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Abstract

The identification of genes that evolve under recessive natural selection is a longstanding goal of pop-
ulation genetics research with important applications to disease gene discovery. We found that commonly
used methods to evaluate selective constraint at the gene level are highly sensitive to genes under heterozy-
gous selection but ubiquitously fail to detect recessively evolving genes. Additionally, more sophisticated
likelihood-based methods designed to detect recessivity similarly lack power for a human gene of realistic
length from current population sample sizes. However, extensive simulations suggested that recessive genes
may be detectable in aggregate. Here, we offer a method informed by population genetics simulations de-
signed to detect recessive purifying selection in gene sets. Applying this to empirical gene sets produced
significant enrichments for strong recessive selection in genes previously inferred to be under recessive selec-
tion in a consanguineous cohort and in genes involved in autosomal recessive monogenic disorders.

1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443024doi: bioRxiv preprint 

mailto:dbalick@bwh.harvard.edu
mailto:ssunyaev@rics.harvard.edu
mailto:ron.do@mssm.org
https://doi.org/10.1101/2021.05.06.443024
http://creativecommons.org/licenses/by-nd/4.0/


Introduction

Identifying human genes that evolve under recessive natural selection remains incredibly difficult, despite a
host of efforts to characterize the dominance of human traits and diseases [1–7]. Substantial progress has
been made to quantify features of the joint distribution of dominance and selection coefficients in model
organisms like drosophila and yeast [8–10]. However, in humans, as with most long-lived organisms, direct
experimentation is not possible, so the search for recessive selection relies largely on inference from natural
population data. Previous efforts span from the sequencing of consanguineous cohorts to inference by analogy
to experimental systems [11–15]. However, with the advent of large-scale sequence data, it may be possible
to identify at least some subset of recessive natural selection using information from observables like features
of the site frequency spectrum [16–18].

Many analytic and computational tools have been developed to identify natural selection, but in gen-
eral their effectiveness is dependent on selection in heterozygous form [19–22]. This is primarily due to the
fact that purifying selection drives variants to low frequencies, making the probability of randomly forming
homozygotes (or compound heterozygotes with similar function) vanishingly small. Recessive selection is
complicated by the fact that it appears effectively neutral at these low frequencies since the formation of
homozygotes is improbable, precluding efficient purifying selection on homozygotes. Thus, the essential prob-
lem in identifying recessive deleterious variation is not disentangling it from additive or dominant variation,
but rather from neutrality and the genomic background at large. This also explains why most tools designed
to probe purifying selection, while highly successful at identifying variation when additive or dominant, are
largely insensitive to recessivity, conflating it with neutral variation or weakly deleterious additivity [23].
Notably, despite proposed methods to infer these parameters from population frequency data [17], diploid
selection coefficients are not yet known for individual genes in the human genome.

Results

Insensitivity of existing statistics to recessive variation

In a recent perspective by Fuller, et al., the authors demonstrated that the probability of Loss-of-function
Intolerance (pLI) score [21], one of the most commonly used scores of selection in humans, is well powered
to identify heterozygous selection but is largely insensitive to recessive variation [23]. This score identifies
constrained regions by detecting the reduction of frequency or absence of variation in a large human popu-
lation sample. However, recessive selection is often undetectable by this measure, as variation at extremely
low frequencies is necessarily in heterozygote form preventing the action of selection on homozygotes. This
highlights the central problem in identifying recessive variation: diploidy can fundamentally shield mutations
from homozygous selection.

To expand on this observation, we compiled a literature-based gene set expected to be enriched for
recessive selection (n=606) from genes identified in a cohort of British individuals of Pakistani descent
exhibiting a high degree of consanguinity (henceforth “ConsangBP”) [11]. These genes were identified as
genes harboring rare homozygous Loss of Function (LOF) variants and were measured in aggregate to be
under significant recessive purifying selection. We assembled an analogous gene set expected to be depleted
for recessive selection (n=825) from an empirically derived probability of haploinsufficiency (pHI), restricting
to genes with pHI ≥ 0.8 (henceforth “HI80”) [24]. Using these two gene sets, we tested the ability of several
commonly used measures of selection to differentiate either recessive or non-recessive genes from the rest
of the genome. For consistency with later analyses, we restricted both sets to genes with aggregated LOF
and PolyPhen2 probably damaging (henceforth “damaging”) mutation rates above 3 × 10−6 per haploid
individual per generation (ConsangBP n =384 genes, HI80 n=574, whole genome n=8316) [25].

We tested a variety of commonly applied per gene statistics that rely on a combination of intra-species
population genetic information, inter-species comparative genomics, and functional information to score
each gene (see Figure 1) [19–22, 26–29]. All population genetic values were computed using data from the
non-Finnish European (NFE) cohort of the Exome Aggregation Consortium (ExAC) for consistency with
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later analyses [21]. Nearly all statistics shown are highly sensitive to purifying selection in genes under
non-recessive selection, but all were generally insensitive to genes under recessive selection. The net impact
of this insensitivity on genome-wide properties of natural selection is unclear, as the number of genes that
behave recessively remains unmeasured in humans. Since such measures are frequently used to prioritize
genes for clinical and biological studies, this has great potential impact across both biology and medicine.
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Figure 1: Enrichment for genes under selection using various per gene metrics. Points show enrichment for genes
showing evidence of selection according to each per gene metric, expressed as log odds ratio. Lines show 95% confidence
intervals. The metrics shown include scores based on population constraint within humans (ratio of nonsynonymous
to synonymous nucleotide diversity πns/πs, number of nonsynonymous segregating sites, and constraint scores PLI
[21], OE [28], RVIS [27], and Shet [29]), scores based on conservation between species (dN/dS score [19, 20], phastCons
conservation score [22]), and a hybrid score that includes both (McDonald-Kreitman neutrality index [26]). For details
of how these scores were processed, see Methods. A. The putatively recessive ConsangBP gene set [11] showed either
a depletion for genes with evidence of selection or a lack of power in all scores tested. B. The putatively non-recessive
HI80 gene set [24] showed either an enrichment for genes with evidence of selection or a lack of power in all scores
tested.

