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Abstract 

Fluids in natural systems, like the cytoplasm of a cell, often contain thousands of molecular species that 

are organized into multiple coexisting phases that enable diverse and specific functions. How interactions 

between numerous molecular species encode for various emergent phases is not well understood. Here 

we leverage approaches from random matrix theory and statistical physics to describe the emergent 

phase behavior of fluid mixtures with many species whose interactions are drawn randomly from an 

underlying distribution. Through numerical simulation and stability analyses, we show that these mixtures 

exhibit staged phase separation kinetics and are characterized by multiple coexisting phases at 

equilibrium with distinct compositions. Random-matrix theory predicts the number of existing phases at 

equilibrium, validated by simulations with diverse component numbers and interaction parameters. 

Surprisingly, this model predicts an upper bound on the number of phases, derived from dynamical 

considerations, that is much lower than the limit from the Gibbs phase rule, which is obtained from 

equilibrium thermodynamic constraints. Using a biophysically motivated model of pairwise interactions 

between components, we design ensembles that encode either linear or non-monotonic scaling 

relationships between number of components and co-existing phases, which we validate through 

simulation and theory. Finally, inspired by parallels in biological systems, we show that including non-

equilibrium turnover of components through chemical reactions can tunably modulate the number of co-

existing phases at steady-state without changing overall fluid composition. Together, our study provides a 

model framework that describes the emergent dynamical and steady-state phase behavior of liquid-like 

mixtures with many interacting constituents. 

Keywords: phase-separation, random-matrix theory, simulation, phase-field, components, liquid, 

multicomponent 
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Main Text 

Introduction 

Fluids composed of many components with multiple co-existing phases are widespread in living and soft 

matter systems. A striking example occurs in  the eukaryotic cell, where distinct biochemical pathways are 

compartmentalized into membraneless organelles called biomolecular condensates, which often form 

through liquid-liquid phase separation (1–3). Unlike two-phase oil-water mixtures, the cellular milieu is 

organized into tens of co-existing phases, each of which is enriched in specific biomolecules(1, 2, 4–8). 

Other prominent examples include microbial ecosystems that organize into fluid-like communities (9–11), 

self-assembling colloidal systems (12, 13), and synthetic multi-phase materials derived from biomolecules 

(14, 15). Despite their extensive prevalence, our understanding of how microscopic interaction networks 

between individual constituents encode emergent multi-phase behavior remains limited. 

Delineating the co-existing phases of a heterogeneous mixture is a problem with a rich history (16) – 

determined by constraints of chemical, mechanical, and thermal equilibrium. In mixtures with few 

components (fewer than 5), a combination of theory, simulation, and experiment has enabled extensive 

characterization of phase separation kinetics and equilibrium co-existence (17–23) and the interplay 

between phase separation and chemical reactions (19, 24, 25). In the biological context, recent studies 

have begun to connect biomolecular features to their macroscopic phase behavior in binary or ternary 

mixtures (7, 26, 27). However, as the number of components increase, determining the emergent phase 

behavior from the underlying constraints becomes unwieldy and intractable – from both analytical and 

numerical standpoints except for very particular systems such as polydisperse blends of a single species 

(28). An alternate approach, originally proposed by Sear and Cuesta (29), aims to characterize the phase 

behavior of mixtures that contain many components whose pairwise interactions are drawn from a 

random distribution. By building on results on properties of random matrices, originally identified by 

Wigner (30) and subsequently applied in various contexts (31–33), they relate the initial direction of phase 

separation to properties of the interaction distribution, subsequently confirmed independently by 

simulation (34). These results, however, are limited to describing only the initial direction of phase-

separation for marginally stable fluid mixtures i.e. coinciding exactly at the spinodal. Consequently, little is 

known about the overall phase behavior of fluid mixtures that spontaneously demix i.e. within the spinodal 

– including kinetics beyond the initial direction of phase separation or the number and composition of co-

existing phases at equilibrium. More generally, the emergent phase behavior of fluid mixtures with many 

randomly interacting components is not well understood. This lack of understanding, in turn, limits our 

ability to rationally program fluid mixtures with different macroscopic properties.  

Here, we develop a dynamic model of phase separation in fluid mixtures with many randomly interacting 

components. Through simulation of the model, we demonstrate that fluid mixtures with many components 

exhibit characteristic similarities in phase-separation kinetics and in the number and compositional 
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features of co-existing phases at steady-state, even when the underlying interactions are random. We 

propose a simple model, combining insights from random-matrix theory and dynamical systems analyses, 

that predicts dynamical and steady-state characteristics of the emergent phase behavior. By constructing 

a biophysically motivated model of the pairwise interaction distribution, we discuss two distinct ensembles 

(or component design strategies) that encode either linear or non-monotic scaling (i.e. with an optima) 

between the number of co-existing phases and components. Finally, we extend our framework to 

incorporate chemical reactions, and show that active turnover of components can tunably modulate the 

number of co-existing phases at steady state even without altering overall fluid composition. Overall, our 

model provides a framework to predict and design emergent multi-phase kinetics, compositions, and 

steady-state properties in fluid mixtures with many interacting components.  

