.12; p = 0.15). We observed a slightly negative trend between 254 

the number of genes in a dataset and median AUROC (Figure S14), but again this relationship was not 255 

statistically significant (rho = -0.06; p = 0.47). 256 

Evaluating many hyperparameter combinations enabled us to quantify how much the predictive 257 

performance varied for different combinations. Some variation is desirable because it enables algorithms 258 

to adapt to diverse analysis scenarios; however, large amounts of variation may make it difficult to select 259 

hyperparameter combinations that are broadly useful. For some classification algorithms, AUROC values 260 

varied widely across hyperparameter combinations when applied to a given dataset / class variable 261 
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(Figure S15). These variations were often different for algorithms with similar methodological 262 

approaches. For example, the median coefficient of variation was 0.22 for the sklearn/svm algorithm 263 

but 0.08 for mlr/svm and 0.06 for weka/LibSVM. In other cases, AUROC varied little across 264 

hyperparameter combinations. For example, the four algorithms with the highest median AUROC—265 

weka/LibLINEAR, mlr/glmnet, sklearn/logistic_regression, and 266 

sklearn/extra_trees—had median coefficients of variation of 0.02, 0.03, 0.01, and 0.03, 267 

respectively. For each of these algorithms, we plotted the performance of all hyperparameter 268 

combinations across all dataset / class-variable combinations (Figures S16-S19). The default 269 

hyperparameter combination failed to perform best for any of these algorithms. Indeed, for two of the four 270 

algorithms, the default combination performed worst. 271 

Of the 1008 total combinations, 984 were considered best for at least one dataset / class-variable 272 

combination (based on average performance in inner cross-validation folds). 273 

Effects of performing feature selection 274 

In Analysis 5, we performed feature selection via nested cross validation. We used 14 feature-selection 275 

algorithms in combination with each of the 50 classification algorithms. Due to the computational 276 

demands of evaluating these 700 combinations, we used default hyperparameters for both types of 277 

algorithm. The feature-selection algorithms differed in their methodological approaches (Table 1). Some 278 

were univariate methods, while others were multivariate. Some feature-selection algorithms mirrored the 279 

behavior of classification algorithms (e.g., SVMs or random forests); others were based on statistical 280 

inference or entropy-based metrics. 281 

Once again, kernel- and ensemble-based classification algorithms performed best overall when feature 282 

selection was used (Figure 6). The median improvement per dataset / class-variable combination was 283 

slightly larger for feature selection than for hyperparameter optimization, and the maximal gains in 284 

predictive performance were larger for feature selection (Figure 5B, Additional Data File 5). Overall, 285 
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there was a strong positive correlation between AUROC values for Analyses 4 and 5 (Spearman’s rho = 286 

0.75; Figure S20). Among the 10 dataset / class-variable combinations that improved most after feature 287 

selection, 8 were associated with prognostic, stage, or patient-characteristic variables—categories that 288 

were most difficult to predict overall (Figure S21). The remaining two combinations were molecular 289 

markers (HER2-neu and progesterone receptor status). 290 

Across all classification algorithms, the weka/Correlation feature-selection algorithm resulted in 291 

the best predictive performance (Figure S22), despite being a univariate method. This algorithm 292 

calculates the Pearson’s correlation coefficient between each feature and the class values, a relatively 293 

simple approach that also ranked among the fastest (Figure S23). Other univariate algorithms were among 294 

the top performers. To characterize algorithm performance further, we compared the feature ranks 295 

between all algorithm pairs for two of the datasets. Some pairs produced highly similar gene rankings, 296 

whereas in other cases the similarity was low (Figures S24-S25). The weka/Correlation and 297 

mlr/kruskal.test algorithms produced similar feature ranks; both use statistical inference; the 298 

former is a parametric method, while the latter is nonparametric. 299 

Some classification algorithms (e.g., weka/ZeroR and sklearn/decision_tree) performed 300 

poorly irrespective of feature-selection algorithm, whereas other classification algorithms (e.g., 301 

mlr/ranger and weka/LibLINEAR) performed consistently well across feature-selection algorithms 302 

(Figure S26). The performance of other algorithms was more variable. 303 

Finally, as a way to provide guidance to practitioners, we examined interactions between individual 304 

feature-selection algorithms and classification algorithms (Figure 7). If a researcher had identified a 305 

particular classification algorithm to use, they might wish to select a feature-selection algorithm that 306 

performs well in combination with that classification algorithm. A feature-selection algorithm that 307 

performs well overall may not perform especially well in combination with a given classification 308 

algorithm. For example, the weka/Correlation feature-selection algorithm performed best overall, 309 
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but it was only the 6th-best algorithm on average when sklearn/logistic_regression was used 310 

for classification. In contrast, a feature-selection algorithm that underperforms in general may perform 311 

