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Abstract

Alternative splicing (AS) is a highly-regulated post-transcriptional mechanism known to modulate isoform 

expression within genes and contribute to cell-type identity. However, the extent to which alternative isoforms 

establish co-expression networks that may relevant in cellular function has not been explored yet. Here, we 

present acorde, a pipeline that successfully leverages bulk long reads and single-cell data to confidently detect 

alternative isoform co-expression relationships. To achieve this, we developed and validated percentile 

correlations, a novel approach that overcomes data sparsity and yields accurate co-expression estimates from 

single-cell data. Next, acorde uses correlations to cluster co-expressed isoforms into a network, unraveling cell 

type-specific alternative isoform usage patterns. By selecting same-gene isoforms between these clusters, we 

subsequently detect and characterize genes with co-differential isoform usage (coDIU) across neural cell types. 

Finally, we predict functional elements from long read-defined isoforms and provide insight into biological 

processes, motifs and domains potentially controlled by the coordination of post-transcriptional regulation.
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Introduction 

Single-cell RNA-seq (scRNA-seq) has revolutionized transcriptomics analysis, especially as the 

development of technologies with increasingly higher throughputs has enabled the 

processing of thousands of single cells simultaneously, boosting the amount of biological 

diversity that can be captured in a sequencing experiment1. The technology has been 

extensively applied to the discovery of new cell types and the characterization of their 

transcriptional profiles, resulting in the definition of cell type marker genes2–7. Even though 

scRNA-seq datasets can encode several levels of granularity in the form of cell subtypes, these

studies rely on the low number of features required to recapitulate the cell type structure of 

the data8, which situates cell type characterization efforts at the baseline of understanding the

intricacy of single-cell biology. scRNA-seq studies have also tackled transcriptional dynamics 

and how they relate to cell type properties. These include methods for the study of dynamic 

processes, namely pseudotime9,10 and RNA-velocity11 analyses, which have provided insight on

cell differentiation and transition mechanisms between cell states7,12–16. Moreover, novel 

methods have been developed to convey the inference of gene regulatory networks (GRNs) to

the single-cell level17 in an attempt to combine single-cell information with extant knowledge 

to infer relationships between genes and transcriptional regulators at a higher resolution. 

Single-cell research is nevertheless far from realizing its full potential. On the contrary, the 

timing is now optimal for the field to undertake the investigation of deeper layers of cellular 

complexity. In particular, the investigation of Alternative Splicing (AS) and isoform expression 

dynamics has remained a challenge to the field. Reasons for this include the uncertainty of 

short read-based isoform quantification, which is exacerbated by the lower number of 

available reads per transcript in comparison to bulk libraries18, and the fact that the most 
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popular scRNA-seq methods are heavily 3’ end biased, which precludes the unambiguous 

identification of alternative transcript variants19. Current methods for the study of isoforms in 

single cells therefore rely on alternative metrics that either avoid isoform-level expression 

estimation completely20,21 or exclusively consider individual splicing events22–26, generally 

leaving isoform characterization aside, with some recent exceptions27. Meanwhile, long read 

RNA sequencing (lrRNA-seq) of single cells is beginning to emerge an alternative approach to 

mitigate this ambiguity, given that it successfully grasps how individual events are combined 

into alternative isoforms19. Long read studies have therefore expanded the field’s notions of 

cell type-specific splicing from event inclusion towards isoform selection patterns and showed

that cell type-specific isoform expression can be detected in both broad types as well as cell 

subtypes28–32. Unfortunately, the sequencing depth constraints intrinsic to long read 

protocols19 have limited the amount of isoform diversity that can be captured by single-cell 

long read transcriptomics28–30, and datasets generally show low levels of redundancy between 

cells of the same cell type.

Notwithstanding this limited scenario, there are a number of relevant questions regarding the

importance of splicing for cell identity and function that can only be resolved by evaluating 

isoform expression at the single-cell level. In point of fact, splicing differences have been 

shown to discriminate cell types with an accuracy comparable to that obtained using gene 

expression33, while integrating AS and gene expression changes has led to the discovery of cell

subtypes and states that were otherwise not detected27,34–36. Especially relevant among these 

inquiries is the much-debated issue of whether individual cells express one or several 

isoforms, that is, whether the isoform diversity observed in bulk studies is recapitulated by 

each single cell or, alternatively, arises as a result of the combination of multiple cells, each of 
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which uniquely express one of the gene’s isoforms. Ever since the publication of the first 

scRNA-seq studies, short reads have been used to answer this question, usually via the 

characterization of splicing event -rather than isoform expression- modalities. Successive 

studies have provided non-conclusive results, with evidence of bimodal splicing patterns22,37,38 

as well as concerns regarding the relationship between bimodal isoform detection and 

technical noise18,39, a controversy that suggests that new analytical and computational 

approaches are needed to understand the isoform landscape of single cells.

Another pending question for the field is whether isoform expression programs involve co-

expression relationships between transcript variants from different genes. So far, the 

application of long read technologies to single-cell data has served to unravel coordinated 

event choice patterns within isoforms of the same gene40,41, however, cross-gene isoform 

expression networks have not been investigated. In other words, there have been no studies 

addressing potential codependency between genes regarding the selection of transcript 

variants from their isoform repertoire, or the implications of this coordination for cell-state 

and cell-type properties. This is not only related to the general constraints of single-cell 

isoform studies, but also to the lack of computational methods and mathematical models to 

extract this complex signal from the data. In spite of the present research gap, isoform co-

expression networks are an anticipated consequence of the regulation of splicing by RNA 

binding proteins (RBPs) and other splicing factors, and their investigation constitutes an 

opportunity to gain insight on the functional role of AS. Moreover, given that a multiple cell 

type and high cell throughput context such as that of scRNA-seq data constitutes a far more 

suitable data scenario to that of bulk RNA-seq, this is undoubtedly a timely inquiry to make.
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In the present study, we hypothesize that isoform expression coordination exists as a result of

AS regulation, and that this can be computationally detected in the form of isoform groups 

showing co-variation across cell types. To demonstrate this hypothesis, we have designed an 

end-to-end, data-intensive pipeline for the study of isoform networks (Figure 1). First and 

foremost, we employed a hybrid strategy where bulk long-reads and single-cell Illumina 

sequencing were integrated to estimate isoform expression at the single cell level. To unlock 

the limitations of extant correlation metrics in the single-cell context42, we developed a novel 

strategy to obtain noise-robust correlation estimates in scRNA-seq data, and a semi-

automated clustering approach to detect modules of co-expressed isoforms across cell types. 

We additionally re-defined and implemented Differential Isoform Usage (DIU) and co-

Differential Isoform Usage (coDIU) analyses in order to leverage the multiple cell types 

contained in single-cell datasets. Finally, to couple these analyses with a biologically 

interpretable readout, we incorporated a functional annotation step in which several 

databases and prediction tools were integrated to add isoform-specific functional information

(Figure 1). 

We have hereby applied this pipeline (Figure 1) to the analysis of a publicly available mouse 

neural dataset, including published scRNA-seq Smart-Seq2 (primary visual cortex, generated 

by Tasic et al.43) and bulk ENCODE PacBio long-read data (mouse cortex and hippocampus, 

generated by Wyman et al.44). As a result, we successfully detected cell type-specific co-

expression of isoforms in a manner that was independent of gene-level expression. 

Furthermore, we demonstrated that these isoforms encode shared functional properties, 

highlighting the role of post-transcriptional processing as an additional regulatory layer that 
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fine-tunes cellular functions and contributes to encode cell type identity. This novel pipeline 

has been implemented in the R package acorde (https://github.com/ConesaLab/acorde).

Results

Enabling multi-group differential expression of isoforms in single-cell data

Traditionally, RNA-seq studies use publicly available reference transcriptomes such as RefSeq 

and ENSEMBL for short read isoform quantification. However, most tissues and cell types will 

express only a subset of the genes and isoforms contained in the reference, with previous 

studies showing that isoform detection accuracy increases when adopting tissue-specific 

isoform sets as a reference for mapping45. Long read technologies have the potential to 

achieve this, while also expanding the reference with novel isoforms that have not yet been 

annotated46. Given the low depth of single-cell long read datasets19, we employed a bulk 

PacBio dataset obtained from ENCODE44 to define a mouse, neural-specific transcriptome, 

that, after extensive curation using the SQANTI3 toolkit 

(https://github.com/ConesaLab/SQANTI3) contained 36,986 isoforms belonging to 12,692 

genes (see Supplementary Note 1).

To quantify the expression of the long read-defined isoforms at the single-cell level, we made 

use of a publicly available, deeply sequenced, full-length, short-read single-cell RNA-seq 

dataset by Tasic et al.43. We retained 1,591 cells after quality control (see Methods). Using the 

labels from the original characterization of the dataset, we assigned cells to 7 broad cell types,

5 glial (microglia, endothelial cells, oligodendrocytes, oligodendrocyte precursor cells (OPCs) 
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and astrocytes) and 2 neural (GABA-ergic and glutamatergic neurons), each of which can be 

divided into several, distinct subtypes (Supplementary Figure 1A). To target potential 

differential isoform selection between cell types, we selected genes that retained more than 

one isoform after quality filtering, ultimately keeping 13,832 isoforms from 4,591 genes.

Of note, we observed a drastic cell number imbalance between neural (~720 cells/cell type) 

and glial cell types (~30 cells/cell type) in the Tasic dataset, which resulted in the 

underestimation of transcriptional differences between non-neural types (Supplementary 

Figure 1B). In order to facilitate downstream analysis, we used a downsampling approach 

(Methods) to balance the cell type abundances in the dataset while effectively preserving the 

data structure (Supplementary Figure 1C). Next, to select isoforms with robust co-variation 

and non-constitutive expression, we applied a multi-group strategy to detect isoforms 

showing Differential Expression (DE) in at least one cell type, combining the ZinBWaVE zero-

expression weighting strategy47 with bulk-designed DE methods DESeq248 and edgeR49 (see 

Methods). Upon testing, we detected 5,711 DE isoforms using edgeR (FDR<0.05) and 7,714 

using DESeq2 (FDR<0.05). To maximize sensitivity and ensure a broad iso-transcriptome 

analysis, we considered an isoform to be DE if it was detected by at least one of these 

methods, resulting in 10,100 isoforms from 4,305 genes (Supplementary Figure 2). Since two 

or more isoforms with differential cell type expression are required to form co-splicing 

relationships (see Methods), we finally retained 8,967 isoforms from 3,172 genes with multiple

DE isoforms for downstream analysis.