Results 

Model definition 

We begin by describing the free-energy of a mixture of (𝑁𝑁 + 1) interacting species through a mean-field 

regular solution model at fixed temperature and overall volume (Eq. 1). Here, 𝜙𝜙𝑖𝑖 represents the volume-

fraction of each species 𝑖𝑖, and 𝜙𝜙𝑠𝑠 = 1 −∑ 𝜙𝜙𝑖𝑖𝑖𝑖  is the volume fraction of the remaining component, which is 

typically the solvent. Equivalently, this model can also represent the normalized volume fractions of (𝑁𝑁 +

1) components in a solution where the total solute concentration is invariant across phases. 𝜒𝜒𝑖𝑖𝑖𝑖 and 𝜒𝜒𝑖𝑖𝑠𝑠 

are the effective pairwise interactions amongst different species and between components and solvent 

respectively. For simplicity, we assume an initially uniform solute mixture (𝜙𝜙𝑖𝑖 = 𝛽𝛽
𝑁𝑁

 ∀𝑖𝑖,𝜙𝜙𝑠𝑠 = 1 − 𝛽𝛽;𝛽𝛽 is total 

solute volume-fraction), inert solvent (𝜒𝜒𝑖𝑖𝑠𝑠 ≈ 0) and components that don’t self-interact i.e. 𝜒𝜒𝑖𝑖𝑖𝑖 only 

depends on interaction-energy (𝜖𝜖𝑖𝑖𝑖𝑖) between components 𝑖𝑖, 𝑗𝑗, 𝑖𝑖 ≠ 𝑗𝑗. Further, we stipulate that the pairwise 

interactions 𝜒𝜒𝑖𝑖𝑖𝑖 are independent random variables which are drawn from a distribution with finite mean 𝜈𝜈 

and variance 𝜎𝜎2 (Figure 1A).  
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The point beyond which a mixture spontaneously phase-separates - the spinodal, or the marginally stable 

state -- occurs when the minimum eigenvalue 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 of  the Jacobian matrix 𝐽𝐽 ( Eq. 2; SI Appendix) crosses 

zero i.e. 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚(𝐽𝐽) = 0. The corresponding eigenvector gives the initial direction of instability (Fig S1A-C, SI 

Appendix), which either leads to  condensation-type (𝜈𝜈 ≤ −𝑁𝑁) or demixing-type instabilities (𝜈𝜈 ≥  − 2𝜎𝜎
√𝑁𝑁
−

1
1−𝛽𝛽

, 0;𝜎𝜎 > √𝑁𝑁
2𝛽𝛽

)  depending on the values of 𝜈𝜈,𝜎𝜎 (29, 34). During condensation, the instability points toward 

dilute and dense phases with similar compositions since individual components are strongly attractive on 

average, as determined from the angle between the marginal eigen-vector and the initial composition 

being close to 0 𝑜𝑜𝑜𝑜 180 (Fig S1C). Conversely, during de-mixing, the initial instability, whose direction is 

roughly perpendicular to the uniform mixture (Fig S1C), points to phases with distinct compositions. In 

general, solutions that de-mix contain unstable modes beyond the marginally stable point, potentially 

leading to multi-phase co-existence. Multiphase coexistence does not generically occur in condensation 

transitions, because of the band gap between the smallest eigenvalue and the rest of the spectra (Fig S1, 

SI Appendix). Motivated by this, here we focus on phase separation in solutions whose component- 

interactions are variable, but not strongly attractive on average (𝜈𝜈 ≈ 0,𝜎𝜎 > √𝑁𝑁
2𝛽𝛽

). 

After the initial instability, fluid mixtures undergoing spinodal decomposition display rich dynamics and 

diverse multiphase co-existence (Figure 1A). To probe the kinetics and emergent equilibrium properties, 

we formulate a set of dynamical equations to track the evolution of 𝑁𝑁 independent volume fractions ( 

𝜙𝜙𝑖𝑖(𝑜𝑜, 𝑡𝑡), 𝑖𝑖 = 1 … . ,𝑁𝑁 ) (Eq. 3). The temporal evolution of a component’s volume-fraction (𝜙𝜙𝑖𝑖(𝑜𝑜, 𝑡𝑡)) depends 

on diffusive fluxes driven by gradients of chemical potential 𝜇𝜇𝑖𝑖(�𝜙𝜙𝑖𝑖� = 𝑑𝑑𝑒𝑒
𝑑𝑑𝜙𝜙𝑖𝑖

) with a mobility coefficient 𝑀𝑀𝑖𝑖, 

also known as conserved model B dynamics (35, 36). We assume that all components obey 𝑀𝑀𝑖𝑖 = 𝑀𝑀𝜙𝜙𝑖𝑖, 

approximately recapitulating Fickian diffusion in the limit of non-interacting, dilute components (SI 

Appendix). Finally, we include surface-tension effects ensuring long-wave-length stability by modifying the 

bulk chemical potentials with a component-independent gradient term (𝜇𝜇𝑖𝑖 = 𝑑𝑑𝑒𝑒
𝑑𝑑𝜙𝜙𝑖𝑖

− 𝜅𝜅∇2𝜙𝜙𝑖𝑖).   