well in combination with a given classification algorithm. For example, sklearn/svm_rfe performed 312 

poorly overall but was effective in combination with mlr/svm. 313 

Discussion 314 

The overarching purpose of our benchmark study was to provide insights that might inform gene-315 

expression biomarker studies. Such insights could lead to more accurate predictions in future studies and 316 

thus benefit patients. In situations where a biomarker is applied to thousands of cancer patients, even 317 

modest increases in accuracy can benefit hundreds of patients. We also sought to help bridge the gap 318 

between machine-learning researchers who develop general-purpose algorithms and biomedical 319 

researchers who seek to apply them in a specific context. When selecting algorithm(s), hyperparameters, 320 

and features to use in a gene-expression biomarker study, researchers might base their decisions on what 321 

others have reported in the literature for a similar study; or they might consider anecdotal experiences that 322 

they or their colleagues have had. However, these decisions may lack an empirical basis and not 323 

generalize from one analysis to another. Alternatively, researchers might apply many algorithms to their 324 

data to estimate which algorithm(s) will perform best. However, this approach is time- and resource-325 

intensive and may lead to bias if the comparisons are not performed in a rigorous manner. In yet another 326 

approach, researchers might develop a custom classification algorithm, perhaps one that is specifically 327 

designed for the target data. However, it is difficult to know whether such an algorithm would outperform 328 

existing, classical algorithms. 329 

Many factors can affect predictive performance in a biomarker study. These factors include data-330 

generation technologies, data normalization / summarization processes, validation strategies, and 331 

evaluation metrics used. Although such factors must be considered, we have shown that when holding 332 
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them constant, the choice of algorithm, hyperparameter combination, and features usually affects 333 

predictive performance for a given dataset—sometimes dramatically. Despite these variations, we have 334 

demonstrated that particular algorithms and algorithm categories consistently outperform others across 335 

diverse gene-expression datasets and class variables. However, even the best algorithms performed poorly 336 

in some cases. These findings support the theory that no single algorithm is universally optimal(61). But 337 

they also suggest that researchers can increase the odds of success in developing accurate biomarkers by 338 

focusing on a few top-performing algorithms and by using hyperparameter optimization and/or feature 339 

selection, despite the additional computational demands in performing these steps. 340 

This benchmark study is considerably larger than any prior study of classification algorithms applied to 341 

gene-expression data. We deliberately focused on general-purpose algorithms because they are readily 342 

available in well-maintained, open-source packages. Of necessity, we evaluated an inexhaustive list of 343 

algorithms and hyperparameter combinations. Other algorithms or hyperparameter combinations may 344 

have performed better than those that we used. 345 

Some algorithms had more hyperparameter combinations than others, which may have enabled those 346 

algorithms to adapt better in Analysis 4. Additionally, in some cases, our hyperparameter combinations 347 

were inconsistent between two algorithms of the same type because different software libraries support 348 

different options. Despite these limitations, a key advantage of our benchmarking approach is that we 349 

performed these comparisons in an impartial manner, not having developed any of the algorithms that we 350 

evaluated nor having any other conflict of interest that might bias our results. 351 

Generally, kernel- and ensemble-based algorithms outperformed other types of algorithms in our 352 

analyses. Other algorithm types—such as linear-discriminant and neural-network algorithms—performed 353 

well in some scenarios. Deep neural networks have received vast attention in the biomedical literature 354 

over the past decade(62); however, the mlr/h2o.deeplearning algorithm performed at mediocre 355 

levels in all of our analyses. Custom adaptations to this (or any other) deep-learning algorithms may 356 

improve predictive performance in future studies. Future efforts to improve predictive ability might also 357 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.442940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.442940
http://creativecommons.org/licenses/by/4.0/


 16 

include optimizing hyperparameters of feature-selection algorithms, combining hyperparameter-358 

optimized classification algorithms with feature selection, and using multiple classifier systems(63). 359 

Transfer learning across datasets may also prove fruitful(64). 360 

Our findings are specific to high-throughput gene-expression datasets that have either no clinical 361 

predictors or a small set of clinical predictors. However, our conclusions may have relevance to other 362 

datasets that include a large number of features and that may include a combination of numeric, discrete, 363 

and nominal features. 364 

Finally, we mention additional limitations and caveats. We applied Monte Carlo cross validation to each 365 

dataset separately and thus did not evaluate predictive performance in independent datasets. This 366 

approach was suitable for our benchmark comparison because our priority was to compare algorithms 367 

against each other rather than to optimize their performance for clinical use. On another note, 368 

comparisons across machine-learning packages are difficult to make. For example, some sklearn 369 

algorithms provided the ability to automatically address class imbalance, whereas other software 370 

packages often did not provide this functionality. Adapting these weights manually was infeasible for this 371 

study. In addition, some classification algorithms are designed to produce probabilistic predictions, 372 

whereas other algorithms produce only discrete predictions. The latter algorithms may have been at a 373 

disadvantage in our benchmark for the AUROC and other metrics. 374 

Methods 375 

Data preparation 376 

We used 50 datasets spanning diverse diseases and tissue types but focused primarily on cancer-related 377 

conditions. We used data from two sources. The first was a resource created by Golightly, et al.(65) that 378 

includes 45 datasets from Gene Expression Omnibus(66). For these datasets, the gene-expression data 379 

were generated using Affymetrix microarrays, normalized using Single Channel Array 380 
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Normalization(67), summarized using BrainArray annotations(68), quality checked using IQRay(69) and 381 

