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Abstract8

Dendritic spines act as computational units and must adapt their responses according to9

their activation history. Calcium influx acts as the first signaling step during postsynaptic acti-10

vation and is a determinant of synaptic weight change. Dendritic spines also come in a variety11

of sizes and shapes. To probe the relationship between calcium dynamics and spine morphol-12

ogy, we used a stochastic reaction-diffusion model of calcium dynamics in idealized and real-13

istic geometries. We show that despite the stochastic nature of the various calcium channels,14

receptors, and pumps, spine size and shape can separately modulate calcium dynamics and15

subsequently synaptic weight updates in a deterministic manner. The relationships between16

calcium dynamics and spine morphology identified in idealized geometries also hold in realistic17

geometries suggesting that there are geometrically determined deterministic relationships that18

may modulate synaptic weight change.19
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AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor

BPAP Back Propagating Action Potential

EPSP Excitatory Postsynaptic Potential

LTD Long Term Depression

LTP Long Term Potentiation

NCX Sodium-Calcium Exchanger

NMDAR N-methyl-D-aspartate Receptor

PM Plasma Membrane

PMCA Plasma Membrane Ca2+-ATPase

PSD Postsynaptic Density

SERCA Sarco/Endoplasmic Reticulum Ca2+-ATPase

SpApp Spine Apparatus

STDP Spike-Timing Dependent Plasticity

VSCC Voltage Sensitive Calcium Channel
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1 Introduction24

Dendritic spines are small protrusions along the dendrites of neurons that compartmentalize post-25

synaptic biochemical, electrical, and mechanical responses. These subcompartments house the26

majority of excitatory synapses and are key for neuronal communication and function (1, 2). Be-27

cause of their unique biochemical compartmentation capabilities, spines are thought of as compu-28

tational units that can modify their synaptic strength through a process called synaptic plasticity (1,29

3).30

Calcium plays a key role as a second messenger in biochemical and physical modifications31

during synaptic plasticity, triggering downstream signaling cascades within dendritic spines, and32

the entire neuron (3–5). Efforts have also linked calcium levels to synaptic weight change (6–9).33

Synaptic weight update refers to the change in the strength of the postsynaptic response in the34

event of neurotransmitter release from the presynapse. Calcium levels have often been used as an35

indicator of the early events preceding the complex downstream signaling (7, 10–12), specifically36

the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor (AMPAR) den-37

sity (13), and thus inform the synaptic weight update. An increase in synaptic weight is associated38

with Long Term Potentiation (LTP), while a decrease in synaptic weight is associated with Long39

Term Depression (LTD) (14, 15). While synaptic weight update requires a host of downstream40

signaling and mechanical interactions, the level of calcium can be thought of as an indicator of41

synaptic plasticity and weight (7, 16).42

Dendritic spines have characteristic sizes and shapes that dynamically change over time in43

response to stimulus, and are associated with their function and synaptic plasticity (17). Just44

as whole cell shape is known to influence signaling dynamics (18–21), studies have specifically45

probed the interplay between calcium dynamics and dendritic spine morphology (4, 22–24). Due46

to the historical significance of dendritic spines as electrical subcompartments, the morphology of47

the spine neck has been implicated in regulating calcium signaling and longer spine necks were48

found to decouple spine-dendrite calcium signaling (25). Additional modeling work coupled actin-49

myosin contractions to cytoplasmic flow to identify two timescales of calcium motion, driven by50

flow and diffusion respectively, that depend on spine geometry (26). A combined analytical and51

numerical study showed how geometry and curvature gives rise to pseudo-harmonic functions that52

can predict the locations of maximum and minimum calcium concentration (23). More recently,53

we used a deterministic reaction-diffusion model to investigate dendritic spine morphology and54

ultrastructure, and found that dendritic spine volume-to-surface area ratios and the presence of55

spine apparatus modulate calcium levels (22).56

Due the small volume of dendritic spines, stochastic calculations are important to gain insight57

into the spatiotemporal dynamics of spine calcium; there are approximately seven ions of calcium58

in a resting spine (24, 27). Due to their probabilistic nature and discrete number, calcium channels59

and receptors appear to behave stochastically (28–30). This indicates that the system leans to-60

wards stochasticity and it has been suggested that synaptic plasticity itself relies on stochasticity for61

robustness (28, 31, 32). In this work, using idealized and realistic spine geometries, we investigate62

the impact of shape and stochasticity on calcium dynamics and synaptic weight change. We seek63

to answer the following specific question: How do specific geometric parameters – namely shape64

and size of dendritic spines – influence calcium dynamics? To address these questions, we built a65

spatial, stochastic model of calcium dynamics in various dendritic spines geometries. We used ide-66

alized geometries to control for various geometric parameters and then extended our calculations67

to realistic geometries. We probed the influence of spine shape, volume, and volume-to-surface68

area ratio on calcium influx, variance of calcium dynamics, and the robustness of synaptic weight.69

We show that although calcium dynamics in individual spines is stochastic, the key readouts from70
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the model, including mean calcium and synaptic weight update, behave deterministically with re-71

spect to the variation of geometric parameters.72

Figure 1: Model overview. a) Our stochastic model includes calcium influx through NMDAR and VSCC, calcium efflux

to the extracellular space through PMCA and NCX pumps, and to the Spine Apparatus through SERCA pumps. Arrows

indicate the movement of Ca2+ through the labeled pump, channel, or receptor. Ωneck represents the Dirichlet boundary

condition at the base of the spine neck, at which the concentration of calcium ions is clamped to zero. Cytosolic calcium

is buffered using mobile and immobile calcium buffers. Inset: A change in membrane potential triggered by an excitatory

postsynaptic action potential (EPSP) and back propagating action potential (BPAP) acts as the model stimulus. b) The

geometric factors considered in our model include spine shape, spine size, neck radius and length, and SpApp size.

We investigate three spine shapes: thin, mushroom, and filopodia-shaped. Calcium levels determine the learning rate

τw, (c), and function Ωw, (d), that in turn determine synaptic weight, (e). The influence of geometry and ultrastructure on

calcium signaling thus has an influence on synaptic weight. θD and θP represent the thresholds for long term depression

and potentiation, respectively. Panel a) was generated using biorender.com.