𝜕𝜕𝜙𝜙𝑖𝑖(𝑜𝑜, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= ∇.���⃗ (𝑀𝑀𝑖𝑖∇𝜇𝜇𝑖𝑖��𝜙𝜙𝑖𝑖(𝑜𝑜, 𝑡𝑡)��)   (3) 

We numerically simulate these non-linear, coupled partial differential equations using Fourier space 

representations to compute gradients and fluxes (SI Appendix). Unless specified otherwise, a 2D grid 

(𝐿𝐿 × 𝐿𝐿, 𝐿𝐿 = 64) is initialized with a uniform and equimolar solution (𝜙𝜙𝑖𝑖 = 1
𝑁𝑁+1

;𝛽𝛽 = 𝑁𝑁
𝑁𝑁+1

) with small 

compositional fluctuations. For each simulation, we sample the interaction matrix 𝜒𝜒 from a normal 

distribution (Figure 1A) with zero mean and specified variance (quenched disorder). At any time point, the 

state of the system is described by the volume-fraction matrix (𝑁𝑁 × 𝐿𝐿 × 𝐿𝐿), giving the volume fraction of 

each component at every point in space. We can infer the number of phases 𝑁𝑁𝑝𝑝ℎ  by performing PCA on 

this matrix after filtering out interfaces between phases that vary in composition. We then identify the 
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significant eigen-values which correspond to individual phases (Fig 1B, SI Appendix). We identify which 

phase each point in space belongs to by first performing K-means clustering (with the number of clusters 

as the number of phases from PCA) followed by classification to assign individual points to the closest 

phase by composition   𝜙𝜙  ���⃗
𝑁𝑁×1(𝑜𝑜; 𝛾𝛾 − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎).  For all the points assigned to a phase, we compute spatially-

averaged volume-fractions that characterizes the bulk composition of the 𝛾𝛾 phase �𝜙𝜙 ���⃗ (𝑜𝑜)�𝛾𝛾 (SI Appendix).  

Multiple phases with distinct compositions characterize random fluid mixtures 

To explore phase-behavior of multi-component solutions, we first simulate the dynamics of an initially 

equimolar solution of 𝑁𝑁 = 16 components (labeled 𝜙𝜙𝑖𝑖) whose pairwise interactions are randomly sampled 

from 𝜒𝜒𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑎𝑎𝑁𝑁(0,𝜎𝜎 = 4.8). This choice of parameters ensures spontaneous phase separation with 

multiple initial unstable modes. At steady-state, the mixture exhibits heterogeneous, multi-phase co-

existence (Figure 1C). The steady state solution has 4 co-existing phases (Figure 1D) that are enriched in 

a distinct yet characteristic number of components per phase (Figure 1E; SI Appendix). Such multi-phase 

coexistence with differing compositions occurs generically for different choices of parameters (Figure S2). 

A key question is to understand how the steady state properties of the phases relate to the interaction 

distribution between components. To explore this, we ran many simulations under identical conditions 

while re-sampling from the interaction matrix specified above. Although the precise values of steady state 

compositions vary between different simulations, there were striking statistical similarities between both 

the number of distinct phases at steady state, and the temporal dynamics leading to this steady state 

(Figure 2A; green line is trajectory in Figures 1C-E). This statistical convergence in the expected number 

of co-existing phases is independent of the choice of mobility parameter (Figure S3B), simulation length 

(Figure S3C), or specific simulation parameters (Figure S3D).   