DoppelgangR(70), and batch-adjusted (where applicable) using ComBat(71). Depending on the 382 

Affymetrix platform used, expression levels were available for 11,832 to 21,614 genes. For the remaining 383 

5 datasets, we used RNA-Sequencing data from The Cancer Genome Atlas (TCGA)(72), representing 5 384 

tumor types: colorectal adenocarcinoma (COAD), bladder urothelial carcinoma (BLCA), kidney renal 385 

clear cell carcinoma (KIRC), prostate adenocarcinoma (PRAD), and lung adenocarcinoma (LUAD). 386 

These data had been aligned and quantified using the Rsubread and featureCounts packages(73,74), 387 

resulting in transcripts-per-million values for 22,833 genes(75). All gene-expression data were labeled 388 

using Ensembl gene identifiers(76). 389 

For the microarray datasets, we used the class variables and clinical variables identified by Golightly, et 390 

al. (2.8 class variables per dataset)(65). For the RNA-Sequencing datasets, we identified a total of 16 class 391 

variables. When a given sample was missing data for a given class variable, we excluded that sample 392 

from the analyses. Some class variables were continuous in nature (e.g., overall survival). We discretized 393 

these variables to enable classification, taking into account censor status where applicable. To support 394 

consistency and human interpretability across datasets, we assigned a standardized name and category to 395 

each class variable; the original and standardized names are available in Additional Data File 6. 396 

For most of the Golightly, et al. datasets, at least one clinical variable had been identified as a potential 397 

predictor variable. For TCGA datasets, we selected multiple clinical-predictor variables per dataset. 398 

Across all datasets, the mean and median number of clinical predictors per dataset were 3.1 and 2.0, 399 

respectively (Additional Data File 6). We avoided combinations of clinical-predictor variables and class 400 

variables that were potentially confounded. For example, when a dataset included cancer stage as a class 401 

variable, we excluded predictor variables such as tumor grade or histological status because oncologists 402 

might use those data to determine stage. In some cases, no suitable predictor variable was available for a 403 

given class variable, leaving only gene-expression variables as predictors; this was true for 35 class 404 

variables. 405 
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Algorithms used 406 

We used 50 classification algorithms that were implemented in the ShinyLearner tool, which enables 407 

researchers to benchmark algorithms that are included in open-source machine-learning libraries; these 408 

libraries are redistributed as software containers(77,78). Via ShinyLearner, we used algorithm 409 

implementations from the mlr R package (version 2; R version 3.5)(79), sklearn Python module (versions 410 

0.18-0.22)(80), and Weka Java application (version 3.6)(81). Table 2 lists each algorithm that we used, 411 

along with a description and methodological category for each algorithm. Furthermore, it indicates the 412 

open-source software package that implemented the algorithm, as well as the number of unique 413 

hyperparameter combinations that we evaluated for each algorithm. A full list of these hyperparameter 414 

combinations can be found in Additional Data File 7. Among the classification algorithms was Weka’s 415 

ZeroR, which predicts all instances to have the majority class. We included this algorithm in our analysis 416 

as a sanity check(82) and a baseline against which all other algorithms could be compared. Beyond the 50 417 

classification algorithms that we used, additional algorithms were available in ShinyLearner. However, 418 

we excluded these algorithms from our analysis because they raised exceptions when we used default 419 

hyperparameters, required excessive amounts of random access memory (75 gigabytes or more), or were 420 

orders of magnitude slower than the other algorithms. 421 

For feature selection, we used 14 algorithms that had been implemented in ShinyLearner(78). Table 1 422 

lists each of the algorithms, along with a description and high-level category for each algorithm. 423 