2 Results73

In this work, we sought to decipher the contributions of spine size and shape to synaptic weight74

change. We briefly summarize our model development strategy here as shown in Figure 1. We75

conducted stochastic simulations of calcium influx through N-methyl-D-aspartate Receptor (NM-76

DAR) and Voltage Sensitive Calcium Channels (VSCCs) based on (24). The system stimulus is77

a Excitatory Postsynaptic Potential (EPSP) and Back Propagating Action Potential (BPAP) off-78

set by 10 ms (24). Calcium ions leave the spine volume through the pumps on the plasma79

membrane, Plasma Membrane Ca2+-ATPase (PMCA) and Sodium-Calcium Exchanger (NCX),80
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and into the Spine Apparatus (SpApp) (if present) through Sarco/Endoplasmic Reticulum Ca2+-81

ATPase (SERCA). In addition, the base of the spine neck has a Dirichlet boundary condition82

of calcium clamped to zero. Mobile and immobile buffers are present in the cytoplasm to re-83

versibly bind calcium, and there is an additional exponential decay throughout the cytoplasm.84

All simulations were performed using MCell (33–35) to capture the stochastic nature of calcium85

dynamics in the small spine volumes and each simulation condition was run with 50 random86

seeds. System configuration and analysis scripts are all available on Github https://github.87

com/RangamaniLabUCSD/StochasticSpineSimulations. Synaptic weight was calculated using an88

ordinary differential equation dependent on the total number of calcium ions in the cytoplasm at89

each time point, see Table 2 and Section 4.5. The rate of synaptic weight update depends on a90

learning rate, τw, and a thresholding function, Ωw, that are both dependent on calcium ion levels,91

Figure 1c-d. We investigate how spine geometry and ultrastructure can influence synaptic weight92

change (Figure 1e). Model geometries were selected as follows: idealized geometries of thin,93

mushroom, and filopodia-shaped geometries from Alimohamadi et al. (36), see Supp. Table 3 and94

4. For each geometry, the Postsynaptic Density (PSD) area was set as a fixed proportion of the95

spine volume. We first investigate whether spine size has any effect on filopodia-shaped spines96

(Figure 2), thin spines (Figure 3), and mushroom spines (Figure 4). Next we consider the role of97

spine apparatus (Figure 5). Last we test the trends we find in idealized spines on realistic spine98

geometries (Figure 6). Our results predict that synaptic weight change through calcium dynamics99

is a deterministic function of geometric parameters of the spines (Figure 7). We note that our goal100

is not to provide a function fit but to demonstrate trends. We discuss these results in detail below.101

Figure 2: Calcium dynamics and synaptic weight change in filopodia-shaped spines depend on spine size. a)

Spatial plots illustrating Ca2+ localization at 15 and 30ms for filopodia-shaped spines with different volumes (0.017,

0.058 and 0.138µm3). The number above each geometry corresponds to the number of Ca2+ in that frame. Scale bars:

2 µm. b) Mean (solid) and standard deviation (shaded area) of Ca2+ transients across 50 simulations for each of the

three filopodia-shaped spine sizes. c) Variance of Ca2+ over time. d) The mean and standard error (n=50) of the peak

number of Ca2+ in different filopodia-shaped spine sizes shows statistically significant differences; p* = 2.0262× 10−11;

p** = 9.898× 10−8; p*** = 4.362× 10−26 using a two-tailed t-test. We fit the trend in peak Ca2+ as a linear function

of volume-to-surface area ratio, ζ; r2 = 0.5521 for the linear fit. e) The decay timescales of each Ca2+ transient are

estimated by fitting with an exponential decay function c · exp(−kt). The mean and standard error (n=50) of the decay
time constant, k, shows statistically significant differences across filopodia-shaped spine sizes; p* = 1.6331× 10−4; p** =

0.0209; p*** = 1.3381× 10−6 from a two-tailed t-test. The mean decay time constants as a function of volume-to-surface
area ratio, ζ, was fit with an exponential a · exp(−bζ); r2 = 0.203 for the exponential fit. f) The mean and standard error
(n=50) of the calculated synaptic weight change at the last time point in the simulation for all filopodia-shaped spine

sizes, plotted against the volume-to-surface area ratio, shows statistically significant differences between all cases; p*

= 2.7290× 10−5; p** = 2.8626× 10−6; p*** = 1.6321× 10−14 from two-tailed t-test.

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.06.442994doi: bioRxiv preprint 

https://github.com/RangamaniLabUCSD/StochasticSpineSimulations
https://github.com/RangamaniLabUCSD/StochasticSpineSimulations
https://github.com/RangamaniLabUCSD/StochasticSpineSimulations
https://doi.org/10.1101/2021.05.06.442994


2.1 Synaptic weight change depends on spine volume-to-surface ratio in filopodia-102

shaped spines103

We begin our analysis with a simple question – does spine size alter synaptic weight change?104

To answer this question, we first examined filopodia-shaped spines. Dendritic filopodia are pre-105

cursors of dendritic spines and serve to bridge the gap between the dendrite and an axon that106

is passing by during synapse formation (37). These are highly motile elongated structures that107

resemble tubules (lengths of 2–20µm and neck diameters smaller than 0.3 µm). The simplicity of108

this geometry allows us to focus on the role of size alone in a simple spine geometry. We used109

spine geometries of three different volumes (0.017, 0.058 and 0.138µm3). Simulations revealed110

that the calcium dynamics in these tubule-shaped spines appeared to follow a ‘plug-flow’ behavior111

where at 15ms, all the calcium is localized to one region (Figure 2a). This behavior is because112

of the narrow geometry of the spine, preventing dispersion of the calcium (see also Supplemental113

Movie S1). Next, we look at the temporal dynamics of calcium and note that the larger spines114

have larger numbers of calcium ions (Figure 2b) but also have a larger variance of calcium ions115

(Figure 2c). We further characterized the dynamics by considering the peak calcium values and116

decay time constants of the calcium transients versus the spine volume-to-surface area ratio. We117

chose the volume-to-surface area ratio as a geometric metric of spine morphology because it en-118

compasses both the cytosolic volume through which calcium diffuses and the surface area of the119

spine membrane through which calcium can enter and leave the system. Additional analyses with120

respect to spine volume are shown in Figure S1.121

We note that, indeed, increasing spine size and therefore the volume-to-surface ratio, causes a122

linearly proportional and significant increase in peak calcium ions (Figure 2d). We also found that123

the decay time of calcium from the peak decreased with increasing volume-to-surface area ratios124

and satisfied an exponential dependence (Figure 2e). As spine size increases, the decay time125

constant decreases, showing that it takes longer for calcium to clear out of the larger spines and126

spines with larger volume-to-surface area ratios. Finally, we calculated the synaptic weight change127