The compositions of the steady state phases also exhibit similarities. To characterize the compositions at 

steady-state, we compute the angle (Figure 2B) between compositions of the pairs of co-existing phases 

(𝜃𝜃𝛼𝛼𝛽𝛽) and also measure the number of components enriched in each particular phase (𝑁𝑁𝑒𝑒𝑚𝑚𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑒𝑒𝑑𝑑). Phases 

with 𝜃𝜃𝛼𝛼𝛽𝛽 close to 0 have largely similar compositions, while those close to π/2 are enriched in different 

sets of components. Figure 2C shows the distribution 𝑝𝑝(𝜃𝜃𝛼𝛼𝛽𝛽) calculated across multiple simulations, 

demonstrating that different phases have composition vectors that are orthogonal. Since individual 

concentrations must be positive, this indicates that co-existing phases are enriched in distinct sets of 

components. The number of enriched components per phase 𝑝𝑝(𝑁𝑁𝑒𝑒𝑚𝑚𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑒𝑒𝑑𝑑) is distributed around values of 

𝑁𝑁𝑒𝑒𝑚𝑚𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑒𝑒𝑑𝑑 = 3,4,5 (Figure 2D). This is consistent with the distinct phases being orthogonal in component 

partitioning < 𝑁𝑁𝑒𝑒𝑚𝑚𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑒𝑒𝑑𝑑 >≈ 𝑁𝑁+1
<#𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎>

~4.  This observed compositional orthogonality is independent of the 

specific simulation parameters (Figure S3E-F). Overall, the equilibrium phase behavior of random fluid 

mixtures is characterized by multiple co-existing phases with distinct compositions. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443002
http://creativecommons.org/licenses/by-nc-nd/4.0/


A simple random-matrix derived theory predicts equilibrium phase behavior of fluid mixtures: 

The consistency in dynamic and equilibrium properties of random mixtures motivated us to explore 

whether we could unify the emergent phase behavior through a theoretical framework. First, we asked 

whether the equilibrium multi-phase co-existence was related to the properties of the initially uniform 

mixture, as characterized by the Jacobian matrix. We ran simulations across several conditions (varying 

𝜎𝜎,𝑁𝑁), and computed both the number of unstable modes at the beginning of each trajectory (𝑁𝑁𝜆𝜆<0 number 

of negative eigen-values from linear stability analyses, SI Appendix) as well as the number of co-existing 

phases at equilibrium (𝑁𝑁𝑝𝑝ℎ). Strikingly, when examined across simulations with diverse parameters, these 

exhibited a linear relation where 𝑁𝑁𝑝𝑝ℎ ≈ 𝑁𝑁𝜆𝜆<0 + 1 (Figure 3A). This implies that each linearized unstable 

eigenmode typically gives rise to a unique co-existing phase at equilibrium (SI Appendix). Since the 

eigen-vectors corresponding to these initial unstable modes are largely perpendicular to each other 

(Figure S4A; SI Appendix), this may contribute to the observed compositional orthogonality between co-

existing at steady-state (Figure 2C, Figure S3E). Overall, our results suggest that the equilibrium number 

of co-existing phases in fluid mixtures undergoing spontaneous phase separation can be computed by 

simply computing the number of unstable modes in the uniform mixture. This is a striking conclusion 

because in general the number of stable equilibria in a nonlinear free energy functional is independent of 

the number of unstable modes in the initial dynamics.   

The number of unstable modes or negative eigenvalues can be counted using Wigner’s semi-circle law 

for random matrices, giving < 𝑁𝑁𝑝𝑝ℎ > = 𝑁𝑁 × 𝐹𝐹2𝜎𝜎√𝑁𝑁 �𝜆𝜆 ≤ −𝑁𝑁
𝛽𝛽
� + 1 (SI Appendix). Here, 𝐹𝐹 is the cdf of the 

semi-circle distribution whose eigen-values are between ±2𝜎𝜎√𝑁𝑁 and the argument is the entropic cost 

that needs to be offset to phase separate (SI Appendix). Since the eigenvalues of the semi-circle 

distribution are equally spaced on average, the number of phases can be approximated as   

𝑁𝑁𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑒𝑒𝑠𝑠 ≈
𝑁𝑁�1− √𝑁𝑁

2𝛽𝛽𝛽𝛽�+1

2
    (4) 

Eq. (4) implies that when 𝜎𝜎 = 𝛼𝛼√𝑁𝑁, the number of phases scale linearly with the number of components. 

In the next section, we will discuss a biophysical interpretation of the proportionality constant  𝛼𝛼. When 

𝜎𝜎 < √𝑁𝑁
2𝛽𝛽

 , there are no unstable modes and the uniform phase remains stable, as expected. If the 

interactions between species are strongly variable (𝜎𝜎 ≫ √𝑁𝑁), Eq. (4) implies a maximum of 𝑁𝑁+1
2

 coexisting 

phases at equilibrium. Interestingly, this asymptotic scaling is significantly less than the upper constraint 

of 𝑁𝑁 + 2 (or 𝑁𝑁 if temperature and pressure/volume are fixed) originally formulated by Gibbs (16).   Note 

that this asymptotic scaling of 𝑁𝑁/2  will continue to hold even when the average of the interaction 

distribution, 𝜈𝜈,  is non-zero, which at most adds only one single orthogonal eigen-mode (SI Appendix).  
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After the initial instability, linear stability analyses predicts that each unstable mode grows exponentially 