For all software implementations that supported it, we set the parameters so that the classification 424 

algorithms would produce probabilistic predictions and use a single process/thread. Unless otherwise 425 

noted, we used default hyperparameter values for each algorithm, as dictated by the respective software 426 

implementations. For feature selection, we used n_features_to_select=5 and step=0.1 for the 427 

sklearn/random_forest_rfe and sklearn/svm_rfe methods to balance computational efficiency with the size 428 

of the datasets we used. For sklearn/random_forest_rfe, we specified n_estimators=50 because execution 429 

failed when fewer estimators were used. 430 
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To analyze the benchmark results, we wrote scripts for Python (version 3.6)(83) and the R statistical 431 

software (version 4.02)(84). We also used the corrplot(85), cowplot(86), ggrepel(87), and tidyverse(88) 432 

packages. 433 

Analysis phases 434 

We performed this study in five phases (Figure 1). In each phase, we modulated either the data used or 435 

the optimization approach. In Analysis 1, we used gene-expression predictors only and used default 436 

hyperparameter values for each classification algorithm. In Analysis 2, we used clinical predictors only 437 

and default hyperparameter values for each classification algorithm. In Analysis 3, we used gene-438 

expression and clinical predictors and default hyperparameter values. In Analysis 4, we used both types of 439 

predictors and selected hyperparameter values via nested cross-validation. In Analysis 5, we used both 440 

types of predictors and selected the most relevant n features via nested cross validation before performing 441 

classification. Because it would be exponentially more computationally expensive to perform 442 

hyperparameter optimization in this phase, we used default hyperparameter values for the feature-443 

selection and classification algorithms. 444 

In each phase, we used Monte Carlo cross validation. For each iteration, we randomly assigned the patient 445 

samples to either a training set or test set, stratified by class. We assigned approximately 2/3 of the patient 446 

samples to the training set. We then made predictions for the test set and evaluated the predictions using 447 

diverse metrics (see below). We repeated this process (an iteration) multiple times and used the iteration 448 

number as a random seed when assigning samples to the training or test set (unless otherwise noted). 449 

ShinyLearner relays this seed to the underlying algorithms, where applicable. 450 

During Analysis 1, we evaluated the number of Monte Carlo iterations that would be necessary to provide 451 

a stable performance estimate. For the mlr/randomForest, sklearn/svm, and weka/Bagging classification 452 

algorithms, we executed 100 iterations for datasets GSE10320 (predicting relapse vs. non-relapse for 453 

Wilms tumor patients) and GSE46691 (predicting early metastasis following radical prostatectomy). As 454 
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the number of iterations increased, we calculated the cumulative average of the AUROC for each 455 

algorithm. After performing at most 40 iterations, the cumulative averages did not change more than 0.01 456 

over sequences of 10 iterations (Figures S27-S28). To be conservative, we used 50 iterations in Analysis 457 

1, 2, and 3. In Analysis 4 and Analysis 5, we used 5 iterations because hyperparameter optimization and 458 

feature selection are CPU and memory intensive. When optimizing hyperparameters (Analysis 4), we 459 

used Monte Carlo cross validation on each training set (5 nested iterations) to estimate which 460 

hyperparameter combination was most effective for each classification algorithm; we used AUROC as a 461 

metric in these evaluations. When performing feature selection (Analysis 5), we also used nested Monte 462 

Carlo cross validation (5 iterations). In each iteration, we ranked the features using each feature-selection 463 

algorithm and performed classification using the top-n features. We repeated this process for each 464 

classification algorithm and used n values of 1, 10, 100, 1000, and 10000. For a given combination of 465 

feature-selection algorithm and classification algorithm, we identified the n value that resulted in the 466 

highest AUROC. We used this n value in the respective outer fold. Finally, when identifying the most 467 

informative features across Monte Carlo iterations, we used the Borda Count method to combine the 468 

ranks(63). 469 

While executing each analysis phase, we encountered some situations in which we did not obtain results 470 

for all combinations of class variable and algorithms. We describe these exceptions below. 471 

Analysis 1. On iteration 34, the weka/RBFNetwork algorithm did not converge after 24 hours of execution 472 

time for one of the datasets. We manually changed the random seed from 34 to 134, and it converged in 473 

minutes. 474 

Analysis 2. The mlr/glmnet algorithm failed three times due to an internal error. We limited the results for 475 

this algorithm to the iterations that completed successfully. The total number of classification problems 476 

was smaller for this analysis than for Analysis 1 because no clinical predictors were available for some 477 

class variables. 478 
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Analysis 3. Again, on iteration 34, the weka/RBFNetwork algorithm did not converge after 24 hours of 479 

execution time for one of the datasets. We manually changed the random seed from 34 to 134, and it 480 

converged in minutes. The total number of classification problems was less than for Analysis 1 because 481 

no clinical predictors were available for some class variables. 482 

Analysis 4. During nested Monte Carlo cross validation, we specified a time limit of 168 hours under the 483 

assumption that some hyperparameter combinations would be especially time intensive. A total of 1022 484 

classification tasks failed either due to this limit or due to small sample sizes. We ignored these 485 

hyperparameter combinations when determining the top-performing combinations. Most failures were 486 

associated with the mlr/h2o.gbm and mlr/ksvm classification algorithms. 487 

Analysis 5. During nested Monte Carlo cross validation, we specified a time limit of 168 hours. A total of 488 