Power to infer recessive selection at the single gene level

It is unclear whether the insensitivity of common measures to recessive selection is due to features of these
specific statistics or a fundamental power limitation. A partial answer was provided by Williamson, et al.
who developed a Poisson Random Field (PRF) based log likelihood ratio test (LLRT) to evaluate dominance
using population genetic data [17, 30]. This test compares the null hypothesis of additive selection (h = 0.5)
to an alternative hypothesis of unrestricted dominance (0 ≤ h ≤ 0.5). They demonstrate that this test
has ample power to reject the null hypothesis when selection is recessive if there are a sufficient number of
segregating sites. However, they focused on the ability to reject the null hypothesis of uniformly additive
selection across the entire genome using data available in 2004, and this analysis does not address whether
modern population genomics datasets can be used to detect recessive selection on the level of a single gene.
Additionally, they assumed an equilibrium demography rather than a more realistic demography for human
populations, which becomes more important with increasing sample size.

We simulated alleles for a grid of selection and dominance coefficients through a realistic demography, and
downsampled to the size of the NFE subsample of the ExAC dataset, the largest relatively panmictic single
ancestry cohort without recurrent non-CpG mutations [21]. This was repeated for a range of mutational
target sizes, representing the combined target size for LOF and damaging missense mutations for human
genes. We focused on recessive simulations under strong selection (h = 0, s = −0.1) to assess the ability of
the proposed test to reject the null hypothesis of additivity. As shown in Figure 2A, the power to reject
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the null hypothesis was essentially zero for any realistic gene length (also see Methods and Supplementary
Figures SI1 and SI2). This is due to ambiguity in the SFS between strong recessive selection and weaker
additive selection when there are an insufficient number of segregating sites, which makes it difficult to
confidently reject the null hypothesis when selection is truly recessive (h = 0) (see Supplementary Figure
SI4). Our results indicate that this ambiguity is a fundamental feature of recessive selection that exists even
under ideal circumstances when demography and mutation rates are known exactly, and is limited in power
by finite gene size. These results are entirely consistent with the observations of Fuller et al. [23], as well
as with Williamson et al. [17], who estimated the number of segregating sites required to confidently reject
the null hypothesis of additivity at a much higher number than the target size for all LOF and damaging
mutations in a typical gene (shown in Supplemental Figure SI1).

We next considered whether a hypothesis test aimed more narrowly at identifying strong recessive selec-
tion might have more power for this task under the same ideal circumstances. We performed an alternative
test comparing strong recessive selection (h < 0.1, s ≥ −0.1) to a model that excludes strong recessive
selection (0.5 ≥ h > 0 and/or 0 ≥ s > −0.1). We identify genes as “strong recessive” if the values of h and
s that maximize likelihood lie within the strong recessive region, and as “non-strong-recessive” otherwise.
This test, which we refer to as a strong recessive maximum likelihood (srML) test, also had low power to
correctly estimate selection and dominance coefficients for genes under strong recessive selection (see Figure
2B). This implies that even with a test specifically designed to maximize power to detect strong recessive
selection, detecting individual genes under strong recessive selection based solely on population genetics
remains infeasible with current data.
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Figure 2: Power to correctly predict strong recessive selection in a single gene as a function of gene length. Power
to correctly identify simulated genes under strong recessive selection (h=0, s=-0.1; red) is plotted as a function of
gene length. False positive rates are shown for genes under additive selection with varying selection strengths: strong
selection (s=-0.1, dark blue), weak selection (s=-0.01 and -0.001, lighter blues), and neutrality (s=0, grey). For
simplicity, all sites within each gene are assumed to have uniform dominance and selection coefficients, which may
be a reasonable approximation within a single functional class (e.g. synonymous sites only, damaging sites only).
n=1000 replicate simulations were performed using a demography inferred from the ExAC NFE sample [29, 31]. A.
Power and false positive rates using the log likelihood ratio test to reject additivity of all selection strengths. Roughly
10,000 sites (corresponding to a mutational target size of 10−4) are needed to gain sufficient power. Virtually no
genes in the human genome have LOF and damaging target sizes on this order (see Figure SI1). B. Power and false
positive rates using the srML test with the same likelihood function. Some power can be seen starting at roughly 300
sites (mutational target size of 3 × 10−6). However, false positives persist at high fractions, particularly for additive
variation under weak selection. Precise error rates for a set of genes depend both on the length distribution and on
the distribution of diploid selection coefficients.
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Power to detect enrichment of recessive selection in gene sets

Given the failure to identify single recessive genes, we next asked if such genes could be identified in aggregate
in the form of gene set enrichment over the genomic background. To test this, we simulated gene sets with
a range of odds ratios for strong recessive genes to assess the power to detect enrichment over a simulated
genomic background.