To ensure that downsampling had no effect on DE results, a validation experiment for multi-

group DE analysis was conducted, in which we performed 50 runs of random neural cell 
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sampling (see Methods). Although DESeq2 proved to be slightly more robust across 

independent runs than edgeR, Jaccard Index values indicated that the majority of isoforms 

were consistently detected as DE (DESeq2: mean no. of DE isoforms = 6,908±101, mean 

Jaccard Index = 0.84±0.02; edgeR: mean no. of DE isoforms = 6,016±410, mean Jaccard Index =

0.74±0.02). In addition, this validation run showed that considering the union of edgeR and 

DESeq2 results contributed to improve robustness (mean no. of DE isoforms in union 

between methods = 9,399±248, Jaccard Index = 0.82±0.01).

Detecting isoforms showing cell type-level co-expression

Co-expression signals in single-cell data are weak and often result in poor performance of 

traditional correlation metrics and network inference methods42,50. Although data 

transformation approaches51 and alternative metrics42 have been proposed, these are more 

complex to apply and considerably less interpretable, respectively. Furthermore, most of 

these studies have only investigated gene level co-expression17, often ignoring the AS 

regulatory landscape. To address these limitations, we implemented a percentile correlation 

strategy: a simple, scalable approach to overcome single-cell noise in isoform co-expression 

studies (Figure 2A).

Our approach considers cell-type identity to be defined by context-specific regulation of gene 

expression programs, and within-cell type stochasticity to arise from a combination of 

technical noise52,53 and biological mechanisms such as transcriptional bursting54, which 

translate into the sparsity and heterogeneous expression patterns typically observed in 

scRNA-seq (Supplementary Figure 3A) and result in high variance across all levels of 
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expression (Supplementary Figure 3B). Together, these effects mask the co-expression signal 

in the data and tend to yield low correlation values when using traditional metrics (Figure 2B). 

To overcome this problem, we treat single cells of the same cell-type as biological replicates 

that represent the state of a delimited cell population but are differently affected by the 

aforementioned combination of technical and biological forces. In this context, the expression

distribution of any given transcript across the population can be considered as the signature 

of the transcript in that cell-type. To translate these assumptions into a metric, every isoform’s

expression within a cell type is first summarized into an expression profile, where single-cell 

count values are replaced by 10 percentile values (deciles) (Figure 2A, Methods). Intuitively, 

this reduced number of values synthesizes the approximate behavior of that transcript in the 

cell type, as inferred given cell-level observations. Next, to grasp expression distribution 

similarities across cell types, Pearson correlation between transcript pairs is computed using 

the percentile-summarized expression, resulting in a meaningful distribution of correlation 

values (Figure 2B). In this manner, we extend the notion of cell-type markers to rely not only 

on mean or frequency of expression, but on their actual distributional pattern. Our co-

expression metric therefore by-passes cell-level matching of individual observations, 

providing a correlation estimate that is both robust to the uncertainty of single cell expression

and interpretable as a measure of expression similarity. Of note, changing percentile number 

did not have a noticeable effect on the resulting correlation values (Supplementary Figure 3C),

which were considerably higher than those generated using traditional metrics, successfully 

unlocking co-expression analysis in single-cell data. 

To detect modules of co-expressed isoforms, we used the percentile correlation matrix as a 

distance matrix for hierarchical clustering, and designed a semi-automated cluster refinement
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approach to ensure maximal profile similarity within clustered modules (Figure 3A, see 

Methods for a detailed description). Briefly, we first used the dynamicTreeCut R package55 to 

set adaptive thresholds and find clusters dynamically within the dendrogram. Among the 

resulting 152 clusters, some showed highly similar (i.e. redundant) expression profiles 

(Supplementary Figure 4A) and were therefore merged by re-clustering using the mean scaled

expression of the isoforms in each cluster (i.e. clustering of metatranscripts, see Methods), 

obtaining 60 isoform clusters. Among them, 18 groups presented noisy expression profiles 

(Supplementary Figure 4B) and their isoforms were therefore re-assigned to the remaining 42 

clusters. However, fully automated re-clustering was not effective to eliminate redundancy in 

some cases. As a result, conflicting cases were inspected and merged, generating a final 

number of 19 distinct clusters containing 8,688 isoforms (96,8% of total) and representing 

diverse expression modalities across the 7 broad cell types (Figure 3B).

Validation of percentile correlations on simulated data

Building on studies reporting the poor performance of popular correlation metrics in single-

cell data, authors have attempted the implementation of sparsity-aware measurements51,56 

and reported the potential of other alternatives to compute similarity, such as proportionality 

metrics42. Here, we present an interpretable, scalable and biology-aware alternative to single-

cell co-expression studies based on Pearson or Spearman correlation. However, to better 

understand how percentile correlation performs in comparison to extant correlation metrics, 

we compared it to Pearson, Spearman and zero-inflated Kendall correlations56 and one 

proportionality metric, rho (ρ)57 using simulated data. 
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Given that there are -to the best of our knowledge- no scRNA-seq data simulators that include

transcript co-expression patterns, we designed a simulation strategy (Supplementary Figure 

5A, Methods) to generate an appropriate validation framework for our metric. Briefly, we 

applied SymSim58 to simulate a single-cell RNA-seq dataset (8 cell types, 1,000 cells and 8,000 

transcripts) and used the simulated expression values to artificially create 3,000 synthetic 

transcripts showing 15 different expression profiles across the 8 cell types (Supplementary 

Figure 5B).  As a result, our simulated dataset contained 15 simulated clusters with distinct 

expression profiles. Among them, clusters 1-5, 6-10 and 11-15 included transcripts showing 

high expression in one, two and three cell types respectively, gradually increasing simulated 

pattern complexity (Supplementary Figures 5B-C). After refinement (Supplementary Figure 5C,

Methods), 1,790 synthetic transcripts remained distributed across the 15 simulated clusters in

groups ranging from 180 to 60 transcripts (Supplementary Figure 5D). 

In order to evaluate how well the 5 co-expression methods recapitulated the simulated 

patterns, we computed these metrics for all synthetic transcript pairs in each simulated 

cluster (Supplementary Figure 5E). Among them, percentile correlation consistently yielded 

the best proportion of high within-cluster correlations followed by ρ, however, rather counter-

intuitively, ρ had only an average performance when low-complexity patterns were provided, 

with less than 20% output proportionality values >0.8 within clusters 1-5. Shockingly, zero-

inflated Kendall correlation, a single cell-tailored metric, failed to recapitulate the simulated 

co-expression profiles and showed a considerably lower proportion of high correlations 

within the simulated clusters than Pearson and Spearman correlations. As a result of this 

evaluation, we can confidently assume that percentile correlations are useful to detect co-

variation patterns, yielding overall higher correlation values than all other considered metrics.
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Of note, and similarly to real data, the simulated dataset showed no detectable effect when 

varying the number of percentiles used to compute percentile correlations (Supplementary 

Figure 6).

Next, we compared the ability of each co-expression metric to inform clustering and group 

synthetic transcripts with similar expression patterns. To achieve this, we run our clustering 

pipeline on the simulated isoforms using the 5 metrics as distance (Supplementary Figures 7-

11). To enable benchmarking, clustering was automated to always generate a total number of 

15 calculated clusters (see Methods). In order to evaluate which metric worked best to detect 

co-expressed transcript groups, we considered internal correlations between the transcripts 

in generated clusters. We observed that ρ and percentile-generated clusters, unlike the 

remaining co-expression metrics, presented consistently high levels of internal correlation 

(Figure 4A). Notably, the distribution of co-expression values obtained using percentiles was 

the most robust among the five metrics (Supplementary Figure 12). We next assessed how 

well the clusters generated using each co-expression metric (i.e. calculated clusters) 

recapitulated the simulated clusters. Calculated and simulated clusters were paired based on 

the similarities between their mean cluster profiles (Supplementary Figure 13, Methods), and 

the Jaccard index (JI) for each simulated-calculated pair was computed to measure the 

agreement in synthetic transcript assignment (Figure 4B). Interestingly, results were highly 

heterogeneous for most methods: even though a number of simulated co-expression groups 

were easily detected by most metrics, no method was able to fully recapitulate the simulated 

clusters, with ρ proportionality, Pearson and percentile correlations being the most accurate 

(Figure 4B). Zero-inflated Kendall and Spearman correlations, on the other hand, showed 

consistently low agreement with the simulated transcript groups. Finally, we considered the 
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number of transcripts that remained unclustered (Figure 4C) before and after re-clustering 

unassigned transcripts (i.e. cluster expansion step, see Methods). Pearson correlation 

provided successful cluster assignment for practically all transcripts in the simulated dataset, 

especially when incorporating percentiles (Pearson: ~10% unclustered before expansion, ~1% 

after; percentile: ~4% unclustered before expansion, 0% after), whilst the rest of metrics 

performed significantly worse, leaving 20-30% of transcripts unassigned even after cluster 

expansion, with proportionality (~30% unclustered before expansion, ~25% after) being the 

less optimal. Altogether, though ρ demonstrated good performance in many aspects of 

clustering, including intra-cluster correlation and agreement with the simulated clustering, it 

was outperformed by percentile correlation when globally considering all evaluated 

parameters (Figure 4D). In addition to the fact that ρ failed to control for unassigned 

transcripts, computing means and standard deviations of Jaccard indices across simulated-

calculated pairs showed percentile and Pearson correlations as the most consistently 

accurate methods. All in all, our synthetic data evaluations showed that the percentile 

correlation approach performed well -and more consistently than ρ proportionality- in all the 

evaluated features, and visibly captured co-expression better than both traditional and zero 

inflation-aware correlation metrics.