574 classification tasks failed either due to this limit or due to small sample sizes. We ignored these tasks 489 

when seeking to select an optimal number of features. 490 

Computing resources 491 

We performed these analyses using Linux servers supported by Brigham Young University’s Office of 492 

Research Computing and Life Sciences Information Technology. In addition, we used virtual servers in 493 

Google’s Compute Engine environment supported by the Institute for Systems Biology and the United 494 

States National Cancer Institute Cancer Research Data Commons. When multiple central-processing 495 

cores were available on a given server, we executed tasks in parallel using GNU Parallel(89). 496 

Performance metrics 497 

In outer cross-validation folds, we used diverse metrics to quantify classification performance. These 498 

included accuracy (proportion of accurate predictions), AUROC(90), balanced accuracy (proportion of 499 

accurate predictions weighted by class-label frequency), Brier score(91), F1 score(92), false discovery 500 

rate (false positives divided by total number of positives), false positive rate, Matthews correlation 501 
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coefficient(93), mean misclassification error (MMCE), negative predictive value, positive predictive 502 

value (precision), and recall (sensitivity). Many of these metrics require discretized predictions; we relied 503 

on the machine-learning packages that implemented each algorithm to convert probabilistic predictions to 504 

discretized predictions. 505 
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Tables 533 

Table 1: Summary of feature-selection algorithms. We evaluated 14 feature-selection algorithms that 534 

were available in ShinyLearner and had been implemented across 3 open-source machine-learning 535 

libraries. The abbreviation for each algorithm contains a prefix that indicates which machine-learning 536 

library implemented the algorithm ( mlr = Machine learning in R, sklearn = scikit-learn, weka = WEKA: 537 

The workbench for machine learning). For each algorithm, we provide a brief description of the 538 

algorithmic approach; we extracted these descriptions from the libraries that implemented the algorithms. 539 

In addition, we assigned high-level categories that indicate whether the algorithms evaluate a single 540 

feature (univariate) or multiple features (multivariate) at a time. In some cases, the individual machine-541 

learning libraries aggregrated algorithm implementations from third-party packages. In these cases, we 542 

cite the machine-learning library and the third-party package. When available, we also cite papers that 543 

describe the algorithmic methodologies used. 544 

Abbreviation Description Category 

mlr/cforest.importance Uses the permutation principle (based on Random Forests) to calculate 

standard and conditional importance of features(79,95,96) 

Multivariate 

mlr/kruskal.test Uses the Kruskal-Wallis rank sum test(79,97) Univariate 

mlr/randomForestSRC.rfsrc Uses the error rate for trees grown with and without a given feature(79,98,99) Multivariate 

mlr/randomForestSRC.var.select Variable selection using minimal depth (Random Forests)(79,98,99) Multivariate 

sklearn/mutual_info Calculates the mutual Information between two feature clusterings(80,100) Univariate 

sklearn/random_forest_rfe Recursively eliminates features based on Random Forests 

classification(51,80) 

Multivariate 

sklearn/svm_rfe Recursively eliminates features based on support vector classification(80,101) Multivariate 

weka/Correlation Calculates Pearson’s correlation coefficient between each feature and the 

class(81,102) 

Univariate 

weka/GainRatio Measures the gain ratio of a feature with respect to the class(81,103) Univariate 
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weka/InfoGain Measures the information gain of a feature with respect to the class(81,103) Univariate 

weka/OneR Evaluates the worth of a feature using the OneR classifier(81,104) Univariate 

weka/ReliefF Repeatedly samples an instance and considers the value of a given attribute 

for the nearest instance of the same and different class(81,105) 

Multivariate 

weka/SVMRFE Recursively eliminates features based on support vector classification(81,101) Multivariate 

weka/SymmetricalUncertainty Measures the symmetrical uncertainty of a feature with respect to the 

class(81,106) 

Univariate 

 545 

  546 
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Table 2: Summary of classification algorithms. We compared the predictive ability of 50 classification 547 

algorithms that were available in ShinyLearner and had been implemented across 3 open-source machine-548 

learning libraries. The abbreviation for each algorithm contains a prefix indicating which machine-549 

learning library implemented the algorithm ( mlr = Machine learning in R, sklearn = scikit-learn, weka = 550 

WEKA: The workbench for machine learning). For each algorithm, we provide a brief description of the 551 

algorithmic approach; we extracted these descriptions from the libraries that implemented the algorithms. 552 