(see Supplemental Section 4.5) and compared this value at 35ms across volume-to-surface area128

ratios for the filopodia-shaped spines (Figure 2f). We observed that while the smallest spine had129

no observable weight change presumably because of the net low calcium influx, the weight change130

increases with increase in spine volume-to-surface-area ratio (Figure 2f). Thus, we find that even131

for a shape as simple as a filopodia-shaped spine, changes in spine volume-to-surface area ratio132

can dramatically alter calcium dynamics and synaptic weight change even in stochastic conditions133

suggesting a close coupling between spinogenesis and calcium handling.134

2.2 Thin and mushroom-shaped spines modulate synaptic weight changes as a135

function of volume-to-surface area ratio136

We next asked if the relationships of spine size and synaptic weight change observed for filopodia-137

shaped spines (Figure 2) also holds for thin and mushroom-shaped spines. Thin and mushroom-138

shaped spines emerge from filopodia-shaped spines as spinogenesis progresses (37, 38). While139

it has been proposed that spines exist in a continuum of shapes (39), historically it has been useful140

to categorize spines into specific categories of shapes (40). Thin spines, with small heads and141

thin necks, have been classified as ‘write-enabled’ or learning spines due to their high motility.142

Mushroom spines, on the other hand, with bulbous heads and relatively wider necks, are termed143

‘write-protected’ or memory spines due to their stability (41). Thin spines are characterized by144

a spherical head and we repeated the calcium influx simulations in thin spines of three different145

volumes (0.035, 0.119 and 0.283µm3) that were informed by the ranges found in the literature,146
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Figure 3: Changing thin spine size modulates calcium dynamics and synaptic weight change. a) Spatial plots

illustrating Ca2+ localization at 15 and 30ms for thin spines with different volumes 0.035, 0.119 and 0.283µm3). The

number above each geometry corresponds to the number of Ca2+ in the frame. Scale bars: 0.5 µm. b) Mean (solid)

and standard deviation (shaded area) of Ca2+ transients across 50 simulations for each of the three thin spine sizes.

c) Variance of Ca2+ over time. d) The mean and standard error (n=50) of the peak number of Ca2+ in different thin

spine sizes shows statistically significant differences; p* = 5.2641× 10−6; p** = 2.7377× 10−9; p*** = 5.0036× 10−20

from two-tailed t-test. We fit the trend in peak Ca2+ as a linear function of volume-to-surface area ratio, ζ; r2 = 0.4676

for the linear fit. e) The decay timescales of each Ca2+ transient are estimated by fitting with an exponential decay

function c ·exp(−kt). The mean and standard error (n = 50) of the decay time constant, k, shows statistically significant
differences across thin spine sizes; p* = 4.3976× 10−4; p** = 1.1541× 10−4; p*** = 5.4590× 10−8 from two-tailed t-test.
The mean decay time constants as a function of volume-to-surface area ratio, ζ, was fit with an exponential a ·exp(−bζ);
r2 = 0.2285 for the exponential fit. f) The mean and standard error (n = 50) of the calculated synaptic weight change

at the last time point in the simulation for all thin spine sizes, plotted against the volume-to-surface area ratio, shows

statistically significant differences between all cases; p* = 0.0315; p** = 1.0661× 10−5; p*** = 2.5751× 10−8 from two-

tailed t-test.
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Figure 3. We observe that, in thin spines, the calcium ions are concentrated in the head at 15 ms147

but disperse more uniformly by 30ms (Figure 3a and Supplemental Movie S2). We do not observe148

a plug-flow like behavior as we did for filopodia-shaped spines likely because of the differences in149

both shape and volume of the thin spines. Calcium dynamics in thin spines follows the expected150

temporal dynamics (Figure 3b), with larger spines having larger peak calcium and increased time to151

decay. Larger thin spines also have larger variance in the calcium ion concentration over time (Fig-152

ure 3c). Next, we found that the maximum calcium ions per spine was significantly larger in larger153

spines with statistically different values for the different sized spines. The peak calcium increased154

linearly compared to spine volume-to-surface area but with a smaller slope when compared to the155

filopodia-shaped spines (max peak values in filopodia-shaped spines increased three times faster156

than those in thin spines), (Figure 3d). This suggests that the size dependence of calcium grows157

slower in thin spines than in filopodia-shaped spines. The decay time also showed an exponential158

decay in thin spines with increasing volume-to-surface area ratio (Figure 3e). The exponent was159

smaller for thin spines when compared to filopodia-shaped spines (47.9 versus 23.27) suggesting160

that the decay rate with respect to volume-to-surface area ratio was slower in thin spines. Finally,161

the synaptic weight change showed an increase with volume-to-surface area ratio in thin spines162

(Figure 3f) indicating that larger spines are capable of stronger learning outcomes.163

Figure 4: Changing mushroom spine size modulates calcium dynamics and synaptic weight change. a) Spa-

tial plots illustrating Ca2+ localization at 15 and 30ms for mushroom spines with different volumes (0.080, 0.271 and

0.643µm3). The number above each geometry corresponds to the number of Ca2+ in the frame. Scale bars: 0.5 µm. b)

Mean (solid) and standard deviation (shaded area) of Ca2+ transients across 50 simulations for each of the three mush-

room spine sizes. c) Variance of Ca2+ over time. d) The mean and standard error (n=50) of the peak number of Ca2+

in different mushroom spine sizes shows statistically significant differences; p* = 4.1244× 10−13; p** = 6.6467× 10−15;

p*** = 7.8934× 10−32 from two-tailed t-test. We fit the trend in peak Ca2+ as a linear function of volume-to-surface

area ratio, ζ; r2 = 0.6655 for the linear fit. e) The decay timescales of each Ca2+ transient are estimated by fitting

with an exponential decay function c · exp(−kt). The mean and standard error (n=50) of the decay time constant, k,
shows statistically significant differences across mushroom spine sizes; p* = 6.8175× 10−6; p** = 6.4075× 10−6; p*** =

1.1118× 10−10 from two-tailed t-test. The mean decay time constants as a function of volume-to-surface area ratio, ζ,
was fit with an exponential a ·exp(−bζ); r2 = 0.3223 for the exponential fit. f) The mean and standard error (n=50) of the
calculated synaptic weight change at the last time point in the simulation for all mushroom spine sizes, plotted against

the volume-to-surface area ratio, shows statistically significant differences between all cases; p* = 5.1012× 10−10; p**

= 2.0097× 10−11; p*** = 2.1447× 10−23 from two-tailed t-test.