Co-Differential Isoform Usage analysis of single-cell isoform expression

Isoform clusters represent groups of alternative transcripts that are co-expressed at the cell 

type level. However, our clustering results did not provide information on iso-transcriptome 

properties associated with splicing regulation. To facilitate interpretation of the isoform 
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clustering results, we first defined genes with Differential Isoform Usage (DIU) as those whose 

isoforms were assigned to different clusters (Figure 5A) and found that 80% of genes with 

clustered isoforms (2,577 out of 3,172) were DIU and involved a total of 7,575 isoforms. In this

context, DIU genes will necessarily have two or more isoforms with significant changes in 

expression across cell types and simultaneously undergo cell type-dependent post-

transcriptional regulation, leading to changes in isoform expression in each cell type. 

In order to study isoform co-expression patterns, we defined co-Differential Isoform Usage 

(coDIU) genes as those showing coordinated cell-type-specific isoform usage. Specifically, we 

considered two or more genes to be coDIU if their isoforms had been assigned to the same 

clusters (Figure 5B, Methods). This resulted in the definition of an isoform co-splicing network 

where nodes are clusters of correlated isoforms and edges represent coDIU genes, i.e. the 

number of genes for which two or more isoforms are co-expressed across cell types (Figure 

5C, Methods). To ensure the selection of significantly coDIU genes, we fitted a generalized 

linear model for every pair of coDIU genes, and selected pairs with isoform-level co-

expression and no significant cell type expression variation when only accounting for gene-

level expression (see Methods). CoDIU genes therefore present cell type-dependent co-

expression of at least two isoforms, represented by cluster assignment matches, but are not 

co-expressed when only gene expression is considered. Using this strategy, we detected 2,049

genes with at least one significant coDIU partner (cluster*cell-type FDR < 0.05, gene*cell-type 

FDR > 0.05), involving 6,370 co-expressed isoforms. The number of coDIU genes sharing 

isoforms across each cluster pair was variable, although it rose up to ~120 for highly 

connected expression profiles (Figure 5C). 
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We then interrogated the coDIU network to find patterns underlying the splicing coordination 

signal detected by the acorde pipeline. First, in order to measure whether coDIU generated 

strong or subtle variations in isoform selection across cell types, we investigated the 

association of coDIU to single or multiple cell type isoform switching events. Note that single 

isoform switching events involve clusters with patterns that are similar across all cell types 

except one, leading to high between-cluster correlations. Interestingly, we found that the 

number of coDIU genes linking isoform co-expression clusters was dependent on cluster 

sizes, but showed no direct relationship with the similarities between expression profiles 

(Figure 5D). The detection of coDIU genes involving isoforms with highly different expression 

patterns suggested that coordinated isoform usage mechanisms are able produce strong cell 

type-level shifts in isoform selection, and thus modulate the expression of highly cell type-

specific splice variants. 

We next evaluated the cell type-level relationships present in the isoform co-expression 

network, namely the occurrence of coDIU across all possible pairs of cell types in our data. 

Although co-splicing could potentially occur between any combination of cell types, our 

results showed that a high proportion of coDIU interactions were detected when the isoforms

involved had high expression in one of the two neural cell types, i.e. GABA-ergic and 

glutamatergic neurons (Figure 5E). This can be partially explained by the fact that some of the 

clusters with neuron expression are among the largest generated by the acorde pipeline 

(Figure 5C). However, another plausible explanation is that the central role of neurons in the 

tissue under study (i.e. primary visual cortex) might situate co-splicing at the core of neural 

function regulation, as well as the modulation of its interaction with glial cell types.

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.441841doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.441841
http://creativecommons.org/licenses/by/4.0/


Functional analysis of the coDIU network

We next set out to investigate the functional implications of our isoform co-expression 

network. Since, with a few exceptions59,60, splicing analysis tools rarely integrate functional 

information and function annotation databases do not usually include data at isoform 

resolution, we annotated the long read-defined transcripts using IsoAnnotLite 

(https://isoannot.tappas.org/isoannot-lite/), included both transcript and protein-level motifs, 

sites and domains, as well as non-positional, gene-level features such as Gene Ontology (GO) 

terms (for a detailed description of the annotation process and a comprehensive list of 

functional categories and source databases, see Supplementary Note 1).

First, we analyzed which biological processes and gene functions were potentially controlled 

by DIU (AS-regulated) and coDIU (co-regulated) mechanisms operating across cell types, i.e. 

which functions were overrepresented at DIU and coDIU genes. In order to discriminate the 

functional properties of AS-regulated genes from those showing no cell type specificity in 

isoform expression, we performed a functional enrichment test of DIU genes vs genes with DE

isoforms, which were used as the background (Figure 6A, see Methods). Interestingly, DIU 

genes showed significant enrichment (FDR < 0.05) of GO terms associated with transcription 

(gene expression, DNA-templated transcription) and RNA metabolism (RNA processing, RNA 

metabolic process), as well as protein features required for these processes, such as Nuclear 

Localization Signals (NLS), Post-Translational Modifications (PTMs), particularly acetylation 

sites (Acetyl-Lys), and protein-complex formation (Figure 6A). In order to investigate the 

cellular processes where coDIU could potentially have a relevant regulatory role, we 
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compared the proportion of coDIU and DIU genes annotated for each functional feature in 

the transcriptome using a partially-overlapping samples z test61 (Figure 6B, see Methods). Not 

surprisingly, coDIU genes were significantly enriched (FDR<0.05) in some of the same 

functionalities obtained in the previous DIU analysis, such as RNA biosynthesis and processing

(transcription, gene expression, RNA metabolic process). However -and in contrast to DIU genes, 

which were markedly involved in biosynthesis-, genes regulated by coDIU were erniched in 

mitochondria components (i.e. mitochondrial matrix), suggesting that coordinated isoform 

usage may affect oxidatoin and energy metabolism. Remarkably, coDIU genes also showed 

additional enrichment for splicing-related terms such as RNA splicing, mRNA splicing via 

spliceosome and for 3’ UTR motif K-box (Figure 6B). This result links genes involved in splicing 

and elements affecting RNA stability with the coordination of AS and suggests that the co-

expression of alternative isoforms is a post-transcriptionally regulated process, in line with 

previous evidence of AS self-regulation62–65.

To obtain further insight into the functional elements controlled by AS co-regulation across 

neural cell types, we performed a Functional Diversity Analysis (FDA, Figure 6C). FDA is part of 

the tappAS framework60, and identifies functionally varying genes, i.e. genes expressing 

transcript variants with differences in the inclusion of functional features (see Methods). FDA 

can be evaluated from a presence/absence standpoint (i.e. AS completely removes a feature), 

or by detecting variation in the transcript positions defining the feature (Figure 6C). We 

therefore compared the diversity in transcript-level functional features between DIU,  coDIU 

genes and genes with more than one DE isoform, for all functional categories provided by 

IsoAnnotLite (Figure 6D). Interestingly, we detected a larger percentage of varying genes as 

the level of considered regulatory complexity increased, with coDIU resulting in the largest 
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amount of feature inclusion diversity in virtually all protein and transcript feature categories. 

To measure this effect, we compared varying percentages between all combinations of the 

three gene sets (paired samples t-test, see Methods) and confirmed the observed trend, 

regardless of whether the variability criteria employed was position or presence. In particular, 

even though all comparisons were significant, coDIU resulted in the most significant increase 

in feature variation (coDIU vs DE isoform genes p-value: presence = 7.61e-07, position = 3.45e-

05; coDIU vs DIU genes p-value: presence = 4.92e-04, position = 9.62e-03). We verified that 

this increase in functional diversity was not associated to expression level or isoform length 

biases in coDIU genes (Supplementary Figures 14A-B). This result suggests that alternative 

isoforms that engage in co-expression relationships tend to alter their functional properties 

significantly more often than other transcripts, namely by controlling the inclusion of motifs, 

sites and /or domains, thereby coupling alternative splicing and isoform co-expression with 

functional potential.

Functional analysis of neuron-oligodendrocyte isoform co-expression

To further understand the relationship between cell-type identity, isoform co-expression and 

the functional properties of coDIU genes, we searched the coDIU network for cluster groups 

representing biologically-related isoform switches between defined neural types. Namely, we 

focused on a set of genes 160 coDIU genes (Figure 5C) representing oligodendrocyte-specific, 

neuron-specific, and shared isoform expression patterns (clusters 8, 13 and 19, respectively, 

Figure 6E) and analyzed isoform-associated functional variability using FDA. For this set of 

alternative isoforms, polyA site and 3’UTR length showed the highest variation rates among 
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annotated transcript-level functional categories (varying in ≥70% genes, Supplementary Figure

15A). Moreover, we noticed that these changes followed a clear cell type-specific pattern, with 

the majority of coDIU genes shared among the three clusters expressing their longest 3’UTR 

isoforms in neurons (Supplementary Figure 15B) and neural-specific isoforms generally 

expressing longer 3’UTRs than their oligodendrocyte-specific counterparts (Supplementary 

Figure 15C). 

Next, we inspected 3’UTR-related functional categories, i.e. RBP binding, miRNA binding, and 

3’UTR motifs, using ID-level FDA (see Methods) to identify specific functional features 

associated to isoform usage differences between neurons and oligodendrocytes. Regarding 

the presence of RBP binding sites, we found that Mbnl and CELF4 binding sites showed high 

variation levels, i.e. 50% and 75% of genes, respectively (Supplementary Figure 15D); however,

the amount of genes including Mbnl and CELF4 binding motifs was low (~3% genes), possibly 

due to the relatively poor annotation density of RBP sites transferred by IsoAnnotLite 

(Supplementary Note 1). We also detected high variation frequencies for several miRNA sites 

(Supplementary Figure 15D), although no specific miRNA motif was shared by more than ~5% 

of genes (up to 9 out of 160 genes). Nevertheless, regarding 3’UTR motifs, we found that the K-

box motif presented inclusion changes in ~60% of annotated coDIU genes (Figure 6A). 