In addition, we assigned high-level categories that characterize the algorithmic methodology used by each 553 

algorithm. In some cases, the individual machine-learning libraries aggregrated algorithm 554 

implementations from third-party packages. In these cases, we cite the machine-learning library and the 555 

third-party package. When available, we also cite papers that describe the algorithmic methodologies 556 

used. Finally, for each algorithm, we indicate the number of unique hyperparameter combinations that we 557 

evaluated in Analysis 4. 558 

Abbreviation Description Category Combos 

mlr/C50 C5.0 Decision Trees(79,107) Tree- or rule-based 32 

mlr/ctree Conditional Inference Trees(79,108) Tree- or rule-based 4 

mlr/earth Multivariate Adaptive Regression Splines(79,109) Linear discriminant 36 

mlr/gausspr Gaussian Processes(79,110) Kernel-based 3 

mlr/glmnet Generalized Linear Models with Lasso or Elasticnet 

Regularization(79,111) 

Linear discriminant 3 

mlr/h2o.deeplearning Deep Neural Networks(79,112,113) Artificial neural 

network 

32 

mlr/h2o.gbm Gradient Boosting Machines(79,112,114) Ensemble 16 

mlr/h2o.randomForest Random Forests(51,79,112) Ensemble 12 

mlr/kknn k-Nearest Neighbor(79,115) Miscellaneous 6 
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mlr/ksvm Support Vector Machines(50,79,110) Kernel-based 40 

mlr/mlp Multi-Layer Perceptron(49,79,116) Artificial neural 

network 

14 

mlr/naiveBayes Naive Bayes(79,117) Miscellaneous 2 

mlr/randomForest Breiman and Cutler’s Random Forests(79,118) Ensemble 12 

mlr/randomForestSRC Fast Unified Random Forests for Survival, Regression, and 

Classification(79,98,99) 

Ensemble 108 

mlr/ranger A Fast Implementation of Random Forests(79,119) Ensemble 12 

mlr/rpart Recursive Partitioning and Regression Trees(79,120,121) Tree- or rule-based 1 

mlr/RRF Regularized Random Forests(79,122) Ensemble 24 

mlr/sda Shrinkage Discriminant Analysis(79,123) Linear discriminant 2 

mlr/svm Support Vector Machines(59,79,117) Kernel-based 28 

mlr/xgboost eXtreme Gradient Boosting(124) Ensemble 3 

sklearn/adaboost AdaBoost(80,125) Ensemble 8 

sklearn/decision_tree A decision tree classifier(80) Tree- or rule-based 96 

sklearn/extra_trees An extra-trees classifier(80) Ensemble 24 

sklearn/gradient_boosting Gradient Boosting for classification(80,114) Ensemble 6 

sklearn/knn k-nearest neighbors vote(47,80) Miscellaneous 12 

sklearn/lda Linear Discriminant Analysis(80) Linear discriminant 3 

sklearn/logistic_regression Logistic Regression(80,126) Kernel-based 32 

sklearn/multilayer_perceptron Multi-layer Perceptron(49,80) Artificial neural 

network 

24 

sklearn/random_forest Random Forests(51,80) Ensemble 24 
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 28 

sklearn/sgd Linear classifiers with stochastic gradient descent 

training(80,127) 

Linear discriminant 36 

sklearn/svm C-Support Vector Classification(50,80) Kernel-based 32 

weka/Bagging Bagging a classifier to reduce variance(81,128) Ensemble 32 

weka/BayesNet Bayes Network learning using various search algorithms 

and quality measures(81,129) 

Miscellaneous 2 

weka/DecisionTable Simple decision table majority classifier(81,130) Tree- or rule-based 6 

weka/HoeffdingTree Hoeffding tree(81,131) Tree- or rule-based 32 

weka/HyperPipes HyperPipe classifier(81) Miscellaneous 1 

weka/J48 Pruned or unpruned C4.5 decision tree(81,132) Tree- or rule-based 96 

weka/JRip Repeated Incremental Pruning to Produce Error 

Reduction(81,133) 

Tree- or rule-based 12 

weka/LibLINEAR LIBLINEAR - A Library for Large Linear 

Classification(81,134) 

Kernel-based 16 

weka/LibSVM Support vector machines(59,81) Kernel-based 32 

weka/NaiveBayes A Naive Bayes classifier using estimator classes(81,135) Miscellaneous 3 

weka/OneR 1R (1 rule) classifier(81,104) Tree- or rule-based 3 

weka/RandomForest Forest of random trees(51,81) Ensemble 18 

weka/RandomTree Tree that considers K randomly chosen attributes at each 

node(81) 

Tree- or rule-based 2 

weka/RBFNetwork Normalized Gaussian radial basis function network(81) Miscellaneous 18 

weka/REPTree Fast decision tree learner (reduced-error pruning with 

backfitting)(81) 

Tree- or rule-based 16 

weka/SimpleLogistic Linear logistic regression models(81,136,137) Linear discriminant 5 

weka/SMO Sequential minimal optimization for a support vector Kernel-based 20 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.442940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.442940
http://creativecommons.org/licenses/by/4.0/