As described in Methods, we simulated a range of realistic human genomic backgrounds consistent with
previous studies and parameterized by the fraction of the genes evolving under strong recessive selection, fR,
up to a maximum of 30%. We then simulated gene sets of various sizes (n={30,100,300,. . . }) with a known
odds ratio from a depletion of OR=0.25 to an enrichment of OR=4.0 for recessive strong selection genes
with the remaining genes randomly pulled from a genomic background with a given fraction fR. Both the
backgrounds and test sets were sampled from the empirical distribution of ExAC NFE LOF and damaging
mutation rates. Using simulated genomic backgrounds, we assessed the power to detect enrichments for the
two methods described above. We found no significant enrichment for any plausible gene set size when using
the LLRT for rejection of additivity, independent of the odds ratio in the test gene set (Supplementary
Figure SI5). This is, in part, due to the nature of the test, as recessive genes and weak additive genes have
similar PRF likelihood values that make it difficult to confidently reject additivity.

In contrast, we found that gene sets containing a sufficient odds ratio for strong recessive genes can
be significantly enriched for genes identified as strong recessive by the srML test. Figure 3A shows the
power profile for an example simulated genome in which 10% of all genes are under strong recessive selection
(fR = 0.1). The statistical significance is shown as a function of the input odds ratio for various simulated
set sizes ranging from 30 to 3000 genes. For relatively small gene sets on the order of 30–100 genes, only
odds ratios with more than roughly threefold enrichment show significance, while much larger sets on the
order of 1000–3000 genes become significant at more modest values around a 1.3-fold odds ratio. As a point
of comparison, Figure 3B shows the same plot for a simulated genome in which only 3% of genes are
under strong recessive selection (fR = 0.03). The qualitative features of this power plot are the same when
rescaling the horizontal axis, but the significance becomes much weaker, with roughly a 2.5-fold enrichment
needed even for gene sets of order 1000. For a full range of simulated genomes with distinct fractions of
strong recessivity, see Supplementary Figure SI6. See Supplementary Figure SI7 for the effect of
varying fR for a fixed gene set size. Together, these plots show that the quantitative requirement for a
statistically observable enrichment depends sensitively on the fraction of the genome as a whole that is
under strong recessive purifying selection—a completely unknown parameter in humans. To expand on this,
we plotted the relationship of the estimated odds ratio (using srML on scored genes) on the simulated odds
ratio. Figure 3C shows how the estimated OR deviates from the true OR as a function of the fraction of
the background under strong recessive selection. The odds ratio is an underestimate of the true enrichment
(or depletion), making it impossible to infer the number of strong recessive true positives without knowing
the exact content of the genomic background at large (i.e. the joint distribution of dominance and selection
coefficients). Therefore, an observation of significant enrichment for strong recessive selection likely indicates
a true signal but says little about the number of genes driving this signal without additional information.

5

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443024doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443024
http://creativecommons.org/licenses/by-nd/4.0/


A

0.25 0.5 1.0 2.0 4.0
simulated odds ratio

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
lo

g 1
0P

 (
2  t

es
t)

number of genes
30
100
300
1000
3000

B

0.25 0.5 1.0 2.0 4.0
simulated odds ratio

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

lo
g 1

0P
 (

2  t
es

t)

number of genes
30
100
300
1000
3000

C

0.25 0.5 1.0 2.0 4.0
simulated odds ratio

0.25

0.5

1.0

2.0

4.0

es
tim

at
ed

 o
dd

s r
at

io

fraction of genome recessive
0.0
0.01
0.03
0.1
0.3

Figure 3: Power to detect enrichment for genes under strong recessive selection. Power of the srML test to detect
the enrichment of genes under strong recessive selection is plotted as a function of gene set size and true odds ratio of
the gene set for two different values of the parameter fR, representing the fraction of the genome that is under strong
recessive selection. Qualitative features do not depend on the genome-wide prevalence of strong recessive selection,
but the significance threshold is highly sensitive to this parameter. In all cases, the srML test was used to score
individual genes, and enrichment of genes predicted recessive was evaluated using a chi-squared contingency test.
A. Power to detect enrichment of recessive selection for gene sets of various sizes for a simulated genome with 10%
of genes under strong recessive selection. B. The comparable power plot for a simulated genome with 3% of genes
under strong recessive selection. C. Estimated odds ratio vs simulated odds ratio for gene sets of size n=300 with
varying fractions of the genome under strong recessive selection. srML universally underestimates the true enrichment
(slope < 1) but is a better estimate for larger recessive fractions of the background (an unknown quantity in humans).
Gene set size affects the variance of this dependence, but not the slope.

Application to empirical gene sets

With a simulation-based understanding of the power to detect enrichment for strong recessive genes in
sufficiently large gene sets, we applied the same methodology to gene sets of interest using ExAC NFE data
[21]. We assembled several literature-based gene sets with reasonable expectation to be either enriched or
depleted for recessive genes under strong selection. Using simulations of a range of dominance and selection
coefficients matched to each gene length, we used the PRF-based likelihood to estimate the values of h and
s associated with each gene maximized over 17 possible h and s pairs (see Methods and Supplementary
File 1 for a list of target sizes and ML h and s values for all genes). Genes with LOF and damaging
mutational target sizes below 3 × 10−6 (average of less than 300 sites) were removed from all lists and the
genomic background, as shorter genes showed no power to convey meaningful information in simulations (see
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Figure 2B). This provided a total of 8316 scored genes that comprise roughly 40% of the whole genome
we were able to annotate. We performed the srML test described above on each gene and tested each gene
set against the rest of the genome for enrichment of specific selection classes. Odds ratios and log p-values
for enrichment at two primary diploid selection strengths of interest—strong recessive selection and strong
additive selection—are summarized in Figure 4, along with the number of scored genes in each set.