Interestingly, K-box motifs have been described to have a role in negative post-transcriptional 

regulation by promoting miRNA binding and transcript degradation66,67. In line with this, the 

coDIU network included several genes in which 3’UTR elongation led to neuron-specific co-

inclusion of K-box motifs, included Atxn10 (ataxin 10, Supplementary Figure 16A) and Btrc 

(beta-transducin repeat containing gene, Supplementary Figure 16B), both of which have been

proposed to be involved in neuron survival and differentiation68,69. These results suggest that 
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a 3’ UTR binding-mediated mechanism favoring isoform co-expression may operate to fine-

tune the post-transcriptional regulation of neuron survival genes.

Importantly, the majority of neuron-oligodendrocyte coDIU genes also presented coding 

region variation (i.e. CDS, Supplementary Figure 15A), revealing that the coordination of 

isoform usage can modify both transcript and protein functional properties. In particular, 

protein domains (PFAM) and post-translational modifications (PTMs) presented high variation 

rates (varying in ~40% of genes, Supplementary Figure 15A) and thus constituted the 

categories with the most cell type-level dependent functional variation. While ID-FDA reported

no specific PFAM domains shared among the analyzed gene set (~1%, maximum of 2 out of 

160), up to ~14% of them presented inclusion variation in similar PTMs (23 out of 160) with 

medium to high variation rates for phosphorylation, acetylation, ubiquitination and ligand 

binding sites (Supplementary Figure 15D). However, synergies between PTM and domain 

inclusion changes could still result in differential functional activities at the protein level. As an

example, we found two tubulin isotypes, i.e. γ-tubulin 2 (Tubg2) and β-4-tubulin B-chain 

(Tubb4b), that co-expressed isoforms in clusters 8 and 19, that is, protein variants with 

neuron-specific and neuron-oligodendrocyte expression, respectively. Interestingly, both of 

these genes also presented inclusion changes in an N-terminal GTP-ase protein domain and 

several PTMs (Figure 6F and Figure 6G), although with different functional outcome. Tubg2 

presented neuron-specific expression of the full-domain, PTM-including isoform, resulting in 

the inclusion of a phosphoserine residue and a GTP binding motif (Figure 6F) and suggesting 

the GTP-ase role to be enhanced in mouse visual cortex neurons in comparison to 

oligodendrocytes. On the other hand, the domain-including Tubb4b isoform was expressed in 

both cell types (Figure 6G), suggesting that this β-tubulin isotype has a broader GTP-ase 

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.441841doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.441841
http://creativecommons.org/licenses/by/4.0/


function than Tubg2. The domain/motif inclusion pattern arising from isoform co-expression 

in these two tubulin isotypes may reflect the different cellular roles of γ and α/β tubulins70. 

Specifically, α/β tubulins are the building-blocks of the microtubule cytoskeleton, while γ-

tubulin has a major role in microtubule nucleation and on the regulation of microtubule 

dynamics. The γ-tubulins only present two isotypes, among which Tubg2 is exclusive to 

neurons and has a well-defined role in neuron survival and growth71, whereas Tubb4b is part 

of a broader catalogue of β-tubulin isotypes, all of which are jointly regulated and share a 

structural function72. Intriguingly, however, mutations in a closely-related isotype (Tubb4a) 

have already been shown to have a differential phenotypic effect in neurons and 

oligodendrocytes73. In line with this, we observed modifications in the number and density of 

N-terminal phosphorylation sites in Tubb4b as a result of cell type-level isoform co-expression,

with an increase in protein diversity in neurons (3 vs 2 alternative isoforms, Figure 16G). Even 

more interestingly, PTM changes on different α/β-tubulin isotypes have long been known to 

modify tubulin stability and its interactions with other proteins74, creating a “tubulin code”75. 

As a result, tubulin PTMs have the ability to modulate microtubule stability and function, 

intervening in processes such as neural differentiation, survival and polarity76,77. This cell type-

specific inclusion of different PTMs via isoform co-expression could therefore operate as a 

fine-tuning mechanism of the tubulin code, modifying the number and position of available 

modification sites in β-4-tubulin. 

Discussion
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Alternative Splicing (AS) is known to be a tightly-regulated process in which splicing factors 

interact to create cell type-specific isoform expression patterns78. The transcriptome-level 

consequences of AS regulation have been studied in different ways, including, but not limited 

to, the detection of within-isoform coordination of alternative sites40,41, the generation of 

gene-isoform networks to uncover novel regulatory relationships79–82 and the application of 

single-cell data to unravel cell type-specific expression patterns for same-gene isoforms27,83. 

However, the extent to which AS regulation creates co-expression patterns among alternative 

isoforms from different genes has not yet been fully addressed. Specifically, previous studies 

tackling this type of isoform co-expression have either focused on specific event types, such 

as alternative 3’ exons84, or solely on the identification of functionally-relevant alternative 

isoforms in different biological contexts85,86. 

In this study we present acorde, an end-to-end pipeline to generate isoform co-expression 

networks and detect genes with co-Differential Isoform Usage (coDIU), and apply it to the 

study of isoform co-expression among seven neural broad cell types43. To this end, we 

successfully leveraged single-cell data by implementing percentile correlations, a metric 

designed to overcome single-cell noise and sparsity and provide high-confidence estimates of 

isoform-to-isoform correlation. Here, we show that percentile-summarized Pearson 

correlations outperform both classic and single-cell specific correlation strategies56, including 

proportionality methods that were recently proposed as one of the best alternatives to 

measure co-expression in single-cell data42. In addition, using a long read-defined, functionally

annotated transcriptome enabled us to obtain a biological readout from the isoform network.

coDIU genes were found to be enriched in the same biological functions, a number of which 

were unique in comparison to enrichment results for genes solely reported as DIU. Inter-gene

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.441841doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.441841
http://creativecommons.org/licenses/by/4.0/


isoform co-expression thus appears to impact a subset of DIU genes sharing a specific set 

functions, which suggests that coDIU may contribute with an additional layer of complexity to 

some cellular processes, operating as a fine-tuning mechanism. Our analyses also revealed 

that isoforms from coDIU genes encompass higher functional diversity than those belonging 

to DIU genes, an effect that was not associated to expression or length differences. 

Importantly, these changes impact both transcript and protein isoform functional features, 

which pinpoints their ability to globally increase the functional repertoire of coDIU genes. 

Mechanisms generating isoform co-expression can therefore be thought of as a potential 

source of functional synergies between alternatively spliced genes, giving rise to simultaneous

changes in functional properties among co-expressed isoforms. 

To demonstrate the power of the acorde pipeline, we include examples where these kinds of 

coordinated changes were detected in the mouse neural dataset. First, we report a neural-

specific pattern of 3’UTR co-elongation that is consistent with the available literature87,88 and 

results in a simultaneous increase in the number of K-box motifs, miRNA and RBP binding 

sites in these UTRs. In addition, we describe how cell type-specific co-expression of γ and β-

tubulin isoforms creates divergent functional properties among them, which is consistent with

their different biological functions71,72 and points to a splicing-mediated coordination of cell-

type specific structural components. On a broader note, an interesting finding stemming from

our functional analyses concerns the type of biological properties that make the functional 

signal of the coDIU network. Namely, while we do find enrichment of biological processes (i.e. 

RNA metabolism or mRNA splicing via spliceosome) and differential inclusion of many features 

from a wide variety of functional categories, we failed to recover specific functional elements 

consistently present in a large number of co-expressed isoforms, such as binding sites for 
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specific RBPs or microRNAs. This suggests that AS and post-transcriptional regulation 

mechanisms operate by controlling the presence of a broad array of functional features, 

which jointly contribute to modulate key cell-level processes encoding cell-type identity. While 

these insights need to be subject to further experimental validation, they serve to illustrate 

the hypothesis-generating power of our pipeline.

All in all, we have hereby showed that acorde can effectively leverage single-cell RNA-seq data 

to build isoform co-expression networks, revealing a new dimension of post-transcriptional 

regulation of gene expression while also disclosing the cellular processes and functional 

elements impacted by these mechanisms.
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Methods

Single-cell data pre-processing and quality control

Mouse neural single-cell RNA-Seq data from mouse primary visual cortex was obtained from 

Tasic et al.43 and consists in paired-end Illumina reads generated with the Smart-seq2 

protocol89, which enables isoform-level quantification. Reads were downloaded from 

Sequence Read Archive accession SRP061902 and mapped to the mouse genome 

(GRCm38.p6) using STAR90. We performed isoform expression quantification of the long read-

defined isoforms (see Supplementary Note 1 for details on long read transcriptome definition)

using RSEM91, and used the labels provided by Tasic et al. to assign the 1679 cells to 7 broad 

cell types: 5 glial (microglia, endothelial cells, oligodendrocytes, oligodendrocyte precursor 

cells (OPCs) and astrocytes) and 2 neural (GABA-ergic and glutamatergic neurons).

Isoform length effect on expression was evaluated using the NOISeq R package92, where mean 

expression showed to be highly correlated with transcript length (adjusted R2 = 0.81; p-value =

2.2e-16). Using isoform i effective length (li) and cell-level j estimated counts (cij), both output 

by RSEM and, after testing several alternatives, we devised a custom formula to minimize the 

impact of length on isoform expression for each isoform i:

y ij=
c ij

(10−6∑
i=1

I

cij)√10−3 li

[Equation 1]

The transformed expression value for isoform i in cell j (yij) was again tested for length bias 

and a low correlation was found (adjusted R2 = 0.25; p-value = 6.84e-8). Next, we inspected the

library size distribution and filtered both high and low-count outliers due to potential 
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premature cell death or library preparation duplets, with a total of 1591 cells passing quality 

control. Feature-level quality control was performed in a cell type-aware manner, keeping 

isoforms that showed non-zero expression in at least 20% of one cell type. Out of the 36,986 

isoforms and 12,692 genes in the PacBio-defined transcriptome, we retained 18,867 isoforms 

and 9,596 genes for downstream analysis. Finally, we retained isoforms from multiple-isoform

genes, hence removing cases where no AS-directed, isoform-level co-expression relationships 

can be established. This sets a general requirement for the entire study, which is that all 

isoforms retained must have, at all times, at least one same-gene counterpart to establish 

regulatory relationships that can be based on differential splicing of that gene, given that no 

AS regulation can be detected if a gene’s total expression is represented by a single isoform. 

As a result, 13,832 isoforms from 4,591 genes were preserved.