 29 

classifier(81,138–140) 

weka/VFI Voting feature intervals(81,141) Miscellaneous 6 

weka/ZeroR 0-R classifier (predicts the mean for a numeric class or the 

mode for a nominal class)(81) 

Baseline 1 

 559 
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Figures 561 

 562 

Figure 1: Overview of analysis scenarios. This study consisted of five separate but related analyses. 563 

This diagram indicates which data type(s) was/were used and whether we attempted to improve predictive 564 

performance via hyperparameter optimization or feature selection in each analysis. 565 
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 567 

Figure 2: Comparison of ranks for classification algorithms across performance metrics. We 568 

calculated 13 performance metrics for each classification task. This graph shows results for Analysis 1 569 

(using only gene-expression predictors). For each combination of dataset and class variable, we averaged 570 

the metric scores across all Monte Carlo cross-validation iterations. For some metrics (such as Accuracy), 571 

a relatively high value is desirable, whereas the opposite is true for other metrics (such as FDR). We 572 

ranked the classification algorithms such that relatively low ranks indicated more desirable performance 573 

for metrics and averaged these ranks across the dataset/class combinations. This graph illustrates that the 574 

best-performing algorithms for some metrics do not necessarily perform optimally according to other 575 

metrics. AUROC = area under the receiver operating characteristic curve. FDR = false discovery rate. 576 

FNR = false negative rate. FPR = false positive rate. MCC = Matthews correlation coefficient. MMCE = 577 

mean misclassification error. NPV = negative predictive value. PPV = positive predictive value. 578 
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 579 

Figure 3: Tradeoff between execution time and predictive performance for classification 580 

algorithms. When using gene-expression predictors only (Analysis 1), we calculated the median area 581 

under the receiver operating characteristic curve (AUROC) across 50 iterations of Monte Carlo cross 582 

validation for each combination of dataset, class variable, and classification algorithm. Simultaneously, 583 

we measured the median execution time (in seconds) for each algorithm across these scenarios. 584 

sklearn/logistic_regression attained the top predictive performance and was the 4th fastest 585 
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algorithm (median = 5.3 seconds). Values on the y-axis have been log-transformed (base 10). We used 586 

arbitrary AUROC thresholds to categorize the algorithms based on low, moderate, and high predictive 587 

ability. 588 
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 590 

Figure 4: Relative predictive performance when training on gene-expression predictors alone 591 

vs. using clinical predictors alone or gene-expression predictors in combination with clinical 592 

predictors. In both A and B, we used as a baseline the predictive performance that we attained using 593 

gene-expression predictors alone (Analysis 1). We quantified predictive performance using the area under 594 

the receiver operating characteristic curve (AUROC). In A, we show the relative increase or decrease in 595 

performance when using clinical predictors alone (Analysis 2). In most cases, AUROC values decreased; 596 

however, in a few cases, AUROC values increased (by as much as 0.42). In B, we show the relative 597 

change in performance when using gene-expression predictors in combination with clinical predictors 598 

(Analysis 3). For 82/109 (75%) of dataset/class combinations, include clinical predictors had no effect on 599 

performance. However, for the remaining 27 combinations, the AUROC improved by as much as 0.15 600 

and decreased by as much as 0.09. 601 
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 602 

Figure 5: Relative predictive performance when using default algorithm hyperparameters and all 603 

features vs. tuning hyperparameters or selecting features. In both A and B, we use as a baseline the 604 

predictive performance that we attained using default hyperparameters for the classification algorithms 605 

(Analysis 3). We quantified predictive performance using the area under the receiver operating 606 

characteristic curve (AUROC). In A, we show the relative increase or decrease in performance when 607 

tuning hyperparameters within each training set (Analysis 4). In most cases, AUROC values increased. In 608 

B, we show the relative change in performance when performing feature selection within each training set 609 

(Analysis 5). Predictive increased for most dataset / class-variable combinations. The horizontal dashed 610 

lines indicate the median improvement across all dataset / class-variable combinations. 611 
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Figure 6: Relative performance of classification algorithms using gene-expression and clinical 613 

predictors and performing feature selection. We predicted patient states using gene-expression and 614 

clinical predictors with feature selection (Analysis 5). We used nested cross validation to estimate which 615 

features would be optimal for each algorithm in each training set. For each combination of dataset, class 616 

variable, and classification algorithm, we calculated the arithmetic mean of area under the receiver 617 

operating characteristic curve (AUROC) values across 5 iterations of Monte Carlo cross-validation. Next 618 

we sorted the algorithms based on the average rank across all dataset/class combinations. Each data point 619 

that overlays the box plots represents a particular dataset/class combination. The algorithm rankings 620 

followed similar trends as Analyses 3 and 4 (Figures S10-S11). 621 
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 622 