Finally, we repeated our analysis for mushroom-shaped spines of increasing volume (0.080,164

7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.06.442994doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442994


0.271 and 0.643µm3), (Figure 4). The effect of the shape of the spines is evident in the spatial165

dynamics of calcium (Figure 4a and Supplemental Movie S3). Even at 15ms, we note that while166

a vast majority of calcium ions are localized in the spine head, there is spillover of calcium into the167

neck; this is particularly evident in the spines of larger volume in (Figure 4a). We further investi-168

gated the role of the spine neck in both thin and mushroom spines in Figure S3 and Figure S4.169

The effect of increases in volume, and therefore increases in volume-to-surface area on the170

temporal dynamics of calcium is an increase in peak calcium (Figure 4b,d) and variance (Figure 4c),171

and a decrease in the decay time constant (Figure 4e). The synaptic weight change in mushroom172

spines increases with spine volume-to-surface area and is larger for these mushroom spines than173

the filopodia-shaped and thin spines (Figure 4f). We observe that the peak calcium shows a lin-174

ear increase with volume-to-surface area ratio with a slope that lies between the thin spines and175

filopodia-shaped spines. Finally, the decay time constant decreases with spine volume-to-surface176

area ratio but with a smaller exponential decay when compared to thin spines and filopodia-shaped177

spines. These two results point to the following conclusions – first, an increase in spine volume178

results in an increase in critical readouts of synaptic plasticity and second, the shape of the spine179

alters the quantitative relationships of synaptic plasticity by allowing access to different volume-to-180

surface area ratios.181

Figure 5: Spine apparatus size modulates synaptic weight change in mushroom spines. a) Spatial plots at 15

and 30ms for mushroom spines with spine apparatus of different volumes (net spine volumes of 0.203, 0.235 and

0.255µm3). The numbers on top of the shape indicate the total number of calcium ions at that instant in both the spine

apparatus and cytoplasm. Scale bars: 0.5 µm. Calcium ions over time as mean and standard deviation (b) and variance

(c) for all three mushroom spines with different spine apparatus sizes. Shaded regions in (b) denote standard deviation.

d) Peak calcium ion number for each mushroom spine with a spine apparatus, with the mean and standard error (n=50),

show statistically significant differences; p* = 0.0101; p** = 0.0010; p*** = 4.0801× 10−7 from two-tailed t-test. We fit the

trend in peak values with a linear function against the volume-to-surface area ratio; r2=0.1768 for the linear fit. e) We

fit the decay dynamics of each calcium transient with c · exp(−kt) and report the decay time constant, k, as a mean and
standard error (n = 50) against volume-to-surface area ratio. The decay time constants were not statistically different.

We fit the trend in decay time constants as a function of volume-to-surface area ratio with an exponential a · exp(−bζ),
where ζ is the volume-to-surface area ratio; r2 = 0.0166 for the fit. f) Calculated synaptic weight change mean and

standard error (n = 50) at the last time point for all three mushroom spines with spine apparatus show statistically

significant differences between all cases; p* = 0.0198; p** = 2.0977× 10−4; p*** = 6.0097× 10−7 from two-tailed t-test.
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2.3 Spine apparatus size tunes synaptic weight changes by altering the volume-182

to-surface area relationships183

Approximately 14% of dendritic spines have specialized endoplasmic reticulum called spine ap-184

paratus which are preferentially present in larger, mature spines (22, 42, 43). Furthermore, recent185

studies have shown that the spine apparatus and the ER are dynamic structures in the dendrite186

and dendritic spines (44). Previously, we showed that the spine apparatus modulates calcium187

transients in deterministic models of calcium influx (22) by altering the net fluxes (23). Here, we188

investigate how these relationships are altered in stochastic models in mushroom spines, Figure 5189

(See Figure S5 for the consideration of thin spines with spine apparatus). When a spine apparatus190

is present in the spine head, it effectively reduces the volume of the spine cytosol and in the time191

frame of our consideration, acts as a calcium sink (by the action of the SERCA pumps) (45). We192

also varied spine apparatus size in the medium-sized mushroom spine, see Figure 5a and Table 4.193

Calcium transients and variance showed much smoother dynamics for the mushroom spines com-194

pared to the thin spines, compare Figure 5b-c versus Figure S5b-c. Peak calcium values were all195

statistically different for the different spine apparatus sizes and followed a linear relationship with196

respect to the volume-to-surface area ratio, Figure 5d. Decay time constants were fit with an ex-197

ponential relationship but there were no statistical differences across different spines (Figure 5e).198

All different spine apparatus sizes produce synaptic weight changes that are statistically different,199

such that increases in spine apparatus size result in smaller spine volume (and smaller volume-to-200

surface area ratio) and therefore produce smaller weight changes, Figure 5f. Thus, the presence201

of spine apparatus alters the volume-to-surface area ratio for spines and therefore tunes calcium202

levels and synaptic weight updates in the large mushroom spines with an inverse relationship to203

the spine apparatus size.204

Figure 6: Real spine geometries show size dependence for calcium dynamics a) Spines similar to the idealized

geometries were selected from a reconstructed dendrite (46). Representative filopodia-shaped spines, thin spines, and

mushroom spines were selected and labelled with their volume and shape. Scale bars: 0.5 µm. b) Calcium transients

as means and standard deviation, along with variance over time for the realistic spines of different shapes; i-ii) filopodia-

shaped spines, iii-iv) thin spines, and v-vi) mushroom spines. The realistic spines are labeled with their volumes.
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2.4 Simulations in realistic geometries reveals that synaptic weight change de-205

pends on spine volume and volume-to-surface area206

Thus far, we focused on idealized geometries of spines, to identify relationships between key207

synaptic variables and key geometric variables. We found that the peak calcium concentration,208

decay time constant, and synaptic weight depend on the volume-to-surface area ratio within each209

shape classification. Do these relationships hold for realistic geometries as well? To answer this210

question, we selected realistic geometries from mesh models (47) informed by electron micro-211

graphs from Wu et al (46).212

Realistic spines havemore complex geometries that do not fall into the exact morphological cat-213

egories that we used for idealized spines. To test the significance of these variations, we selected214

two spines of each shape (thin, mushroom, and filopodia-shaped) and conducted simulations with215

the exact same parameters as the idealized simulations (Figure 6a). We chose realistic geometries216

that were within the range of sizes of the idealized geometries. The PSDs in the realistic spines217

were annotated during the segmentation process and no modifications were made to the PSD218

marked regions. To capture filopodia-shaped protrusions, we selected long, thin spines (with min-219

imal differentiation between the head and neck) that had marked PSD, because we did not include220

dendritic filopodia in the section. Details on how to use realistic geometries in these simulation221

modalities can be found in the Supplemental Material.222

For filopodia-shaped spines, we found that peak calcium and variance varied with volume but223

the variance was not appreciably different for the two spines that we used to conduct simulations224