Differential Expression (DE) across multiple groups

Single-cell DE analysis

Differential Expression (DE) analysis among the 7 cell types was performed by combining 

ZinBWaVE weights47 and bulk-designed DE methods edgeR49 and DESeq248 (i.e. using the 

corresponding R packages), which enable multiple group testing and were among the best-

performing methods when combined with the ZinBWaVE method. Briefly, ZinBWaVE 

calculates cell-level weights for each isoform, effectively downweighting zeros during 

modelling for differential expression in single cell data (see van den Berge et al.47 for details), 

and hence unlocking bulk RNA-Seq computational methods for single-cell data. Of note, 

generalized linear models (GLM) within edgeR and DESeq2 were built and run following the 
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pipeline used by van den Berge et al.47 to make them suitable for single-cell RNA-seq data, and

are implemented in a wrapper function within our R package as described in Equation 2, 

where yij is expression of isoform i in cell j, Tkj is a dummy variable which takes value 1 when 

cell j is assigned to cell type k (k=1,…,K) and 0 otherwise, βki are the regression coefficients for 

isoform i, εij represents the error term, and h() is the link function of the GLM (natural 

logarithm in this case).

h( yij )=β0 i+∑
k=2

K

βkiT kj+εij [Equation 2]

Differential Expression was defined using a significance threshold of FDR<0.05 when testing 

the significance of the model for each isoform i, that is, H0: β2i = ... = βKi. Isoforms considered 

DE were preserved for downstream analysis if detected by at least one of the two methods 

edgeR or DESeq2, since this indicates a change in expression for any of the cell types 

considered rather than a flat expression profile. In addition, isoforms were removed if they 

belonged to genes with a single DE isoform, in agreement with the idea that no differential 

splicing regulation can be detected for single isoform genes, and hence that they will not form

co-splicing relationships with isoforms from other genes in the network.

Prior to DE testing, and to balance the number of cells per cell type, the most abundant cell 

types (GABA-ergic neurons, n = 761; glutamatergic neurons, n = 764 cells) were downsampled 

by randomly selecting 45 cells, keeping N=241 cells for downstream analysis, simultaneously 

reducing the computational cost of multi-group DE testing. Finally, since downsampling can 

lead to having isoforms with all-zero counts again, we re-filtered isoforms that retained non-
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zero expression in at least 20% of one cell type, ultimately keeping 13,451 isoforms from 

4,583 genes for the DE analysis.

Validation of downsampling and single-cell DE analysis

To check that the random selection of cells in the downsampling process was not affecting the

DE results, we performed 50 independent runs of random neural cell sampling (without 

replacement) followed by zero-expression filtering (expression above zero for at least 25% of 

cells in at least one cell type, where threshold stringency was increased with respect to the 

standard pipeline to best control zero abundance among iterations and avoid problems 

during GLM modelling) and DE testing with edgeR and DESeq2. First, to measure the 

consistency of each method independently, we calculated the mean and standard deviation of

the number of DE isoforms across all same-method sampling runs (R = 50). To check the level 

of within-method agreement, we next considered isoform IDs labeled as DE in each 

independent method run, and calculated the Jaccard Index (Jrs) between DE results of that 

same method for all possible pairs of random sampling runs r and s (r,s =1,…,50, r<s, a total of

1225 comparisons). To summarize this information, we relied on the mean and standard 

deviation of these two sets of Jrs values. Finally, we measured the level of agreement between 

edgeR and DESeq2 regarding our DE criteria, that is, considering isoforms detected by at least 

one of the methods to be significantly DE (FDR<0.05). To achieve this, we calculated the union 

of DE isoforms between one-to-one pairs of edgeR and DESeq2 runs (R = 50), and computed 

the Jaccard Index between all possible pairwise combination of global DE results, i.e. isoforms 

detected by at least one method (again, 1,225 comparisons). 
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Percentile correlation

In order to assess the similarity of isoform expression profiles across cells, a correlation 

measurement can be used by taking cells as observations. We propose here instead to first 

summarize the expression within a given cell type with percentiles and then compute the 

correlation using all cell types and their percentiles as observations, a method that we refer to

as “percentile correlation” (see main text Figure 2A).

Percentile correlations rely on the assumption that cell-to-cell differences can be mostly 

attributed to transcriptional stochasticity or technical noise, and that these within-cell type 

differences have a smaller effect than between-cell type expression differences. However, 

expression estimates for transcripts within the same cell are biased in different degrees, 

mostly depending on their expression levels, with lower expression being generally 

accompanied by higher noise levels52. This modifies the extent to which isoforms are affected 

by noise in each cell and causes strong cell-level effects that prevent the detection of co-

expression relationships using solely cell-level measurements. Instead, we set out to target 

changes in expression across cell groups. We therefore considered isoform expression levels 

in the different cell types as a range of possible values, defined by the cell-level 

measurements in the data. In this context, the expression value of an isoform in a cell is used 

a proxy to infer the underlying distribution of expression values in the cell type, where the 

shape and width of this distribution will depend on both biological and technical factors.

To translate this into a metric, we first took the expression values of an isoform in each of the 

cell types and computed a number of percentiles (p). We selected p = 10 to achieve a good 

balance between accuracy and computational burden in downstream analysis. As the 
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minimum expression value (percentile 0) was also included, we actually had 11 new values 

representing the expression range within a given cell type. As a result, each isoform will 

possess a new, recalculated expression vector where the percentile values computed in each 

cell type will replace cell-level expression estimates. This process was repeated for each 

isoform. Next, we computed pairwise Pearson correlations between every pair of isoforms, 

obtaining a percentile correlation matrix R. In this context, high correlations will appear if a 

pair of isoforms shows a similarly broad expression distribution in most cell types, as well as a

similar amount of relative expression change between cell types.

Semi-automated isoform clustering

In order to obtain modules of tightly co-expressed isoforms, we combined the hierarchical 

clustering algorithm with several rounds of cluster profile refinement (see main text, Figure 

3A), in order to automate the most intensive steps of clustering while also granting control 

over the level of aggregation and within-cluster similarity. Clustering and refinement steps can

be combined and re-arranged to best capture co-expression patterns within the data, and 

their parameters can be defined by potential future users to provide maximum flexibility. 

Functions for clustering and refinement are implemented in the acorde R package.

Dynamic hierarchical clustering

The previously obtained correlation matrix (R), where each element rij represents the 

Pearson’s correlation coefficient between the percentiles of isoforms (i,j), was transformed 

into a distance metric to be used in the hierarchical clustering. As we aimed to cluster 
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positively correlated isoforms given our biological hypothesis, we discarded negative 

correlation values by replacing them with zero values, and therefore defined the distance 

between any pair of isoforms i and j as in Equation 3.

d ij={1−r ij if r ij>0
1 if r ij≤0}    [Equation 3]

We next performed hierarchical cluster analysis using the hclust() function in the R base 

package93 with the average linkage criterion, and obtained a dendrogram. To obtain clusters, 

we used the cutreeHybrid() function in the dynamicTreeCut R package55 in order to find different

thresholds for different branches of the dendrogram tree, instead of using a fixed threshold 

for the entire dendrogram. We provided the following non-default parameters to the 

cutreeHybrid() function: deepSplit = 4, pamStage = FALSE, minClusterSize = 20. Briefly, deepSplit 

ranges between 0 and 4, and provides smaller clusters, more accurate clusters when set to 

high values. pamStage determines whether a second stage of clustering using an algorithm 

similar to the Partition Around Medoids (PAM) method will be performed after searching the 

dendrogram for clusters (see Langfelder et al.55). As a result of this PAM-like step, no items are

left unassigned to clusters, while setting pamStage to FALSE allows unclustered items. Finally, 

minClusterSize determines the minimum size of the produced clusters, and thus passing a 

higher value to this argument prevents the generation of too many clusters with a very small 

number of items.

This initial set of clusters is to be used as “hooks” to gather as much expression profile 

diversity from the data as possible. Importantly, even though our parametrization allows 

isoforms to remain unassigned to clusters (see above), some isoforms may still show low 
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similarity to their cluster’s profile. To be able to obtain profiles as consistent as possible for 

downstream refinement, we implemented a cluster quality control step in which we removed 

isoforms based on a minimum correlation threshold with the rest of the members. In 

particular, isoforms were moved to the unclustered group if they showed a correlation lower 

than 0.85 with 3 or more isoforms from their cluster. In this manner, only tightly-correlated 

groups of isoforms will remain clustered.

Expanding clusters with unassigned isoforms

To re-assign unclustered isoforms to clusters with which they show high correlation, we 

performed two rounds of correlation-based, cluster expansion. In this process, we first 

summarized each cluster’s profile into a synthetic representative transcript that we named 

“metatranscript”. Metatranscripts were calculated as the mean of the percentile-based 

expression of all isoforms in the cluster. As a result, we obtained 11·K (K being the number of 

cell types) mean-summarized percentile expression values, which can be understood as an 

approximation to the expression range shown by the isoforms from that cluster in each of the

cell types. 

We next computed correlations between metatranscripts and unclustered isoforms, and 

performed two rounds of assignment. First, we assigned unclustered isoforms showing 

correlation values above 0.9 with at least one cluster, where the maximally correlated cluster 

was selected as the best match if there were ties. Next, metatranscripts were re-calculated for

the newly expanded clusters and a similar assignment round was performed, this time 

lowering the correlation threshold to 0.8. In doing this, unclustered isoform groups are 
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assigned in order, and highly correlated elements can therefore contribute to strengthen 

within-cluster similarities before assigning more lowly correlated elements.

Merging clusters by profile similarity

Prioritizing the reduction of within-cluster variability led to obtaining a large number of small, 

redundant clusters. To mitigate this effect while also preserving high correlations between 

cluster members, we merged clusters by profile similarity using the correlations between their

metatranscripts. To achieve this, we performed dynamic hierarchical clustering using the 

cutreeHybrid() function on metatranscripts, with the following non-default parameters: 

deepSplit = 4, pamStage = FALSE (see section on dynamic hierarchical clustering above for more

information), minClusterSize = 1. Of note, minClusterSize is set to 1 to avoid forcing merge of 

clusters that do not show enough similarity. As a result, we joined highly similar clusters, 

decreasing the number of clusters and hence minimizing redundancy.