Figure 7: Relative classification performance per combinations of feature-selection and 623 

classification algorithm. For each combination of dataset and class variable, we averaged the area under 624 

receiver operating characteristic curve (AUROC) values across all Monte Carlo cross-validation 625 
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iterations. Then for each classification algorithm, we ranked the feature-selection algorithms based on 626 

AUROC scores across all datasets and class variables. Lower ranks indicate better performance. Dark-red 627 

boxes indicate cases where a particular feature-selection algorithm was especially effective for a 628 

particular classification algorithm. The opposite was true for dark-blue boxes. 629 
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Additional Data Files 631 

Additional Data File 1: Summary of predictive performance per dataset when using gene-632 

expression predictors. We predicted patient states using gene-expression predictors only (Analysis 1). 633 

For each combination of dataset, class variable, and classification algorithm, we calculated the arithmetic 634 

mean of area under the receiver operating characteristic curve (AUROC) values across 50 iterations of 635 

Monte Carlo cross-validation. Next we calculated the minimum, first quartile (Q1), median, third quartile 636 

(Q3), and maximum for these values across the algorithms. Finally, we sorted the algorithms in 637 

descending order based on median values. Each row represents a particular dataset/class combination. 638 

Additional Data File 2: Summary of predictive performance per dataset when using clinical 639 

predictors. We predicted patient states using clinical predictors only (Analysis 2). For each combination 640 

of dataset, class variable, and classification algorithm, we calculated the arithmetic mean of area under the 641 

receiver operating characteristic curve (AUROC) values across 50 iterations of Monte Carlo cross-642 

validation. Next we calculated the minimum, first quartile (Q1), median, third quartile (Q3), and 643 

maximum for these values across the algorithms. Finally, we sorted the algorithms in descending order 644 

based on median values. Each row represents a particular dataset/class combination. For some 645 

dataset/class combinations, no clinical predictors were available; these combinations are excluded from 646 

this file. 647 

Additional Data File 3: Summary of predictive performance per dataset when using gene-648 

expression and clinical predictors. We predicted patient states using gene-expression and clinical 649 

predictors (Analysis 3). For each combination of dataset, class variable, and classification algorithm, we 650 

calculated the arithmetic mean of area under the receiver operating characteristic curve (AUROC) values 651 

across 50 iterations of Monte Carlo cross-validation. Next we calculated the minimum, first quartile (Q1), 652 

median, third quartile (Q3), and maximum for these values across the algorithms. Finally, we sorted the 653 

algorithms in descending order based on median values. Each row represents a particular dataset/class 654 
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combination. For some dataset/class combinations, no clinical predictors were available; these 655 

combinations are excluded from this file. 656 

Additional Data File 4: Summary of predictive performance per dataset when using gene-657 

expression and clinical predictors and performing hyperparameter optimization. We predicted 658 

patient states using gene-expression and clinical predictors (Analysis 4). For classification algorithms (n = 659 

47) that evaluated multiple hyperparameter combinations, we selected based on performance in each 660 

respective training set. For each combination of dataset, class variable, and classification algorithm, we 661 

calculated the arithmetic mean of area under the receiver operating characteristic curve (AUROC) values 662 

across 5 (outer) iterations of Monte Carlo cross-validation. Next we calculated the minimum, first quartile 663 

(Q1), median, third quartile (Q3), and maximum for these values across the algorithms. Finally, we sorted 664 

the algorithms in descending order based on median values. Each row represents a particular dataset/class 665 

combination. 666 

Additional Data File 5: Summary of predictive performance per dataset when using gene-667 

expression and clinical predictors and performing feature selection. We predicted patient states using 668 

gene-expression and clinical predictors (Analysis 5). Using each respective training set, we performed 669 

feature selection for each of 14 feature-selection algorithms and performed classification using n top-670 

ranked features. For each combination of dataset, class variable, and classification algorithm, we 671 

calculated the arithmetic mean of area under the receiver operating characteristic curve (AUROC) values 672 

across 5 (outer) iterations of Monte Carlo cross-validation. Next we calculated the minimum, first quartile 673 

(Q1), median, third quartile (Q3), and maximum for these values across the algorithms. Finally, we sorted 674 

the algorithms in descending order based on median values. Each row represents a particular dataset/class 675 

combination. 676 

Additional Data File 6: Summary of datasets used. This file contains a unique identifier for each 677 

dataset, indicates whether gene-expression microarrays or RNA-Sequencing were used to generate the 678 

data, and indicates the name of the class variable from the original dataset. In addition, we assigned 679 
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standardized names and categories as a way to support consistency across datasets. The file lists any 680 

clinical predictors that were used in the analyses as well as the number of samples and genes per dataset. 681 

Additional Data File 7: Classification algorithm hyperparameter combinations This file indicates all 682 

hyperparameter combinations that we evaluated via nested cross-validation in Analysis 4. 683 
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