We analyzed the ConsangBP and HI80 gene sets described above as respective positive and negative
controls for the enrichment of genes evolving under strong recessive selection. Enrichment results for both
gene sets are shown in Figure 4A and detailed in Supplementary Table S1. The putatively recessive-
enriched ConsangBP set showed a highly significant enrichment for strong recessive selection (OR=2.60,
p=1.9×10−11), as well as a highly significant depletion for strong additive selection (OR=0.50, p=1.2×10−7).
A priori, it is possible to find enrichments in both bins simultaneously for a given gene set, as enrichment
for strong recessive genes does not necessitate depletion for strong additive genes, and vice versa. However,
our simulations demonstrated that for a homogenous set of strong recessive genes, misclassification as strong
additive is unlikely (see Figure 2B), suggesting that the ConsangBP gene set contains a large number
of strong recessive genes and few strong additive genes compared to the whole genome. The putatively
recessive-depleted HI80 gene set showed the opposite behavior, with significant depletion of strong recessive
genes (OR=0.5, p=0.002) and highly significant enrichment for strong additive genes (OR=2.07, p=6.7 ×
10−15). This expected result provides a negative control in which genes identified for their additive or
dominant mechanism appear underrepresented for those under strong recessive purifying selection. The
depletion of recessive genes in HI80 is less significant than the enrichment of ConsangBP, consistent with the
power analysis from simulations (see Figure 3). As an additional control, we restricted both gene sets to
synonymous variants and found no significant difference from the whole genome, suggesting no major effects
due to linkage on the genic level. Last, we confirmed that potential length bias had no significant effect on
our enrichments (see Methods and Supplementary Table S2).

Having validated the ability to identify gene sets enriched or depleted for strong recessive selection using
the ConsangBP and HI80 controls, we applied the same methodology to several additional gene sets. First,
we analyzed genes with a low probability (p ≤ 0.2) of haploinsufficiency (referred to as HI20) using the
same HI predictions used for the HI80 gene set [24]. A priori, it is unclear whether the lack of evidence for
haploinsufficient activity is predictive of enrichment over the genomic background for genes under strong
recessive selection. We found a qualitatively similar enrichment pattern to that of the recessive control
with highly significant enrichment for strong recessive (OR=1.77, p=7.0 × 10−8) and depletion of strong
additive genes (OR=0.51, p=5.1 × 10−12) (see Figure 4A). This suggests that the lack of evidence for
haploinsufficiency represented by low predicted HI probability is indeed indicative of the presence of genes
under strong recessive selection, rather than simply the remainder of genes outside of the strong additive
corner. This provides a biological example of the utility of this method to identify correlations to strong
recessive selection in aggregate.

Next, we focused on gene sets assembled from data on the mode of inheritance (MOI) of human disease
phenotypes. We used annotations from the Clinical Genomic Database (CGD) to create a list of autosomal
recessive (AR) disease genes (i.e. genes only containing known AR disease variants), and a list of autosomal
dominant (AD) disease genes (those only containing known AD disease variants) [7]. See Methods for
details. We assessed the presence of strong recessive genes for each MOI separately by scoring all genes of
sufficient length and computing enrichment odds ratios and p-values (see Figure 4A). CGD AD genes were
depleted for strong recessive selection (OR=0.64, p=0.017) and highly enriched for strong additive selection
(OR=1.57, p=1.0 × 10−6), qualitatively consistent with the HI80 enrichment profile for non-additive genes
but with reduced significance. In contrast, the set of CGD AR genes showed no significant enrichment
for genes under strong recessive selection (OR=1.01, p=0.94), despite highly significant depletion for genes
under strong additive selection (OR=0.65, p=9.3× 10−7). We hypothesized that this was due to annotation
quality for recessive disease genes, some of which might be attributable to the insensitivity of commonly
used prioritization statistics and annotation tools to recessive selection (see Figure 1). To address this, we
applied a ClinVar quality filter to restrict to genes with multiple high quality variant annotations, as detailed
in Methods [32]. We stratified the AR list into high quality (CGD ARHQ) and low quality (CGD ARLQ)
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subsets, with the latter containing all genes failing our quality filtration step. We analogously stratified AD
into CGD ADHQ and CGD ADLQ for comparison. The resulting enrichments are displayed in Figure 4B.
ARHQ showed a significant enrichment for strong recessive genes (OR=2.04, p=1.8× 10−4) and significant
depletion for strong additive genes (OR=0.55, p=2.5 × 10−3), consistent with näıve expectations for genes
responsible for, often severe, autosomal recessive Mendelian disease. The qualitative enrichment profile is
consistent with the ConsangBP positive control. Conversely, ARLQ genes showed no significant deviation
from the fraction of the genomic background under strong recessive selection (OR=0.76, p=0.06), suggesting
the prevalence of essentially random annotation errors. The fact that this gene set is fourfold the size of
ARHQ suggests this is not due to a lack of statistical power. For comparison, we repeated this analysis for
CGD AD and similarly found that the ADLQ set is indistinguishable from the genomic background with
respect to depletion for strong recessive selection (OR=0.74, p=0.14), demonstrating this annotation quality
issue is independent of MOI. In all cases the test for enrichment of strong additive selection is in the expected
direction and significant, though only marginally in the case of ADLQ (ADHQ: OR=2.52, p=1.1 × 10−8;
ADLQ: OR=1.28, p=0.022).
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Figure 4: Enrichment of literature-based gene sets for genes under strong recessive or strong additive natural selec-
tion. Log odds ratio of enrichment for genes called “strong recessive” by the srML test or genes called strong additive
by the analogous test for strong additive selection for various gene sets. A. ConsangBP contains genes with evidence
of recessive selection from a consanguineous British Pakistani population [11]; HI80 contains genes with evidence of
haploinsufficiency from an empirically derived haploinsufficiency score [24]; HI20 contains genes with evidence against
haploinsufficiency from the same empirically derived haploinsufficiency score; CGD AR and AD contain genes known
to be implicated in autosomal recessive or autosomal dominant disease, respectively [7]. B. CGD ARHQ and ADHQ
sets consist of the subset of CGD AR or AD genes [7] harboring more than one variant annotated with a quality score
of 2 stars (“multiple submitters, no conflicts”) or higher in ClinVar [32]; CGD ARLQ and ADLQ consist of all genes
in CGD AR or AD that do not meet this criterion; Lethal ARHQ contains genes that are both confidently identified
as causal for effectively lethal AR disease and pass the ClinVar quality filter [32, 33].