While this strategy effectively eliminated between-cluster redundancy, we observed some 

exceptions where clearly similar profiles were not merged by clustering metatranscripts 

(Supplementary Figure 3A). In addition, a few cases arose where automated merging resulted 

in joining clusters with highly uncorrelated profiles (Supplementary Figure 3B). Given that it is 

very hard to provide a completely automated solution to the clustering problem, we solved 

these final discrepancies using a series of manually supervised refinement steps.

For that, we first inspected cluster profiles to flag incorrect merge decisions generating noisy 

clusters. Isoforms in these clusters were treated as unclustered, and used to expand the 

remaining, well-defined clusters. To do this, we computed the correlation between the 
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isoforms to be assigned and cluster metatranscripts, similarly to the cluster expansion 

process described above. In this case, we joined isoforms to clusters if they presented 

Pearson correlation > 0.8 with its metatranscript. Isoforms showing high correlation with 

several clusters were assigned to the cluster with maximum correlation. Once isoforms from 

noisy clusters had been re-assigned, clusters were manually inspected again to detect profile 

redundancies missed by automated metatranscript clustering. Clusters that presented a 

similar expression pattern across cell types were then merged.

Co-expression pattern simulation

To validate percentile correlations and our clustering strategy, we evaluated their 

performance on synthetic data, where co-expression relationships between simulated 

features need to be pre-defined as part of the data simulation process. However, there is, to 

the best of our knowledge, no currently available strategy to simulate single-cell data 

including modules of co-expressed features. We therefore designed our own simulation 

strategy by combining the SymSim R package58 to adequately model single-cell RNA-Seq data, 

and a dedicated strategy to generate co-expression between SymSim simulated features. 

First, we set the following parameters to the SimulateTrueCounts() function in SymSim in order 

to obtain a count matrix consisting in 1000 cells from 8 cell types and 8000 features, with 

sufficient feature-level variation between the different cell groups: 

SimulateTrueCounts(ncells_total = 1000, min_popsize = 100, i_minpop

= 1, ngenes = 8000, nevf = 10, n_de_evf = 9, evf_type = “discrete”,
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phyla = pbtree(n = 7, type = “discrete), vary = “s”, Sigma = 0.25, 

gene_effect_prob = 0.5, bimod = 0.4, prop_hge = 0.03, mean_hge = 5)

Next, we modeled technical effects on these true counts in order to obtain real, observed 

counts using the True2ObservedCounts() function in SymSim, with the following parameters:

True2ObservedCounts(true_counts$counts, 

meta_cell = true_counts$cell_meta, protocol = “nonUMI”, 

alpha_mean = 0.1, alpha_sd = 0.005, lenslope = 0, 

gene_len = rep(1000, nrow(true_counts$counts)), depth_mean = 4e6, 

depth_sd = 1e4)

To create co-expression patterns, we then re-ranked expression values on a cell type-specific 

manner to define synthetic features, based on the expression profile of 15 pre-defined co-

expression modules. 

First, we drafted 15 different co-expression profiles reflecting three levels of expression 

complexity, that is, showing high expression or expression “peaks” in one, two, or three cell 

groups, respectively. To generate a count matrix reflecting these expression patterns, we 

shuffled simulated counts to create new, synthetic features. To achieve this, we first re-ranked

features in each cell group by mean expression across cells in the group, breaking feature 

connectivity between the simulated cell types. Then, the top 1,400 features from each cell 

type were selected, together with the bottom 1,400 features. In this manner, we obtained 

high-expression and low-expression count vectors for each group, which we then combined 

to create synthetic features following the pre-designed cluster’s co-expression pattern. For 

each cluster, 200 count vectors from top-expression features were assigned to peaking 

groups, and 200 count vectors form bottom-expression features to cell groups showing low 
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expression. Of note, 1,400 features were selected for simulation in order to grant at least 7 

different 200-feature groups could be generated for each cell type, where the cell group with 

the highest peaking frequency across clusters showed high expression in 6 clusters only.

All in all, we obtained a simulated count matrix containing 1,000 cells from 8 cell types and 

3,000 synthetic features, all of which belong to one of the 15 simulated co-expression 

modules. Therefore, by breaking feature-level connectivity between cell types, we benefited 

from feature-specific properties at the cell type level, while re-creating cell type expression 

coordination patterns that the SymSim strategy was not able to generate. Finally, to ensure 

the quality of the simulated clusters, we filtered synthetic features if their Pearson correlation 

with the cluster’s median profile was below 0.75 (Supplementary Figure 4B).

Benchmarking of isoform correlation metrics for scRNA-seq data

Traditional correlation metrics have been shown to perform poorly when applied to scRNA-

seq data, mainly given the increased noise and stochasticity levels in this data type. Recently, 

extensive benchmarks including single cell-tailored metrics have shed light on how to best 

select correlation metrics for single-cell data (see review by Skinnider et al.42). We therefore 

compared the performance of percentile correlations to a representative set of correlation 

metrics used in single-cell co-expression studies, namely classical Pearson and Spearman 

correlations, single-cell designed zero-inflated Kendall56 correlation, and proportionality 

metric rho (ρ)57, in agreement with previous reports showing that proportionality metrics were

among the best performing co-expression methods in single-cell data. To measure 
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performance, we computed these five co-expression metrics for all the synthetic features in 

the previously-simulated dataset, generating five different distance matrices for clustering, 

and evaluated which metric best recapitulated the simulated co-expression modules when 

used in our clustering pipeline. Pearson and Spearman correlations were computed using the 

cor() function in the R-base stats package. Zero-inflated Kendall correlation and rho (ρ) were 

computed using the dismay() function in the dismay R package42.

To make our benchmarking comparable, we adapted our clustering pipeline to remove all 

non-automated steps and always generate a fixed number of clusters. First, hierarchical 

clustering was performed on each correlation matrix using dynamicTreeCut()55 and the 

following non-default parameters to maximize granularity: deepSplit = 4, pamStage = FALSE, 

minClusterSize = 10. Of note, we skipped the quality filtering step based on intra-cluster 

correlations (see isoform clustering section above) to avoid bias against metrics that tend to 

yield low values when applied to single-cell data. Since we intended to evaluate the number of

features remaining unclustered using each metric, we additionally suppressed the 

unclustered isoform assignment step (see isoform clustering section above). Finally, the 

merge process was automated by using the traditional hierarchical clustering algorithm 

(implemented in the hclust() function in the R base package) to group clusters based on the 

inferred metatranscripts that summarize the cluster’s expression profile (see isoform 

clustering section above). Finally, we set the number of clusters to 15, i.e. the number of 

simulated co-expression modules.

In addition to the number of unclustered isoforms, we used the levels of internal correlation 

in the empirical clusters, i.e. those obtained by de novo clustering of simulated synthetic 
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features, to evaluate the clustering. We did this by aggregately considering all pairwise metric 

values for features within a cluster and measuring the percentage of metrics that are above a 

threshold value of 0.8. To assess how well empirical clusters recapitulated the co-expression 

simulation, we paired empirical with simulated clusters using the correlations between their 

mean cluster profiles. Simulated clusters were therefore paired with the empirical clustering 

showing maximum profile correlation. We next compared synthetic feature IDs assigned to 

the obtained and empirical clusters in each pair using the Jaccard Index (JI).

Differential Isoform Usage and co-Differential Isoform Usage across multiple 

groups

Defining Differential Isoform Usage across multiple groups

Grouping isoforms into different clusters allows detection of a number of expression patterns

across the multiple cell types included in single-cell data. As previously described, we filtered 

DE isoforms to ensure that all transcripts had at least one other counterpart from the same 

gene that was also significantly DE. Intuitively, in order for Differential Isoform Usage (DIU) to 

occur, a gene must first have at least two DE isoforms. However, we only considered a gene to

be positive for DIU if (at least) two isoforms were DE and were assigned to different clusters, 

indicating that two of the gene’s isoforms show different expression patterns across groups 

(see main text, Figure 5A). Ultimately, this can be interpreted as an indicator that isoform 

expression regulation is cell type-dependent in that gene.

Detecting co-splicing patterns across isoform clusters: co-Differential Isoform Usage
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We define coordinated splicing patterns as a situation where post-transcriptional regulation, 

defined by isoform expression, can be detected independently of transcriptional regulation, 

i.e. gene-level expression. To detect splicing coordination, we defined co-Differential Isoform 

Usage (coDIU) as a pattern where a group of genes shows co-expression of their isoforms, but

no co-expression can be detected when only gene expression is considered (see main text, 

Figure 5B). In the context of our pipeline, a set of potentially coDIU genes will have at least two

of their isoforms assigned to the same clusters, therefore showing detectable isoform-level 

co-expression, and suggesting coordinated splicing regulation in that group of genes. 

However, clustering allows expression pattern variability among members, and therefore 

some isoforms might be assigned to clusters that do not faithfully represent their expression 

profile, leading to detection of false-positive coDIU genes.

To identify groups of genes candidates for coDIU, we applied negative-binomial generalized 

linear regression models. Let G be a group of genes, each of them with Ig isoforms, where g = 

1,…,|G|. At least one of the isoforms of each gene g in G must belong to the same cluster c, 

where c∈ {1,…,C} and C is the total number of clusters. Let z be the expression vector obtained

after concatenating the expression vectors yi of each isoform i of every gene g = 1,…,|G|. For 

the sake of simplicity, let us assume that |G|=2, Ig=2  ∀ g, and consequently C=2. In this case, 

vector z will contain 4N elements, where N is the total number of cells in the data (N=241 in 

our data) and will be the response variable in our regression model. We need to assess if z 

values follow the trend depicted in Figure 5B, that is, the average profile across cell types of 

the two isoforms in cluster 1 must be significantly different to the average profile of the two 

isoforms in cluster 2. In addition, the average profile of the two isoforms of gene 1 must not 

be different to the average profile of the two isoforms of gene 2. To identify groups of genes 
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with these characteristics we proposed to fit the regression model in Equation 4 and select 

the group of tested genes as coDIU candidates when having a significant interaction between 

cluster and cell type effects, and a non-significant interaction between gene and cell type 

effects.

h(z )=β0+β1G2+β2C2+∑
k=2

K

γk T k+β3G2C2+∑
k=2

K

δkT kG2+∑
k=2

K

τkT kC2+ε  [Equation  4]

Where G2 and C2 are dummy variables indicating whether the expression value corresponds to

gene or cluster 2 ( value 1) or 1 (value 0), respectively, Tk is a dummy variable which takes 

value 1 when the corresponding cell is assigned to cell type k (k=1,…,K) and 0 otherwise, βk, γk, δk

and τk are the regression coefficients, ε represents the error term, and h() is the link function 

of the GLM (natural logarithm in this case).