(exp−𝑎𝑎𝜆𝜆𝑡𝑡) (SI Appendix), so the characteristic time for a phase to  form scales as 𝑡𝑡𝑝𝑝ℎ ∝ 1/𝜆𝜆. Since the 

unstable eigen-values are equally spaced on average (𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 = 𝜆𝜆1 < 𝜆𝜆2 < ⋯ < 𝜆𝜆𝑘𝑘 < ⋯ < 𝜆𝜆𝛾𝛾 < 0 𝑎𝑎. 𝑡𝑡. 𝜆𝜆𝑘𝑘 −

𝜆𝜆𝑘𝑘+1 = 𝑐𝑐𝑜𝑜𝑐𝑐𝑎𝑎𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡 ), the typical time for the 𝑘𝑘𝑡𝑡ℎ phase to macroscopically form is larger for higher 𝑘𝑘 is 

𝑡𝑡𝑝𝑝ℎ=𝑘𝑘 ∝
−1

<𝜆𝜆𝑘𝑘>
 (the proportionality constant can be approximately estimated, see SI Appendix). This 

relation, though an approximation, predicts multi-staged phase separation kinetics: newer phases 

macroscopically emerge at later times in a sequential order – predictions that are consistent with 

observations (Figure 2A, Figure 3D, Figure S4B). This is made vivid by tracking the temporal evolution of 

different phases for the example trajectory shown in Figure 1C (Figure 2E; SI Appendix). Together, these 

results support a model derived from random-matrix theory that connects statistical properties of the 

initially homogeneous solution to the dynamics, compositional features, and number of steady-state 

phases in fluid mixtures with randomly interacting components. 

A biophysically motivated model for component interactions predicts ensembles that encode 
linear or optimal scaling of co-existing phases with number of components 

We define a simple biophysically motivated model of interactions (Figure S5A) to explore encoding of 

multi-phase behavior. In this model, each component has 𝐿𝐿 interaction sites that each exhibit one of two 

characteristics (𝐴𝐴 𝑜𝑜𝑜𝑜 𝐵𝐵), for example negative or positive charges or binding and receptor domains, with 

favorable interactions between unlike sites and unfavorable interactions between like sites. This might 

reflect an ensemble of multivalent proteins with different interacting domains, a mixture of polypeptides 

with different charge sequences, or DNA-coated colloidal systems with varying sequence features.  We 

consider a component mixture where each type of site is equally probable, and the attractive and 

repulsive interactions have the same energy-scale 𝜖𝜖. The average interaction between two randomly 

sampled species is then 𝜈𝜈 =  ∑ < 𝜖𝜖𝑖𝑖𝑖𝑖 >= 0𝐿𝐿 , and the variance of interactions is  𝜎𝜎2 = ∑ < 𝜖𝜖𝑖𝑖𝑖𝑖2𝐿𝐿 > = 𝐿𝐿𝜖𝜖2 . 

Hence, the distribution of interactions between two random components is binomial, and well-

approximated as gaussian with (𝜈𝜈 = 0,𝜎𝜎 = √𝐿𝐿𝜖𝜖). This argument implies two different ensembles (Figure 

3B): one in which mixtures have a fixed number of sites (𝐿𝐿) and thus fixed 𝜎𝜎 (the 𝜎𝜎 ensemble), and 

another (the 𝛼𝛼 ensemble ) where the number of interacting sites scale with number of components (𝐿𝐿 ∝

𝑁𝑁 → 𝜎𝜎 = 𝛼𝛼√𝑁𝑁) . These ensembles should exhibit distinct encoding relationships between number of co-

existing phases and number of components. 

To explore this, we ran simulations across a wide range of (𝑁𝑁,𝛼𝛼,𝜎𝜎). In the 𝛼𝛼 ensemble (Figure 3B), the 

predicted scaling of number of co-existing phases from Eq (3) scales linearly with 𝑁𝑁, and saturates with 

increasing 𝛼𝛼 , in agreement with  theoretical predictions (Figures 3C-D). By contrast, in the 𝜎𝜎 ensemble, 

theory predicts an optimal number of components that maximizes the number of co-existing phases at 

equilibrium (𝑁𝑁𝑒𝑒𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑠𝑠
𝑐𝑐𝑝𝑝𝑡𝑡 ≈ �4

3
𝜎𝜎�

2
; SI Appendix), which broadly agrees with simulation predictions (Figure 
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3E-F). Intuitively, with fewer components, phase separation is promoted due to lower entropic costs, but 

the maximum number of co-existing phases is bounded by 𝑁𝑁+1
2

 . Conversely, in the limit of many 

components, the system is stable and doesn’t phase separate (entropic stabilization ∝ 𝑁𝑁 whereas 

enthalpic terms scale as 𝜎𝜎√𝑁𝑁), thus leading to non-monotonic scaling. In all cases, the predictions deviate 

from simulation at either low 𝑁𝑁 or 𝜎𝜎,𝛼𝛼, when fluctuations in the unstable modes of the eigen-spectra are 

of order unity. Finally, simulations match theory for equimolar solutes with lower total solute volume-

fractions (lower 𝛽𝛽, Figure S5B) and theoretical predictions continue to exhibit similar scaling relationships 