Last, we assessed the dependence of enrichment for strong recessive selection on the severity of autosomal
recessive disease. We analyzed a list of effectively lethal, recessive Mendelian disease genes from a study of
the population frequencies of such diseases [33]. This Lethal ARHQ list is a subset of the CGD ARHQ gene
set that includes only the most extreme phenotypes leading to death before reproductive age, infertility in
both sexes, or severe mental or physical developmental delay precluding reproduction. As seen in Figure
4B, this list of 23 scored genes, while only marginally significant due to the set size, showed a larger odds
ratio than any other gene set tested (OR=2.92, p=0.042). This suggests that variants associated with
effectively lethal recessive phenotypes may be identifiable through the action of recessive selection on their
frequency distribution at the population level. The fact that an enrichment is observed in such a small gene
set provides something of an empirical power bound on the minimal gene set size for aggregate detection of
recessive selection.
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To illustrate the more extensive space of analyses performed, we created srMLGenes, a web-based in-
teractive tool that can be accessed at https://jordad05.u.hpc.mssm.edu/srmlgenes/ or downloaded at
https://github.com/rondolab/srmlgenes/. This allows for full exploration of each of the aforementioned
gene sets, as well as the ability to upload a novel gene set for the detection of enrichment for strong recessive
selection (see Supplementary Note 1).

Discussion

Here we present work aimed both at placing bounds on the power to infer recessive natural selection from
large-scale human population data and developing a tool to aid in the identification and quantification of
recessivity in the human genome. Few studies to date have inferred the presence of recessive selection from
human population data [11, 18], yet many studies have focused on identifying genes with a recessive mode of
inheritance in human disease [2–6] or on differentiating properties of AR diseases from those with AD [34, 35].
The validation of likelihood-based tests as a tool to identify the presence of recessive genes allows us to apply
population genetic inference to the prioritization of AR disease genes, complementing a long tradition of
computational predictions of (heterozygote) selection applied to Mendelian disease gene discovery pipelines
[6, 21, 27–29, 31, 36–39]. The fact that we recapitulate an expected enrichment for strong recessive selection
in genes annotated as involved in recessive disease by applying a quality filter demonstrates the potential
power of this approach. The failure to detect an enrichment before applying this filter strongly suggests
that a large fraction of genes annotated as AR and used in clinical genomics show little evidence of strong
recessive selection in aggregate and are consistent with noise.

We established an empirical lower bound on the size of a gene set needed to detect enrichment for strong
recessivity in current human population samples. In the Lethal ARHQ gene set, we found a significant
enrichment for strong recessive selection in a set of only 23 genes [33]. Due to the nature of the phenotypes
caused by these genes—infertility, death before reproductive age, etc.—LOF variants in these genes have no
known phenotypes in heterozygote (carrier) form and are thus expected to have both the strongest selection
and be exactly in the h = 0 corner. It is therefore unrealistic to expect any smaller gene sets categorized by
srML to produce significant enrichments, regardless of their content.

Our work suggests theoretical and empirical power limitations on both the length of a recessive genes
needed to inform any nontrivial inference of recessive selection and the number of genes needed to detect the
presence of recessive selection in aggregate via enrichment. Observation of significant enrichments establishes
that the human genome contains a sufficient number of genes evolving under strong recessive purifying
selection to allow for detection. We found broad consistency in expected directions when comparing candidate
recessive genes in both panmictic and consanguineous population data, between predictions of both high and
low levels of haploinsufficient activity and recessivity, and finally between disease mode of inheritance and
the mode of selection. Lastly, we produced a publicly accessible user interface where unique gene sets can
be uploaded to assess their enrichment for genes evolving under strong recessive selection.