(Figure 6b(i-ii), Supplemental Movie S5, Supplemental Movie S7). The realistic thin spines we225

chose had volumes similar to the filopodia-shaped spines and they also exhibited calcium dynamics226

proportional to their volume (Figure 6b(iii-iv), Supplemental Movie S8, Supplemental Movie S9).227

Mushroom spines had larger volumes and larger PSD areas when compared to the thin or filopodia-228

shaped spines (Figure 6b(v, vi), Supplemental Movie S4 and Supplemental Movie S6. Again, the229

calcium dynamics was proportional to the volume and showed that larger spines have higher peak230

calcium concentrations. Thus, the relationships of spine geometry and calcium dynamics hold in231

realistic geometries as well.232

3 Discussion233

Dendritic spines have been studied extensively as biochemical signaling compartments and their234

role in calcium sequestration has been theorized extensively (2, 4, 22, 23, 48, 49). Their unique235

morphological features and the classification of spine sizes and shapes with respect to function236

suggests possible structure-function relationships at the level of individual spines. In this work,237

we used stochastic modeling of calcium transients in dendritic spines of different geometries to238

understand how spine size and shape affect synaptic weight change. Using a stochastic simulation239

is important to investigate variance amongst spine shape and size as dendritic spines have small240

volumes and probabilistic channel dynamics. Using idealized and select realistic geometries we241

found that geometric properties, specifically, the volume-to-surface area affected key properties of242

calcium transients including peak calcium, decay time constants, and synaptic weight change. We243

discuss these findings in the context of different aspects of synaptic plasticity.244

Our models predict despite the individual calcium transients being stochastic, there is a predic-245

tive deterministic trend that appears to carry through the different sizes and shapes of spines used246

in our model (Figure 7). We highlight that our goal is to demonstrate a trend in the data as opposed247

to building numerical functions. Although we fit the various data, we note that the r2 is often weak,248
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Figure 7: Idealized and realistic spines show overall trends in peak calcium, decay rates, and synaptic weight

change with respect to volume-to-surface area ratios. a) All calcium peaks as mean and standard error (n=50)

across volume to surface area ratio show an overall increasing trend. We fit the trend in peak values with a linear

function against the volume-to-surface area ratio; r2 = 0.351 for the linear fit. b) We fit the decay dynamics of each

calcium transient with c ·exp(−kt) and report the decay time constant, k, as a mean and standard error (n = 50) against
volume-to-surface area ratio. We fit the trend in decay time constants as a function of volume-to-surface area ratio with

an exponential a · exp(−bζ), where ζ is the volume-to-surface area ratio; r2 = 0.1114 for the fit. c) Calculated synaptic
weight change mean and standard error (n = 50) at the last time point for all idealized and realistic spines shows an

increasing trend. We fit the trend in synaptic weight change with a linear function against the volume-to-surface area

ratio; r2 = 0.2815 for the linear fit. d) All calcium peaks as mean and standard error (n=50) across PSD surface area

to plasma membrane surface area ratio show an overall increasing trend. We fit the trend in peak values with a linear

function against the PSD-to-surface area ratio; r2 = 0.1441 for the linear fit. e) We fit the decay dynamics of each

calcium transient with c ·exp(−kt) and report the decay time constant, k, as a mean and standard error (n = 50) against
PSD-to-surface area ratio. We fit the trend in decay time constants as a function of PSD-to-surface area ratio with an

exponential a · exp(−bη), where η is the volume-to-surface area ratio; r2 = 0.0428 for the fit. f) Calculated synaptic

weight change mean and standard error (n = 50) at the last time point for all idealized and realistic spines shows an

increasing trend. We fit the trend in synaptic weight change with a linear function against the PSD-to-surface area ratio;

r2 = 0.1186 for the linear fit.
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indicative of the complexities that underlie such efforts. With this in mind, one of the advantages249

of our modeling approach here is that we can directly compare across the entire range of idealized250

and realistic geometries. By considering all the data from our models, for a total of 18 geometries251

with 50 simulations in each, we find that the peak calcium density is more-or-less linear with the252

volume-to-surface area ratio (Figure 7a). The decay time constant for calcium transients shows253

an exponential decay for larger volume-to-surface ratios with quite a bit of variability for smaller254

ratios (Figure 7b). And finally, the synaptic weight change increases as volume-to-surface area255

increases (Figure 7c).256

In the idealized geometries, the PSD area is a manually-fixed proportion of the spine volume257

but realistic geometries do not have this artificial constraint. Therefore, we redid our analysis using258

PSD area-to-surface area ratios (PSD to Plasma Membrane (PM) ratio). We still found the same259

relationships overall (Figure 7d-f) but this time with clustering of data around some ratios. This260

indicates that the PSD area is an important additional degree of freedom for synaptic weight change261

that must be considered for interpretation of geometric features and using realistic geometries with262

boundary markings allows us to investigate this. It is important to note that there is a lot more263

variability in the smaller volume-to-surface area ratios suggesting the response of smaller spines264

may be more erratic than larger spines. This feature can work as a double-edged sword – it may265

provide an advantage during the development of spines or be an disadvantage in the case of loss266

of spines (50, 51).267

Finally, we interpret our predictions in the context of spine shapes. Filopodia are prevalent dur-268

ing early synaptogenesis and can transition into dendritic spines based on synaptic activity (37).269

Additionally, various disease states produce modified dendritic spines that appear more like filopo-270

dia (52). The lack of significant weight changes for the smallest filopodia-shaped spine indicates271

that there is a volume threshold at which filopodia receive enough stimulus trigger synaptic weight272

change and transition towards more stable, mature dendritic spines. Importantly, the early synaptic273

weight changes emphasize how the increase in spine volume changes the weight outcome from274

LTD to LTP. This increase in synaptic weight emphasizes how an increase in spine size can push275

a thin spine to transition into a stable, larger mushroom spine.276

The difference in peak calcium level, decay dynamics, and synaptic weight changes as dif-277

ferent spine shapes are scanned across different sizes can also provide insight on spine shape278

transitions during development and maturation. Filopodia-shaped spines have larger increases in279

peak calcium levels and synaptic weight updates and faster decreases in decay time constants as280

their volume-to-surface area ratios and volumes increase, compared to both thin and mushroom281

spines; Figure 2, Figure 3, and Figure 4. This suggests that filopodia can very quickly alter their282

calcium levels, and therefore are well-suited for initially identifying possible synaptic partners and283

subsequently directing resources to those filopodia that are good candidates to transition to den-284

dritic spines (53). Once filopodia are established, their linear calcium increase with volume might285

be unsustainable and might lead to the reduced levels of increase for thin spines of comparable286

volume-to-surface area (and volume). This suggests that larger stimuli might be necessary to push287

thin spines towards more excitation, perhaps prevent excessive numbers of thin spines frommatur-288

ing and leading to resource depletion and excess neural connectivity (54). Mushroom spines once289

again show more of an increase in synaptic weight as they increase in volume-to-surface area ratio290