(Figures S5C-F) in regimes where simulations are numerically inaccessible (𝛼𝛼 ≫ 1,𝜎𝜎 ≫ √𝑁𝑁).  These 

results show that increasing the variance of interactions proportionally with the number of components, 

for example by increasing the number of interactions sites, allows encoding more phases. Conversely, 

sampling more components from a distribution of fixed variance, for example all components have the 

same number of interaction sites, has a maximal number of co-existing phases.  

Active turnover of components modulates number of co-existing phases at steady state: 

In most biological systems, interacting components are actively being produced and degraded (37). To 

study how such chemical reactions impact phase behavior, we modify our dynamical equations to:  

𝑑𝑑𝜙𝜙𝑖𝑖
𝑑𝑑𝑡𝑡

= ∇.���⃗ �𝑀𝑀𝑖𝑖 ∇��⃗ 𝜇𝜇𝑖𝑖� + �𝑜𝑜𝑖𝑖𝑖𝑖
𝑖𝑖

  (5) 

where 𝑜𝑜𝑖𝑖𝑖𝑖 are set of reactions ({𝑗𝑗}) that change the fluxes of species 𝑖𝑖. In the simplest case of turnover, 

each component is produced at fixed rate 𝑘𝑘 and degraded at rate 𝑘𝑘𝑐𝑐𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑁𝑁/𝛽𝛽. In the absence of phase 

separation, each component’s steady-state volume-fraction is 𝜙𝜙𝑖𝑖𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑜𝑜𝑛𝑛
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

= 𝛽𝛽
𝑁𝑁
. As before, when 𝛽𝛽 = 𝑁𝑁

𝑁𝑁+1
, 

this corresponds to an equimolar solution i.e. 𝜙𝜙𝑖𝑖𝑠𝑠𝑠𝑠 = 1/(𝑁𝑁 + 1).  

We then perform linear stability analyses (SI Appendix) which shows that phase separation is suppressed 

by high rates of turnover i.e. larger values of 𝑘𝑘𝑐𝑐𝑒𝑒𝑒𝑒, consistent with previous theoretical work in binary or 

ternary mixtures (19, 24). Active turnover effectively introduces local mixing by cyclically synthesizing and 

degrading components which counteracts spatial variations that arise from phase-separation. When the 

rate of turnover becomes dominant to induce mixing at large length-scales, it effectively decreases the 

band of unstable eigen-values that contribute to phase separation. The unstable eigen-values that 

continue to persist are orthogonal to each other and drive multi-phase co-existence albeit with fewer 

number of steady-state phases. More generally, the higher the rate of turnover, the fewer number of 

steady-state phases (SI Appendix). Further, our theory predicts that the number of co-existing phases at 

steady-state can be tunably suppressed by varying the absolute rates of turnover (𝑘𝑘𝑐𝑐𝑚𝑚, 𝑘𝑘𝑐𝑐𝑒𝑒𝑒𝑒),  even when 

keeping their ratio constant i.e. the overall fluid composition at steady-state remains equimolar and 

identical to the initial conditions, with a scaling of 𝑐𝑐𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑒𝑒𝑠𝑠,𝑘𝑘
𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑒𝑒𝑠𝑠.𝑘𝑘=0 ∝ − 𝑘𝑘√𝑁𝑁

𝜎𝜎
 (SI Appendix). To test this 
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hypothesis, we ran simulations in which we varied the rate of turnover while keeping their ratio constant 

(increasing both 𝑘𝑘𝑐𝑐𝑚𝑚,𝑘𝑘𝑐𝑐𝑒𝑒𝑒𝑒 for all components), and averaged observables across replicate trajectories. We 

find that increasing rates of active turnover leads to decreasing number of co-existing phases (Figure 4A) 

and simulations largely agree with the simple theoretical prediction (Figure 4B). This suggests that active 

turnover of components can serve as a route to tunably modulate multi-phase co-existence in random 

fluids even without altering the relative or overall composition of such mixtures. 

Discussion  

Over the past several years, there has been a growing appreciation of the role of multicomponent and co-

existing phases inside a cell. These phases, or condensates, compartmentalize many interacting species 

and pathways to enable diverse yet specific functions across cell-types and organisms. More generally, 

fluid mixtures with many phases and components are prevalent in biology, soft-matter, and industry.  Yet, 

we still do not understand how numerous interacting components encode the emergent multi-phase 

behavior. The goal of this study is to develop a simple model of the dynamics and equilibrium phase 

behavior in fluid mixtures with many components. We choose the interactions between components from 

an underlying distribution, and thereby can use Random Matrix Theory to analyze the resulting dynamics. 