Methods

Filtering of Variants

All population data analysis was performed on non-Finnish European (NFE) samples in the Exome Aggre-
gation Consortium (ExAC) dataset [21]. Before constructing SFSs, we first restricted to single nucleotide
variants with only one alternative allele. Next, we removed variants where fewer than 80% of ExAC NFE
samples had a confident genotype call to remove sites with poor coverage or ambiguous sequences. We
removed sites where either allele formed a CpG hypermutable context to ensure a relatively homogenous
mutation rate and prevent complications in the inference method due to recurrent mutations. To determine
which allele was ancestral, we retrieved the orthologous site in the panTro2 chimpanzee sequence from the
Ensembl Compara database, https://useast.ensembl.org/info/genome/compara/index.html [40]. For
variants where one of the human alleles matched the orthologous panTro2 sequence, we assumed that the
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chimpanzee reference allele was the ancestral allele. Variants where neither allele matched the panTro2
sequence or where no orthologous site in panTro2 could be found were discarded.

Calculation of Mutational Target Size and Gene Length

To calculate mutational target size for each gene, we first retrieved ExAC coverage regions from the gnomAD
browser, https://gnomad.broadinstitute.org/downloads#exac-resources [28]. We then enumerated
all possible mutations within the coverage regions and determined which of these passed our filtration steps
and met our definition for either LOF and damaging (missense mutations annotated “probably damaging”
by PolyPhen2 [25]) or coding synonymous sites. Finally, we applied the method of Samocha et al. [41] to
calculate local mutation rates for each site meeting these criteria, and summed these rates into combined
mutational target sizes for each gene and functional category. We converted these target sizes to approximate
gene lengths by dividing by 10−8, an approximation of the average per-base mutation rate in the human
genome.

Calculation of Population Genetics Scores

Scores displayed in Fig. 1 were calculated as follows.

• For πns/πs, we first calculated πns and πs as

π =
∑
i

ni
ni − 1

2xi(1− xi)

where ni is the total number of observations made of allele i in the NFE subset of ExAC [21] (i.e. the
allele number), and xi is the frequency of that allele, summing over all synonymous (πs) or nonsynony-
mous (πns) alleles in each gene, after filtering variants as described elsewhere. We removed all genes
where either score was zero (that is, genes with no segregating sites in either functional class). We
then ranked genes by |log πns/πs| to measure deviation from a ratio of 1, and the highest 10% were
counted as having evidence in favor of selection.

• For segregating sites, we ranked genes by number of sites with segregating alleles in the NFE subset
of ExAC [21] divided by the calculated mutational target size after filtering variants as described
elsewhere. The lowest 10% were counted as having evidence in favor of selection.

• For pLI, we retrieved pLI scores computed from gnomAD v2.1 for each gene covered in ExAC from the
gnomAD browser, https://gnomad.broadinstitute.org/downloads [21, 28]. Genes with pLI scores
greater than 0.9 were counted as having evidence in favor of selection.

• For O/E, we retrieved O/E loss of function scores from the same gnomAD v2.1 constraint data used
for pLI [28]. We then ranked genes by O/E score. The lowest 10% were counted as having evidence in
favor of selection.

• For RVIS, we retrieved the latest version of RVIS scores calculated from ExAC from http://genic-intolerance.

org/data/RVIS_Unpublished_ExACv2_March2017.txt [27]. We then ranked genes by the standard
RVIS score, labelled (RVIS[pop_maf_0.05%(any)]). The lowest 10% were counted as having evidence
in favor of selection.

• For shet, we retrieved shet estimates from Supplementary Table 1 of Cassa et al. 2017 [29]. We then
ranked genes by estimated shet. The highest 10% were counted as having evidence in favor of selection.

• For dN/dS, we retrieved chimpanzee dN and dS values for each gene from version 88 of the Ensembl
Biomart, https://www.ensembl.org/biomart/martview/ [19, 40]. We removed all genes where either
score was zero (that is, genes with no substitutions in either functional class). We then ranked genes by
|log dN/dS| to measure deviation from log [dN/dS = 1] = 0. The highest 10% were counted as having
evidence in favor of selection.

10

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443024doi: bioRxiv preprint 

https://gnomad.broadinstitute.org/downloads#exac-resources
https://gnomad.broadinstitute.org/downloads
http://genic-intolerance.org/data/RVIS_Unpublished_ExACv2_March2017.txt
http://genic-intolerance.org/data/RVIS_Unpublished_ExACv2_March2017.txt
https://www.ensembl.org/biomart/martview/
https://doi.org/10.1101/2021.05.06.443024
http://creativecommons.org/licenses/by-nd/4.0/


• For phastCons, we retrieved phastCons scores for each site from the hg19 version of the UCSC genome
browser, http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons100way/ [22, 42]. We cal-
culated a per-gene phastCons score by averaging over the coding sequence of each gene. Genes with
average phastCons scores greater than 0.9 were counted as having evidence in favor of selection.

• For the McDonald-Kreitman test [26], we first calculated πns/πs and dN/dS as described above. We

then ranked genes by
∣∣∣log dN

dS − log πns

πs

∣∣∣ to measure deviation from a ratio of 1, and the highest 10%

were counted as having evidence in favor of selection.

In all cases, p-values were calculated using a chi-squared contingency test and confidence intervals were
calculated assuming Poisson error on each cell of the contingency table.