We fitted the GLM model with the glm() function in the R-base package, and the 

negative.binomial() function in the MASS R package94, with θ = 10. To test the significance level 

of the cluster*cell type and gene*cell type interactions, we calculated type-II analysis-of-variance

(ANOVA) tables for the model using a likelihood-ratio Χ2 test, implemented in the Anova() 

function from the car R package95, since we had an unbalanced design. P-values for each of 

the interactions were separately adjusted using the Benjamini & Hochberg correction. Gene 

pairs were considered positive for coDIU if FDR adjusted p-value < 0.05 for the cluster*cell type

interaction and FDR adjusted p-value > 0.05 for the gene*cell type interaction. In other words, 

we required expression variance across cell types to be a function of the expression profile 

captured by the clustering, while imposing the additional limitation that aggregating 

expression by gene must make this effect undetectable. Given that all genes with clustered 
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isoforms will form pairs with all potentially coDIU counterparts and be repeatedly tested, we 

considered genes to be positive for coDIU if they met the significance criteria in at least one of

these pairwise tests.

Functional analyses

The analyses in this manuscript are based on a long read-defined transcriptome which, after 

careful quality control and curation of the isoform models, was further annotated using 

IsoAnnotLite (https://isoannot.tappas.org/isoannot-lite/) to include positionally-defined 

functional features in the annotation (see Supplementary Note 1). Functional features are 

grouped in functional categories depending on the database from which the information was 

retrieved and on the biological functions performed by the features (comprehensive list in 

Supplementary Note 1). In this manner, we gathered sufficient information to couple our co-

expression analyses with a biological readout. The specific analysis strategies used to this end 

are detailed below.

Functional Enrichment Analysis

In order to understand the functional properties of AS-regulated and co-regulated genes, we 

set out to characterize DIU and coDIU genes using different functional enrichment analysis 

approaches. In this manner, we intended to gain insight on functional features and categories 

showing significant overrepresentation in each of these two gene lists, in comparison to 

different backgrounds, i.e. lists of genes to compare to in order to detect enrichment. 
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In the case of DIU genes, we calculated enrichment relative to genes with multiple DE 

isoforms (total: 10,100) in order to discriminate the functional properties of genes regulated 

by alternative splicing, as opposed to those lacking differential usage of their isoforms. We 

considered all annotated functional categories and features, and applied tappAS Functional 

Enrichment Analysis (FEA), which relies on the GOSeq R package96. Briefly, the method 

performs an over-representation Fisher’s Exact test for each functional feature, considering 

the number of genes annotated with the feature in the tests and background lists. tappAS 

next corrects for multiple testing within each functional category by the Benjamini-Hochberg 

method, allowing multiple functional databases to be included or excluded from the analysis 

without influencing the number of significant features after p-value adjustment. Significant 

enrichment for the different tests was defined using a threshold of FDR<0.05. 

For coDIU genes, we designed a different strategy in order to improve the statistical power of 

our functional enrichment analysis, aiming to compare functional properties between splicing 

regulation (DIU) and co-regulation (coDIU). As stated above, DIU regulation is best measured 

by using genes with DE isoforms as background. Intuitively, coDIU-regulated genes should 

then be characterized by comparing them to DIU genes. To accommodate these two 

test/background lists in a functional enrichment analysis without ignoring the overlap 

between the coDIU and DIU gene groups, we computed enrichment using a partially 

overlapping samples z-test via the Prop.test() function in the Partiallyoverlapping R package61. 

Specifically, we compared the proportion of coDIU genes containing each of the functional 

features (relative to DIU genes) with the proportion of DIU genes containing that same 

annotation (with respect to genes with DE isoforms). In other words, we tested whether the 

proportion of coDIU vs DIU genes including a given functional feature was significantly higher 
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than that shown in the comparison between DIU and DE genes. We performed the analysis 

for features with more than 20 annotated genes, and subsequently corrected for multiple 

testing within functional categories using the Benjamini-Hochberg method. Functional 

features were considered to be present in a significantly higher proportion in coDIU genes 

when FDR<0.05. 

Functional Diversity Analysis

To obtain insight into the functional changes generated as a consequence of DIU and coDIU, 

we again used the tappAS tool for the functional analysis of alternative splicing60. In particular,

we first applied tappAS’ Functional Diversity Analysis (FDA) module (see main text Figure 6A). 

Briefly, FDA performs a within-gene comparison of all the isoforms included in the analysis, 

aiming to detect whether they present variation in the inclusion of a functional feature. In 

FDA, variation can be positional, i.e. one or more of the gene’s isoforms present a change in 

the genomic coordinates defining the feature, or be defined by presence/absence, i.e. at least 

one of the isoforms lacks a feature that is present in the rest. As a result, FDA provides 

analyzed genes with a label for each of the feature categories included in the transcriptome’s 

functional annotation file, flagging them as varying if at least one of the isoforms presents 

variation in a feature from that category, or not varying if no changes are detected. For more 

details on FDA, see the Methods section in de la Fuente et al.60.

We run both positional and presence/absence FDA for three gene sets: 1) genes with multiple 

DE isoforms (total: 3,172), 2) DIU genes (total: 2,577) and 3) coDIU genes (total: 2,049). Next, 

for each of these gene sets, we computed the proportion of varying genes detected for each 

functional category. Varying proportions were calculated relative to the total number of genes
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including annotations from the category, instead of considering all genes in the set. In this 

manner, we avoided underestimating variation rates for categories that were less 

represented in the functional annotation file. In order to check whether any of these gene 

sets presented a significantly higher mean proportion of varying genes across categories, we 

performed a paired t-test for each combination of gene set pairs: DIU vs multiple DE, coDIU vs

multiple DE, and coDIU vs DIU. In this analysis, we considered functional categories to be the 

individuals under evaluation, while the proportion of varying genes calculated for each 

category in the two tested sets constituted the paired observations. As a result, we obtained 

three p-values per FDA analysis type, i.e. presence/absence and positional variation.

To better understand the functional readout that can be obtained using the acorde pipeline, 

we analyzed a subset of the coDIU gene network, namely three clusters showing related 

isoform co-expression patterns: neuron-specific expression (cluster 8), oligodendrocyte-

specific expression (cluster 13) and expression in both neural and oligodendrocyte cell types 

(cluster 19). In total, 160 coDIU genes showed co-expressed isoforms between at least two of 

these clusters. To characterize functional variation among the clusters, we used 

positional/presence FDA (see above) and ID-level FDA. ID-level FDA is also included in tappAS60

and provides a within-feature summary of FDA results. In other words, ID-level FDA ultimately 

reports the number of varying and not varying genes detected for each feature ID included in a

given functional category. In this case, varying status obeys a similar criterion to the one 

described above, i.e. genes in which at least one isoform shows differential 

inclusion/exclusion of the feature. Since each functional category may include several 

features, ID-level FDA provides a complementary view to that of FDA, allowing users to inspect

which particular features are more frequently changing as a result of the category-level 
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functional variation reported in FDA. For more details on ID-level FDA, see the Methods 

section in de la Fuente et al.60.
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Figure 1: acorde workflow. The acorde pipeline includes three main analysis modules. First, long read RNA-Seq da-
ta is used to define isoform models and short, single-cell RNA-Seq reads are mapped to the long read-generated
transcriptome. Isoform are then tested for multi-group differential expression and those that are significantly DE in
at least one of the cell types are selected. Next, percentile correlations are computed to cluster isoforms with simi-
lar expression patterns across cell types. Finally, gene pairs are tested for co-differential isoform usage, detecting
genes that form co-expression relationships for subsequent functional analysis.
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Figure 2: Percentile correlations. A) Percentile correlation algorithm. For each isoform, cell type-level expression
is summarized using percentiles (0 - 10) as a proxy of the expression distribution of the isoform in each of the cell
types. Then, Pearson correlations are computed using the percentile-summarized expression of all isoforms, obtai-
ning a percentile correlation matrix. B) Correlation density distributions. Pairwise isoform correlations were compu-
ted using Pearson, Spearman and percentile+Pearson correlation. Red vertical line indicates the cor = 0.8 thres-
hold.