(and volume) but at volumes shifted from the filopodia-shaped spines, perhaps highlighting their291

role as key communication hubs (54). The volume shift seen in mushroom spines versus filopodia-292

shaped spines might serve to limit the number of mature, highly excitable dendritic spines as both293

a key neuronal network and resource regulation feature. When the spine apparatus acts as a sink,294

its presence dampens synaptic weight changes in mushroom spines, potentially acting to stabilize295

the spine from future changes as suggested by others (41, 55).296

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.06.442994doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442994


We note that our study is only a small piece of the puzzle with respect to synaptic plasticity.297

For instance, whether one should use total number of calcium ions or use calcium concentration298

in evaluating synaptic weight change requires additional exploration. For instance, we find that299

when calcium results are converted from total ions to average concentration along with the phe-300

nomenological synaptic weight equations, we get different trends in synaptic weight update results,301

Figure S7. However, converting our previous results (22) into total ions shows the same trends302

for max Ca2+ peak and decay time constants as this current study, Figure S6. Thus, a simple unit303

issue can lead to conflicting results in spatial models and indicates that we need further discussion304

and investigation on the structure of phenomenological equations for synaptic weight to understand305

which factors of calcium dynamics matter and to what degree. An additional limitation of this study306

is the usage of traditional p-values for statistical analysis of the data (see Figure S8 for details on307

h and p values), since the statistics field has suggested moving away from null-hypothesis signifi-308

cance testing (56). We also note that our current focus is on very early events and these models309

must be extended to longer time scale events to explore the biochemical and geometric interplay310

for downstream signaling (57–60).311

In summary, our computational models using idealized and realistic geometries of dendritic312

spines have identified potential relationships between spine geometry and synaptic weight change313

that emerge despite the inherent stochasticity of calcium transients. The advances in computa-314

tional modeling and techniques have set the stage for a detailed exploration of biophysical pro-315

cesses in dendritic spines (57, 61, 62). Such efforts are critical for identifying emergent properties316

of systems behavior and also eliminating hypotheses that are physically infeasible (63, 64). Mod-317

els such as this and others can set the stage for investigating longer time scale events in spines318

including the downstream effectors of calcium (16, 58, 65, 66), and actin remodeling for structural319

plasticity (67, 68).320

4 Methods321

We developed a stochastic reaction diffusion model in MCell (33). The reactions are obtained from322

Bartol et al. (24) and Bell et al. (22) and are discussed in detail below.323

4.1 Simulation Information and Parameters324

Simulations were run for a total simulation time of 35ms with a 500 ns time step. Each geometry325

is simulated in MCell over 50 distinct seeds to generate an appropriate sample size of results, and326

we use a write-out frequency of once per iteration to allow for reproducibility of results. At the327

beginning of each simulation, membrane proteins are distributed randomly over specified regions328

of the spine geometry surface area according to an assigned count or concentration. The reaction329

rates for all components in the model system were adjusted in (24) to reflect a system temperature330

between 34 °C and 37 °C.331

4.2 A Note About the Treatment of Extracellular Calcium332

Extracellular calciumwas not explicitly modeled for ease of computational tractability. We assumed333

a constant extracellular calcium concentration that is negligibly impacted by the calcium influx to334

and efflux from the spine cytoplasm. The dynamics of Ca2+ ions are explicitly modeled once they335

enter the cell through channels located on the PM, and cease to be explicitly represented once336

they are pumped out of the cell.337
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4.3 Dynamics of calcium ions in the spine volume338

We summarize the main reactions for Ca2+ ions in the volume. The values for the reaction rates339

and other important model parameters are located in Table 1. In the spine volume, calcium decay340

took the form given below where kd sets a decay time scale,341

Ca2+
kd−−→ ∅ · (1)

The value of kd is taken as 50 s
−1 based on (22). We note that this is significantly smaller than the342

decay rate constant determined in the results. This is expected as this cytosolic calcium decay is343

just one means of calcium clearing from the cytoplasm, along with the various pumps, and mobile344

and fixed buffers.345

In the volume, calcium binds with fixed and mobile buffers in the cytoplasm, modeled here346

generically with Bm to represent mobile calcium buffers, and Bf to represent fixed buffers. Calcium-347

buffer binding is modeled in MCell with the reactions348

Ca2+ + Bf

kBf,on−−−⇀↽−−−
kBf,off

Ca ·Bf , (2)

and349

Ca2+ + Bm

kBm,on−−−−⇀↽−−−−
kBm,off

Ca ·Bm. (3)

Reaction rates for the mobile and fixed buffers are found in Table 1.350

Table 1: Parameters used in the model for volume.

Variable Value Units Reference

Init. [Ca2+]cyto 1× 10−7 M (24, 69)

Init. [Ca2+]ER 6× 10−5 M (24)

Init. [Ca2+]ECS 2 mM (70)

kd 50 s−1 (22)

Init. [Bf ] 2× 10−5 M (71)

Init. [Bm] 4791 molecule µm−2 (24)

4.4 Plasma Membrane351

The primary influx of calcium through the plasmamembrane occurs through NMDARs and VSCCs,352

and calcium is pumped out of the cell via two kinds of pumps: PMCA, and NCX. In this model,353

NMDARs are both voltage and glutamate dependent and are localized to the PSD region. VSCCs354

are voltage dependent and located throughout the plasma membrane surface. PMCA and NCX355

are calcium-dependent pumps and are also located throughout the plasma membrane surface.356

4.4.1 NMDA receptors357

NMDAR are localized to the PSD area with areal density 150molecule µm−2 (24). The activation of358

NMDAR is modeled with an asymmetric trapping block kinetic scheme as proposed by Ref. (72).359

The activation of NMDAR is dependent on the diffusion of glutamate through the synaptic cleft,360
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and its binding to inactive receptors. In this study, a surface identical to the top of the spine head is361

displaced 2µm above the head, approximating the synaptic cleft. At time t = 0 in each simulation,362