Forward Time Simulations

Genes with known selection and dominance were simulated through a realistic demography for the non-
Finnish European population using a custom forward-time Wright-Fisher simulator implemented in Python,
both of which were previously reported in Cassa, Weghorn, Balick, Jordan, et al. [29] and Weghorn, Balick,
et al. [31]. The demographic history used was previously fit using the ExAC NFE population sample and
corresponds to that of Tennesen, et al. with an increased rate of exponential growth during the most recent
epoch [43]. We simulated a grid of 17 pairs of selection and dominance coefficients, comprising all pairwise
combinations of h ∈ {0.0, 0.1, 0.3, 0.5} and s ∈ {−0.1, −0.01, −0.001, −0.0001} and one point at s = 0,
which is identical for all values of h. To make reference simulations, we simulated 109 unlinked sites with
mutation rate µ = 10−8 per site per generation for each of the 17 selection and dominance classes. Sites were
then binomially downsampled to a diploid sample size of 34,429, representing the sample size of NFE exomes
used to calculate empirical site frequency spectra (SFS) from the ExAC database [21]. A reference SFS was
calculated for each of the 17 selection and dominance classes using by counting the total number of alternate
alleles in each frequency bin from the downsampled simulations. To make simulated genes, we simulated 106

unlinked sites (again with µ = 10−8) for each of the 17 selection and dominance classes in the same way. We
randomly sampled from these sites with replacement to create 31 simulated genes from each simulation on a
logarithmically spaced grid ranging from 102 to 105 (i.e. 102, 102.1, 102.2, . . . , 104.8, 104.9, 105), corresponding
to the approximate range of LOF and damaging single gene target sizes observed in the exome. We repeated
this 10,000 times for each selection and dominance class, to produce a total of 10,000 simulated genes for
each of 31 lengths and 17 selection and dominance classes. In total, we simulated 1.717× 1012 unlinked sites
and used them to create a reference SFS and 5.27× 106 simulated genes.

Likelihood Calculation and Likelihood Tests

To compute the Poisson Random Field [30] likelihood of an observed SFS given a combination of dominance
coefficient h and selection coefficient s, we compared the observed SFS with the SFS from a reference
simulation of 109 sites with the same h and s values. We first scaled the reference simulation SFS by the
mutational target size Uobs for a gene with an observed SFS, so that it represents the expected SFS for a
region with that target size:

Φscaled(k;h, s) =
Uobs
Uref

Φref (k;h, s)

where Uobs and Uref are the mutational target sizes corresponding to the observed and reference SFSs,and
Φref(k;h, s) is the number of alleles seen in exactly k individuals in the reference simulation with dominance
and selection coefficients h and s. For simulated genes and the reference simulations, these U values are
exactly known; for empirical SFSs derived from ExAC, they were estimated as described above. Here we
have assumed that the SFS is linearly scalable with mutational target size (i.e. the shape of the SFS is
the same for all mutation rates). This is an approximation that comes from the infinite sites model and is
predicated on linkage equilibrium and the absence of recurrent mutations. This approximation is invalid in
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the presence of substantial linkage disequilibrium or when the per population per site mutation rate is high
enough to be observed in the sample. Notably, this restricts the method to panmictic population samples
without recurrent mutations for the mutation spectra analyzed (i.e. non-CpG mutations). European samples
larger than ExAC (n & 104) can be recurrent in most mutational classes, and the increased mutation rate
of CpGs result in observed recurrent mutations even in ExAC [21].

Next we calculated the log likelihood under a Poisson Random Field (PRF) model [30]:

logL(h, s) =
2N−1∑
k=1

(Φobs (k) log Φscaled(k;h, s)− Φscaled(k;h, s))

Where Φobs(k) is the number of alleles seen in exactly k haploid chromosomes in the observed SFS, and
N is the number of diploid individuals sampled.

For each observed SFS (i.e. for each gene and functional class), we performed this calculation once per
reference simulation for a total of 17 combinations of h and s. This produces a log likelihood function
logL(h, s) defined at 17 discrete points. To perform the Likelihood Ratio Test (LRT) for non-additivity
described in Williamson et al. [17], we applied a standard chi-squared likelihood-ratio test on this log
likelihood function with the set of h = 0.5 points (including s = 0) as the null hypothesis. To perform
the strong recessive maximum likelihood (srML) test, we partitioned the (h, s) plane into a strong recessive
region consisting of the single simulated diploid selection class (s = −0.1, h = 0.0) and a non-strong-recessive
region consisting of the other 16 diploid selection classes. We classify genes as “strong recessive” if the point
that maximizes the PRF likelihood is (s = −0.1, h = 0.0), such that the log likelihood ratio is greater than
0, and as “not strong recessive” otherwise. An analogous test can also be used for other values of h and s
where a different point in (h, s) space is compared to the remaining coordimates. In the text and figures, we
use “strong recessive” to refer to the test described here for (h = 0.0, s = −0.1), and use “strong additive”
to refer to the analogous test for (h = 0.5, s = −0.1) and “neutral” to refer to the analogous test for s = 0.

Simulating Genomic Backgrounds

First, we pooled sites across all LOF and damaging sites in the ExAC NFE data to assemble an SFS, removing
CpG and low coverage sites as described above [21]. Following the procedure detailed in the Supplement
Information of Do et al. [44], we modeled an additive DFE by using a linear combination of simulated
SFSs with three discrete selection strengths at (h = 0.5, s = {−10−1,−10−2,−10−5}) representing strong
selection, weak selection, and near neutrality, respectively. We then estimated the maximum likelihood linear
combination from a grid of three possible weights in steps of 0.05, where all weights sum to one for a total
of two degrees of freedom. The PRF likelihood was maximized with the following weights: 0.6 for strong
selection (s = −10−1), 0.3 for weak selection (s = −10−2), and 0.1 for nearly neutral sites (s = −10−5). As
a control, this procedure was repeated for ExAC NFE synonymous sites with the same filtering steps, which
resulted in 100% nearly neutral sites.