Through simulation and theory, we find that spontaneous phase separation of such mixtures is 

characterized by staged phase separation dynamics, and multiple co-existing phases at equilibrium with 

distinct non-overlapping compositions. Importantly, our model suggests that these characteristics do not 

require fine-tuning of composition or interaction parameters, rather, they are an emergent property of fluid 

mixtures with many components with random interactions. By formulating a biophysically motivated model 

of pairwise interactions, we design different component ensembles that encode linear or optimal scaling 

of number of co-existing phases versus components, which we validate through simulation and random 

matrix theory.  Strikingly, we identify an upper bound for the maximum number of co-existing phases in 

random mixtures, derived from dynamical considerations, that is asymptotically lower than the Gibbs 

phase rule. Random interactions effectively introduce competing interaction networks, analogous to the 

concept of “frustration”, which likely limits the maximal number of possible co-existing phases. Motivated 

by the observation that biological fluids often exhibit component turnover such as synthesis/degradation 

of biomolecules, we show that active turnover of components can tunably modify steady-state multi-

phase co-existence, even without altering overall fluid composition. 

The model formulated herein is only the first step in being able to design multicomponent phases in terms 

of their individual components. Recently, there has been tremendous progress in characterizing the 

sequence to phase-behavior relationship of individual proteins and nucleic acids (14, 26, 38), composition 

of different condensates (39–41), and regulated formation of condensates at specific locations, often 

through nucleation (42, 43). Soft-matter colloidal systems (44, 45), DNA-based nanotechnology (12, 46), 

programmable magnetic materials (47), and multiplexed protein-design offer diverse attractive routes to 
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both experimentally test predictions and serve as platforms to enable design of multi-phase fluid mixtures. 

Leveraging random-matrix theory approaches, as done in our study for spontaneous phase separation 

and in a recent related pre-print studying nucleation in metastable fluids (48), will enable programmable 

design of multi-phase co-existence in multicomponent fluid mixtures. An important related problem is the 

design of targeted multi-phase mixtures whose compositions and interactions are specifically tuned, not 

random. Computational and theoretical approaches for programming phase behavior in these systems 

will enable material design using synthetic and biological constituents.  Another exciting direction is to 

incorporate energy consuming processes as part of the design. Examples include non-reciprocal 

interactions, chemical reaction networks, molecular motors, and motile particles – all of which are 

characteristic of living systems. More generally, studying the interplay of non-equilibrium processes and 

multi-phase behavior in fluid mixtures will be an exciting and rich area for biology and soft-matter physics.  

 

Materials and SI Appendix 

Phase-field simulations and subsequent data-analyses were performed using custom code written in 

python. We employ results from random matrix theory and dynamical systems analyses in deriving the 

theoretical scaling relationships presented in the text. More details about theory, simulation, and 

numerical methods for post-processing are available in the Supplementary Information.  

Data availability: All the code used to run simulations will be available on a publicly accessible github 

repository. 
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Figure captions: 

Figure 1. A model for phase separation in multi-component fluid mixtures.  

(A) A schematic depicting that the interactions between pairs of components are randomly drawn from a 

distribution and encode varying emergent properties. 

(B) Schematic depicting post-processing analyses on simulation data to identify the co-existing phases 

from PCA 

(C). Plots depict volume-fraction profiles of 16 components (labeled 𝑐𝑐0 to 𝑐𝑐15) at steady-state from a 

single trajectory with identical color-bar scales (0,0.75). Darker colors represent regions of higher volume-

fraction and simulation parameters are presented in main text and SI. 

(D). The different phases (labeled 1 till 4) present at steady-state in (A) are depicted here. 

(E). The partition-ratio (ratio of average volume-fraction in a phase over total initial volume-fraction) of all 

components are plotted for each phase (x-axis) at steady-state conditions shown in (A). The highlighted 

components are enriched in those respective phases and the dashed-lines represent no enrichment 

(partition=1). 

Figure 2. Multiple phases with distinct compositions characterize random fluid mixtures 

(A). Number of co-existing phase (y-axis) versus simulation time (x-axis, log-scale) for simulation 

conditions as in Fig 1C. The solid line represents mean of 50 different trajectories, the filled regions 

represent 1 standard deviation, and the green line represents the specific trajectory whose steady-state 

properties are shown in Figs 1C-E. 

(B). Schematic illustrating how compositional observables are computed from steady-state compositions 

i.e. angle between co-existing phases (𝜃𝜃) and number of enriched components per phase are computed. 

In the example, an initially unstable phase of 3-components de-mixes to form two-phases (𝛼𝛼,𝛽𝛽) that are 

enriched in distinct number of components (shown in legend). 