500molecules of glutamate are released at the center of this synaptic cleft at the beginning of363

simulation, and subsequently diffuse through the space at a rate of 2.2× 10−6 cm2 s−1, where they364

bind to membrane-bound proteins. On the postsynaptic membrane, NMDARs compete with the365

glutamate receptor AMPAR for glutamate; thus, AMPARs are also included in the simulation to366

model this competition but they do not play a role in calcium influx. AMPAR is also localized to367

the PSD area. The binding of glutamate to AMPAR is modeled according to the kinetic scheme368

proposed by Ref. (73).369

Calcium flux through open NMDARs is modeled in MCell with a simple monomolecular reaction.370

NMDAR
kCa−−→ NMDAR+ Ca2+cyto (4)

where the rate of calcium influx is given by371

kCa(V ) = γNMDAR · V − Vr

2 · 1.6× 10−19
. (5)

V is the membrane potential, and Vr is the reversal potential for NMDAR. The parameters for the372

NMDAR reactions are the same as given in (72) and the parameters for the AMPAR reactions are373

the same as given in Ref. (73).374

4.4.2 Calcium influx through voltage-sensitive calcium channels375

The influx of Ca2+ through an open VSCC is given by the reaction:376

VSCC
kVSCC−−−→ VSCC+ Ca2+cyto (6)

where the rate of calcium influx is given by377

kVSCC =
γV (t)NA[0.393− exp(−V (t)

80.36 )]

2F [1− exp( V (t)
80.36)]

. (7)

The influx of Ca2+ through VSCCs is also dependent on the activation kinetics of VSCCs. The378

initial conditions for all the VSCCs is the closed state, and the activation of the channels is modeled379

here with a five state kinetic scheme as used in Ref. (24). The parameters for Ca2+ influx through380

VSCCs are the same as in (24). We included a VSCCs density of 2molecule µm−2.381

4.4.3 Voltage calculations in the model382

Since the transmembrane potential is time-varying and the rate constants for NMDAR and VSCC383

are voltage-dependent, the values of these rate constants at each simulation stepwere pre-computed384

and passed into MCell. The voltage stimulus representing a single EPSP starting at time t = 0, fol-385

lowed by a single BPAP occurring at an offset of 10ms was obtained from Ref. (24). Note that this386

time offset is within the typical window for Spike-Timing Dependent Plasticity (STDP) to inducing387

LTP (24, 74).388

4.4.4 PMCA and NCX389

PMCA and NCX are located on the plasma membrane with areal density 998molecule µm−2 and390

142molecule µm−2 respectively (24), forcing an efflux of calcium out of the cell. These pumps are391

modeled using the set of elementary reactions and reaction rates from Ref. (24).392
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4.4.5 Spine Apparatus393

Calcium enters the spine apparatus via SERCA pumps, and exits by leakage. SERCA pumps are394

calcium dependent and located throughout the spine apparatus membrane at 1000molecule µm−2.395

SERCA influx is modeled as a series of elementary reactions with rates from Ref. (24). Calcium396

leakage from the spine apparatus into the cytosol is modeled by the reaction397

Ca2+ER
kleak−−→ Ca2+cyto, (8)

where kleak is 0.1608 s
−1 from Ref. (22).398

4.5 Synaptic weight change399

We considered the effects of a single instance of spine activation on cytosolic calcium dynamics400

and subsequent synaptic weight change. Therefore, we can interpret this synaptic weight change401

as an early indicator of longer synaptic weight changes. We modeled changes in synaptic weight,402

w, due to cytosolic calcium as a phenomenological relationship, inspired by (7, 55). Synaptic403

weight change is given by404

dw

dt
=

Ωw − w

τw
, (9)

where τw is a learning rate given as405

τw = k1 +
k2

k3 + 2Ca2+cyto(t)/(θD + θP )
, (10)

and Ωw describes calcium dependence in the regimes of LTP and LTD as406

Ωw =
1

1 + exp(−βP (Ca
2+
cyto(t)− θP ))

− 0.5

1 + exp(−βD(Ca
2+
cyto(t)− θD))

. (11)

Cytosolic calcium, Ca2+cyto(t), is input as total ions in the spine in the above equation. The differential407

equation for synaptic weight, w, is solved in MATLAB 2018b using ode23s, with an initial synaptic408

weight value of 0 so synaptic weight change and synaptic weight are the same value for this single409

stimulation event. Synaptic weight parameters are given in Table 2.410

Because we are working with a stochastic model and are considering Ca2+ in terms of ions,411

we converted the parameters in the synaptic weight equations from units involving concentration412

to units of molecules, based on average spine volumes and realistic numbers of calcium ions in413

dendritic spines. It is important to note that using total Ca2+ ions is a global view of the dendritic414

spine while concentration can be considered as more of a local measurement. As mentioned,415

this synaptic weight change is a phenomenological relationship between Ca2+ and synaptic weight416

which captures the concept of synaptic strength change, and it remains unclear if using ions ver-417

sus concentration is a better approach for predicting this change. We converted our results into418

average concentrations by dividing the calcium transients by the respective spine volume, convert-419

ing our synaptic weight parameters into units of concentration, and rerunning our synaptic weight420

calculations, Figure S7. Further investigation is required to understand the considerations behind421

these different approaches.422
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Table 2: Parameters for Synaptic Weight.

Variable Value Units Reference

Init. w 0 − (55)

k1 1 s (55)

k2 10 s (55)

k3 1× 10−3 − (55)

θD 100 molecule ∗(7, 55)

θP 400 molecule ∗(7, 55)

βD 0.2977 molecule−1 ∗(7, 55)

βP 0.2977 molecule−1 ∗(7, 55)

∗ These parameters were converted from concentration units with adjustments for consistency.