Figure 3: isoform clustering. A) Clustering pipeline. The percentile correlation matrix is first used as a distance
matrix for hierarchical clustering. After dynamic cluster generation, noisy clusters are refined by a three-step semi-
automated process. B) Clusters generated after applying the acorde clustering pipeline to the mouse neural data-
set. Cell-level mean expression (scaled, see Methods) is computed for all transcripts and then aggregated as the
global cell type mean, represented by the red line. Grey area corresponds to cell type mean ± standard deviation.
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Figure 4: evaluation of percentile correlation-based clustering on simulated data. A) Proportion of co-expres-
sion values above 0.8 in each empirical cluster obtained after running the acorde clustering pipeline on simulated
data using several correlation and proportionality methods as a distance metric. B) Jaccard Index of simulated vs
calculated clusters obtained with each evaluated co-expression method. Simulated clusters were paired with one
calculated cluster based on mean profile similarity, and synthetic transcripts present in each member of the pair
were compared. C) Percentage of unclustered isoforms generated by each co-expression method, before and after
re-assigning unclustered isoforms by measuring co-expression with the mean profile of extant clusters (i.e. cluster
expansion). D) Evaluation metric overview. Metrics are specified in the grid headers. x-axis shows values of the dif-
ferent metrics, y-axis displays evaluated co-expression methods.
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Figure 5: characterization of genes with co-Differential Isoform Usage. A) Cluster-based definition of Differen-
tial Isoform Usage (DIU) across multiple cell types. DIU genes that have at least two isoforms assigned to different
clusters, indicating a differential isoform selection pattern across the different cell types. B) Definition of co-Diffe-
rential Isoform Usage (coDIU) using clusters. CoDIU genes have multiple isoforms assigned to the same clusters,
establishinig cross-cell type co-expression relationships for at least two of their isoforms. C) coDIU network. Nodes
represent clusters and depict their mean expression profile across cell types. Node color represents cluster size
(i.e. no. of isoforms in cluster). Edge width represents number of coDIU genes detected between each pair of clus-
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ters. D) Evaluation of cluster profile similarity and size as a function of the number of coDIU genes detected by
acorde. x-axis corresponds to the sum of isoforms in each possible pair of clusters generated from the data. y-axis
contains the number of coDIU genes between the pair. Dot color represents the correlation between the mean ex-
pression profiles of each pair of clusters. The number of coDIU genes between a pair of clusters is seemingly rela-
ted to the size of the clusters involved, and shows no relationship with the degree of similarity betewen the expres-
sion profiles of clustered isoforms. E) Cell type-level coDIU patterns. For each pair of cell types represented in x and
y-axis, heatmap color corresponds to the total number of genes found to be co-DIU between them. Total coDIU ge-
nes are calculated as the sum of coDIU genes detected between all occurrences of cluster pairs showing high ex-
pression of isoforms these cell types. GABA and Glut cell types share the highest number of coDIU genes, both with
each other and with other cell types. Astr: astrcytes, End: endothelial cells, GABA: GABA-ergic neurons, Glut: gluta-
matergic neurons, Micr: microglia, Oligo: oligodendrocytes, OPC: oligodendrocyte precursor cells.
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Figure 6: functional analysis of DIU and coDIU genes. Functional Enrichment results for A) Differential isoform
Usage (DIU) genes vs genes with Differential Expression (DE) of isoforms and B) coDIU vs DIU genes. x-axis indica-
tes the total number of test genes (A-DIU, B-coDIU) including the tested annotation feature, y-axis shows functional
features. Dot color represents functional category, dot size represents -log(adjusted p-value). C) Schematic repre-
sentation of the Functional Diversity Analysis (FDA). Variation using the genomic position and present/absence cri-
teria are shown. D) FDA results for DE isoform, DIU and coDIU genes. y-axis shows transcript and protein functional
categories (see Supplementary Note 1 for category definition information). x-axis shows the percentage of genes
including at least one feature annotation from each of the categories that are detected as functionally varying. Both
FDA criteria are shown (position - left grid column, presence - right grid column). CoDIU genes show the largest le-
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vel of functional variation. E) Cell type expression patterns of clusters selected for downstream functional analysis:
neural (cluster 8, purple), oligodendrocyte (cluster 13, green) or shared (cluster 19, orange). tappAS view of F) Tub2g
and G) Tubb4b protein annotations. Cluster assignments for each isoform are indicated by dot color.

Supplementary Figure 1: Tasic et al. mouse neural dataset overview. A) Number of cells assigned to each cell
type and subtype by Tasic et al. (post-QC, 1591 cells). B) Principal Component Analysis of the full dataset, compo-
nents 1 and 2. C) Principal Component Analysis of data after balancing cell number by randomly sampling 50 GABA
and 50 glutamatergic neural cells (242 total cells).
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Supplementary Figure 2: upset plot of isoform-level Differential Expression (DE) analysis results. DE isoforms
common and uniquely-detected by edgeR and DESeq2 are represented by vertical bar height. Analyzed sets (uni-
que isoforms or intersection) are indicated by the dots below. Total DE isoforms detected by each method (adjus-
ted p-value < 0.05) is represented by horizontal bar height.

Supplementary Figure 3. A) Heterogeneity and sparsity in the Tasic et al. dataset. x-axis shows number of cells per
isoform showing zero expression (yellow) and expression higher than the isoform mean (pink), y-axis shows den-
sity. B) Dataset mean-variance relationship. Dots represent transcript isoforms, x-axis represents the isoform mean
and y-axis correspond to isoform expression variance (log2counts). C) Percentile correlation density distributions
obtained after using different number of percentiles to summarize cell type-level expression.

Supplementary Figure 4: cluster refinement examples. A) Example of four redundant clusters, i.e. clusters re-
presenting the same expression profiles, merged by profile similarity. B) Example of noisy clusters, i.e. clusters
grouping isoforms with highly dissimilar expression patterns across cell types, whose isoforms were re-assigned to
other clusters.
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Supplementary Figure 5: simulated data characterization. A) Single-cell co-expression pattern simulation stra-
tegy. After simulating single-cell RNA-seq data with SymSim, features are re-ranked within each cell type, using the
simulated expression values to generate groups of co-expressed transcripts. Simulated clusters were generated ac-
cording to 15 pre-defined patterns. B) and C) Expression profile of the 15 simulated clusters obtained, before (B)
and after (C) filtering synthetic features showing dissimilarity with the simulated profile. Cell-level mean expression
(scaled, see Methods) is computed for all simulated transcripts in the cluster and then aggregated as the global cell
type mean, represented by the red line. Grey area corresponds to cell type mean ± standard deviation. D) Number
of transcripts in simulated clusters after filtering to ensure cluster profile consistency. E) Heatmap representing the
proportion of high co-expression values (correlation or proportionality > 0.8), computed for all pairs of synthetic
transcripts within each simulated cluster. Darker colors indicate successful recapitulation of simulated co-expres-
sion relationships by the evaluated co-expression metrics.
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Supplementary Figure 6: effect of percentile number in simulated data. Percentile correlation density distribu-
tions obtained after using different number of percentiles to summarize cell type-level expression.

Supplementary Figure 7: clustering of simulated single-cell data using Pearson correlation as distance. A)
Mean profiles of generated clusters. Cell-level mean expression (scaled, see Methods) was computed for all simula-
ted transcripts in the cluster and then aggregated as the global cell type mean, represented by the red line. Grey
area corresponds to cell type mean ± standard deviation. B) Number of simulated transcripts per cluster.
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Supplementary Figure 8: clustering of simulated single-cell data using Spearman correlation as distance. A)
Mean profiles of generated clusters. Cell-level mean expression (scaled, see Methods) was computed for all simula-
ted transcripts in the cluster and then aggregated as the global cell type mean, represented by the red line. Grey
area corresponds to cell type mean ± standard deviation. B) Number of simulated transcripts per cluster.
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Supplementary Figure 9: clustering of simulated single-cell data using percentiles + Pearson correlation as
distance. A) Mean profiles of generated clusters. Cell-level mean expression (scaled, see Methods) was computed
for all simulated transcripts in the cluster and then aggregated as the global cell type mean, represented by the red
line. Grey area corresponds to cell type mean ± standard deviation. B) Number of simulated transcripts per cluster.
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Supplementary Figure 10: clustering of simulated single-cell data using proportionality (ρ) as distance. A)
Mean profiles of generated clusters. Cell-level mean expression (scaled, see Methods) was computed for all simula-
ted transcripts in the cluster and then aggregated as the global cell type mean, represented by the red line. Grey
area corresponds to cell type mean ± standard deviation. B) Number of simulated transcripts per cluster.
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Supplementary Figure 11: clustering of simulated single-cell data using zero-inflated Kendall correlation as
distance. A) Mean profiles of generated clusters. Cell-level mean expression (scaled, see Methods) was computed
for all simulated transcripts in the cluster and then aggregated as the global cell type mean, represented by the red
line. Grey area corresponds to cell type mean ± standard deviation. B) Number of simulated transcripts per cluster
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Supplementary Figure 12: density distributions of co-expression values between isoforms in clusters obtai-
ned from simulated data. Red line indicates the 0.75 threshold value. Results shown for the clusters generated
using each evaluated metric: A) Percentiles + Pearson correlation. B) Pearson correlation. C) Spearman correlation.
D) Proportionality (ρ). E) Zero-inflated Kendall correlation.

Supplementary Figure 13: Pearson correlation between mean expression profiles of calculated and simula-
ted clusters. Results shown for the clusters generated using each evaluated metric: A) Pearson correlation. B)
Spearman correlation. C) Percentiles + Pearson correlation. D) Proportionality (ρ). E) Zero-inflated Kendall correla-
tion. Calculated clusters show no unique match among simulated clusters and were therefore paired with the si-
mulated cluster showing the highest mean expression profile correlation.
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Supplementary Figure 14: evaluation of expression and length biases on coDIU genes. A) Boxplot of cell type-
level median counts (log2) for isoforms belonging to coDIU and not coDIU (i.e. solely DIU) genes. Dots represent ex-
pression outliers. B) Violin plot of isoform length (log2) of longest isoform in coDIU and not coDIU (i.e. solely DIU)
genes. No significant differences were found between them (NS: not significant, Wilcoxon test).
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Supplementary Figure 15: functional analysis of the 160 coDIU genes detected across neural-oligodendrocy-
te clusters (no. 8, 13 and 19). A) Functional Diversity Analysis (FDA) results. y-x: functional annotation categories.
x-axis: percentage of genes including at least one varying feature from a given functional category. B) Proportion of
coDIU genes with 3’UTR variation across isoforms that have their longest 3’UTR isoform in each of the three analy-
zed clusters. C) Violin + boxplot of normalized 3’UTR lengths for each of the three neural-oligodendrocyte clusters.
Normalized lengths are computed by dividing each individual isoform’s 3’UTR length by the sum of 3’UTR lengths of
all the gene’s isoforms. Significance levels for the comparison of the three groups are indicated above the corres-
ponding braces (p-value, Wilcoxon test). D) ID-level FDA results for features in highly-varying functional categories.
Percentage of genes containing the feature that show functional variation across isoforms (x-axis) is shown for the
most frequently annotated features in each category. Total coDIU genes with feature indicated by the bar label.
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Supplementary Figure 16: tappAS view of transcript functional annotation for A) Atxn10 and B) Btrc isoforms. Clus-
ter assignments for each isoform are indicated by dot color.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.441841doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.441841
http://creativecommons.org/licenses/by/4.0/

	Article File
	All figures