(C). Probability (pdf) and cumulative distribution (cdf) of angles between co-existing phases at steady-

state for simulation parameters in (D). 

(D). Probability (𝑝𝑝𝑁𝑁𝑎𝑎𝑛𝑛𝑒𝑒) distribution of number of enriched components (x-axis, 𝑁𝑁𝑒𝑒𝑚𝑚𝑒𝑒) per phase at steady-

state for simulation parameters in (D). 

(E). Individual snapshots of the simulation trajectory reported in Fig 1C labeled with existing phases (1-4 

from steady-state, white or unlabeled if like initial equimolar solution).  The steady-state labels are shown 

in the colorbar whose bulk compositions are used to assign phase labels at earlier times (SI Appendix). 
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Figure 3. A simple scaling predicts equilibrium behavior of random mixtures from different 
ensembles. 

(A). Number of phases at steady-state (y-axis) versus number of negative eigen-values of the initial equi-

molar mixture. Histograms represent simulation results that are collapsed from a range of different 𝑁𝑁,𝜎𝜎 

and solid line represent the equation 𝑦𝑦 = 𝑥𝑥 + 1. The correlation coefficient is reported between the mean 

of simulation results and the solid line.  

(B). Schematic depicting the two interaction ensembles with different variance scaling. The 𝛼𝛼 ensemble 

consists of components whose variance in interactions scales with number of distinct species and the 𝜎𝜎 

ensemble has a distribution of fixed variance. A biophysical model to motivate these two ensembles is 

discussed in text and illustrated in Figure S4A. 

(C-D). Variation of number of co-existing phases at steady-state with number of components (linear-

scaling) and different values of 𝛼𝛼 (monotonic saturation) in the 𝛼𝛼 ensemble. Solid lines represent 

theoretical predictions, dots represent mean of simulation results, and vertical dashes represent one 

standard-deviation around the mean. In each plot, darker lines represent higher values of 𝛼𝛼 and 𝑁𝑁 

respectively, and different marker types are employed to reinforce this. 

(E-F). Variation of number of co-existing phases at steady-state with number of components (non-

monotonic) and different values of 𝜎𝜎 (monotonic saturation) in the fixed 𝜎𝜎 ensemble. Solid lines represent 

theoretical predictions, dots represent mean of simulation results, and vertical dashes represent one 

standard-deviation around the mean. In each plot, darker lines represent higher values of 𝜎𝜎 and 𝑁𝑁 

respectively, and different marker types are employed to re-inforce this. 

 

Figure 4. Active species turnover tunably modulates multi-phase coexistence at steady-state 

(A). Schematic depicts constant production and first-order degradation of components. The graph shows 

number of phases vs simulation time (in log-scale) across a range of reaction rates in a system with 𝑁𝑁 =

20 components and 𝜎𝜎 = 5.4. Solid lines represent mean of trajectories (>40 replicates per condition) , 

shaded bars represent 1 standard deviation on each side of the mean, and darker lines corresponds to 

faster rates of turnover. 

(B). Simulation (dots) and theoretical predictions (solid line) on number of co-existing phases at steady-

state versus rate of turnover. 𝑜𝑜 value indicates correlation coefficient between theory and simulation, 

solid-circles represent mean number of coexisting phases, and vertical lines represent one-standard 

deviation ranges under the same parameter conditions as above.  
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Figure 1: A phase separation model for multi-component mixtures with random interactions

Condensation

2-phase demixing

Multi-phase 
coexistence

𝜒(i,j) =  Dist(𝜈,𝜎)
Volume-fractions of 
components 
(N � L � L )

Filter 
interfaces

PCA
λ

Rank (N)

k phases

0 20 40 60

x

0

20

40

60

y

1

2

3

4

Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

Φ8 Φ9 Φ10 Φ11 Φ12 Φ13 Φ14 Φ15

A B

C

D E

1 2 3 4
phase

φ0

φ0
φ1

φ1

φ2
φ3φ4

φ5 φ5

φ6 φ7

φ8
c8
φ9

φ10

φ11

φ12

φ13

φ14

φ15

pa
rti

tio
n

10⁰

10-1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443002
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Multiple phases with distinct compositions characterize random fluid mixtures 

50 60 70 80 90
θ

cdf

pdf

100

10-1

10-2

10-3

t

2

4

6

N
ph

as
es

10-2 10-1 100

A

C

2 4 6 8

0.1

0.2

0.3

Nenriched

p(
N

en
ric

he
d)

D

B

�3

�1

�2

�i,unstable

�α

�β

θαβ

α : �2 enriched
β : �1,�3 enriched

E

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

simulation 
time

1

2

3

4

phases

p(θ)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443002
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: A simple scaling predicts equilibrium behavior of random mixtures from different ensembles
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Figure 4: Active species turnover tunably modulates multi-phase coexistence at steady-state 
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