We then used this additive inference to simulate plausible genome wide distributions by assuming that
the strong selection class inferred under additivity likely corresponds to strong additive selection, modeled
as (s = −0.1, h = 0.5) for the present purposes, while the nearly neutral class can be treated as effectively
neutral (s = 0, h = undefined) regardless of the additivity constraint. The proportion of the DFE associated
with the weak selection class (30% attributed to s = −10−2) was decomposed into two discrete cases
for simplicity: weak additive selection (h = 0.5, s = −10−2) and strong recessive selection (h = 0, s =
−10−1). The fraction of this middle class was varied from 0 to 100% strong recessive (corresponding to
an empirically derived maximum of 30% strong recessive selection and 0% weak additive in the genome)
creating a range of possible genome wide joint DFEs. We matched the distribution of gene target sizes to
that of LOF and damaging variants in ExAC NFE after the filtering steps described above (see Figure
SI1). We simulated the 17 point grid of selection and dominance coefficients detailed above over a range of
mutational targets (i.e. gene lengths) corresponding to the LOF and damaging range of genes in the exome:
LLOF+damaging ∈ [100.3, 104.7], where L = U/10−8, or between roughly 2 and 50000 bases. Using these
simulations, we created an ensemble of genome-wide backgrounds, each with 14326 total genes, with a strong
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additive fraction = 0.6 and neutral fraction = 0.1 (together comprising 70% of genes), and with a strong
recessive fraction = fR, and weak additive fraction = (0.3 - fR) (together comprising the remaining 30% of
genes). Here fR corresponds to the fraction of the genome that is under strong recessive selection up to a
maximum of 0.3, the empirically estimated sum of the weak additive and strong recessive classes. We then
simulated gene sets of various sizes (n={30,100,300,. . . }) each with a known odds ratio from a depletion of
OR=0.25 to an enrichment of OR=4.0 of recessive strong selection genes, with the remaining genes being
pulled randomly from a genomic background with a given fraction fR .

Gene Set Enrichment Analysis

For both simulated and empirical gene sets, we tested for enrichment of strong recessive selection against
the genome-wide background using a chi-square contingency test. We constructed a contingency table where
one variable represented membership in the gene set, and the other represented whether or not the gene was
identified as strong recessive by the srML test. An enrichment (odds ratio >1.0) represents a scenario where
genes in the gene set are more likely to be identified as strong recessive than genes not in the gene set, while
a depletion (odds ratio <1.0) represents a scenario where genes in the gene set are less likely to be identified
as strong recessive than genes not in the gene set. The test was performed as a two-talied test.

For the empirical gene sets, we also used logistic regression to attempt to control for gene length /
mutational target size, which may be a confounder. We used gene set membership as a binary dependent
variable, and the binary result of the srML test and the LOF and damaging mutational target size of the gene
as independent variables. The results of this analysis were qualitatively similar to those of the chi-square
test, and the effect size of the length variable found by regression was uniformly zero.

Empirical Gene Sets

The putatively recessive-enriched ConsangBP gene set was derived from sequencing of a British Pakistani
population with a high degree of consanguinity. Genes were collected from Supplementary Data S1 of
Narasimhan et al. 2016 [11], and consist of all genes harboring rare homozygous loss-of-function variants in
this population. While genes containing rare homozygous loss-of-function variants in a highly consanguineous
population are not a priori subject to recessive selection, the high consanguinity of the cohort allowed the
authors to measure recessive selection by comparing loss-of-function variants to frequency-matched syn-
onymous variants, and this specific list of genes was found to be subject to significant recessive purifying
selection.

The putatively recessive-depleted HI80 gene set was derived from the haploinsufficiency scoring method
of Huang et al. 2010 [24]. This method gives genes a score representing the posterior probability of hap-
loinsufficiency based on biological similarity to known haploinsufficient genes. We defined our HI80 gene
set using genes scored with a posterior probability for haploinsufficiency of at least 0.8 by this method.
The HI20 gene set was derived from the same method using genes scored with a posterior probability of
haploinsufficiency no greater than 0.2.

Clinical gene sets were collected from the Clinical Genomic Database (CGD) [7]. Autosomal recessive
(AR) disease genes were defined as genes containing known AR disease variants and no known AD or other
classes of variants. Autosomal dominant (AD) disease genes were defined as genes only containing known AD
disease variants and no AR or other classes of variants. We removed all genes located on sex chromosomes,
as well as any gene with a mixed MOI annotated with both AR and AD variants (AR/AD genes) and/or
imprinting.

The Lethal AR gene set was collected from Table S2 of Amorim et al. 2017 [33], listing a manually
curated set of variants confidently known to cause a severe form of lethal, Mendelian, recessive disease.

To assemble high-quality (HQ) and low-quality (LQ) sets from the CGD AR, CGD AD, and Lethal AR
sets, we used ClinVar variant annotations [32]. HQ genes are those for which ClinVar contains at least two
variants whose review status is 2 stars (“multiple submitters, no conflicts”) or better. LQ genes are the
complement of this set, those for which ClinVar contains 1 or fewer variants whose review status is 2 stars
or better.
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