4.6 MATLAB Analysis of Ca2+ transients423

We used MATLAB version 2018b to analyze the max Ca2+ peak and decay time constants for the424

stochastic Ca2+ results. For each realization of the Ca2+ transient, we used the max() function to425

find the peak Ca2+ value and corresponding time. We fit the transient after the peak using the fit()426

function set to ‘exp1’. The parameters from each fit, corresponding to a realization from a random427

seed, and statistics such as the mean and standard deviations are computed. The standard error428

of the mean was found by dividing the standard deviation by the square root of the number of429

individual trials, in this case 50 trials.430

4.7 Statistical Analysis431

Statistical significance was determined using a two-tailed two-sample t-test assuming equal means432

and variance (ttest2() function) in MATLAB version 2018b with a significance cutoff at p = 0.05.433

Statistical comparisons were made between the distributions of observables yielded by the 50 sim-434

ulations of the compared experimental conditions. Trends in the stochastic results data were fit435

using all 50 seeds for each of the simulations being considered in the fit. The reported trend lines436

are estimated using the data from all 50 seeds, as opposed to fitting to the means only. Linear fits437

and exponential fits were computed in MATLAB using the functions fitlm() and fit(), respec-438

tively. We highlight that we are using the classical approach of null-hypothesis significance testing,439

p-values, and statistically significant verbiage, which has been questioned as perilous and over-440

simplistic (56). We have provided the p-values for each result comparison for closer consideration,441

Figure S8. The linear and exponential trend lines shown have a range of r2 values and are used442

to show general trends. We emphasize however that in some plots we are fitting to either very few443

data points or a small domain. Therefore, we reiterate that these factors limit the interpretation of444

the quantitative nature of the fits.445
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5 Geometries446

Idealized, axisymmetric geometries are used to represent the structure of dendritic spines in this447

study. Three general spine shapes are represented – thin, mushroom, and filopodia-shaped – and448

each shape is further varied in size and, for the thin and mushroom spines, neck radius.449

5.1 Geometry generation450

The geometries were generated from 2-dimensional ideal spine profiles obtained from Ref. (36)451

consisting of a series of points (r, z) which form the outline of the respective geometry’s rotational452

cross-section. Using Netgen/NGSolve version 6.2 (75), we revolved these profiles about the z-axis453

to yield a rotationally-symmetric 3-dimensional spine geometry, Figure 8. In all spine geometries,454

a circular PSD was centered at the top of the spine head. The PSD area was set as a function of455

spine volume according to the relationship observed in Ref. (76).456

5.2 Size and neck variations457

To further explore the effects of geometric variations on calcium transients and stochasticity, and458

to facilitate the comparison of spine geometries of similar volumes and different shapes, the base459

geometries of all three shapes are scaled to two additional volumes beyond the base shapes from460

(36). The additional versions of the thin spine, initially smaller than the other spine shapes, are461

scaled such that their length measurements are 1.5 and 2 times their original values, resulting in462

volumes 3.375 and 8 times that of the initial thin spine, respectively. The base mushroom spine,463

intermediate in volume, is scaled to 0.66 and 1.33 times its original size, resulting in volumes 0.287464

and 2.353 times their original value, respectively. And the base filopodia-shaped spine, initially the465

largest in volume, is scaled to 0.5 and 0.75 times its original size, resulting in volumes 0.125 and466

0.422 times the original volume. This scheme ultimately results in three different sizes for each467

spine shape, spanning a similar range of volumes.468

The neck radius of the thin and mushroom spines is also varied, with neck length modified as469

well to preserve spine volume. To create the different spine sizes, the 2-dimensional spine profiles470

are dilated about the origin by a certain scale factor, and the resultant image is rotated about471

its vertical axis using Netgen/NGSolve to produce a scaled-up or scaled-down three-dimensional472

geometry. In the thin and mushroom 2-dimensional profiles, the x-values of points along the spine473

neck are scaled by a certain coefficient, and the length of the neck is then scaled by the squared474

inverse of the coefficient in order to maintain an approximately constant volume. A list of all spine475

geometries used, and their respective geometric measures, is found in Table 3.476

5.3 Spine Apparatus477

Some dendritic spines are observed to have a spine apparatus denoted as SpApp, an extension of478

the smooth endoplasmic reticulum, extending from the dendrite into the neck and head of the spine479

(43). In this study, the effects of the presence of the SpApp on calcium transients and stochasticity480

are investigated; to achieve this, the thin and mushroom spine geometries are further modified481

with the addition of a spine apparatus of varying sizes. For both spine shapes, the control-sized482

SpApp geometry is constructed by scaling down the original spine geometry and extending the483

spine apparatus neck, such that the SpApp occupies approximately 10% of the spine volume and484

extends to the base of the spine. SpApp size is then varied by scaling the SpApp geometry up and485

down, changing the neck length such that the SpApp base coincides with the spine base. SpApp486
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Figure 8: The 2-dimensional spine profiles and the resultant rotationally-symmetric spine geometries for a) thin spines,

b) mushroom spines, and c) filopodia.
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is not added to the filopodia-shaped geometry, as the spine apparatus is not generally found to be487

present in such spine shapes (43). The SpApp-containing geometries are also listed in Table 4.488

Table 3: A list of all geometric variations.

Geometry Scale Volume (µm3) Surface Area (µm2) Neck Radius (µm) PSD Area (µm2)

Thin

small x1 0.035 0.611 0.06 0.045

thin neck x1 0.034 0.653 0.04 0.045

thick neck x1 0.035 0.590 0.07 0.045

medium x1.5 0.119 1.378 0.08 0.112

large x2 0.283 2.453 0.11 0.241

Mushroom

small x0.67 0.080 1.140 0.07 0.081

medium x1 0.271 2.567 0.10 0.232

thin neck x1 0.270 2.689 0.08 0.232

thick neck x1 0.272 2.507 0.13 0.232

large x1.33 0.643 4.568 0.13 0.526

filopodia-shaped

small x0.5 0.017 0.717 0.05 0.031

medium x0.75 0.058 1.609 0.08 0.064

large x1 0.138 2.860 0.10 0.127

Table 4: A list of spine apparatus variations.

Geometry SA size SA Volume (µm3) Cytoplasm Volume (µm3)

Thin

Small 0.00211 0.033

Medium 0.00465 0.030

Large 0.00867 0.026

Mushroom

Small 0.0160 0.255

Medium 0.0358 0.235

Large 0.0676 0.203

5.4 Realistic Geometries489

Realistic geometries were chosen from among those on the full dendrite geometry generated in490

Ref. (47). Briefly, the geometric meshes were generated from electron micrographs in Wu et al.491

(46) using GAMer 2 (77). Individual spines with labeled PSD and volumes similar to the idealized492

geometries were selected from the realistic dendritic branch.493
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Table 5: Table of values for realistic geometries.

Spine Number Shape Volume (µm3) Surface Area (µm2) PSD Area (µm2)

13 Mushroom 0.157 2.457 0.26

17 Filopodia 0.091 1.916 0.06

18 Mushroom 0.243 3.383 0.14

37 Filopodia 0.075 1.756 0.03

39 Thin 0.045 1.078 0.04

41 Thin 0.091 1.710 0.07
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S1 Additional simulation results507

S1.1 Simulation results versus other geometric parameters show various trends508

We plot max Ca2+ peak, decay time constant, and synaptic weight against volume for all size509

variations of filopodia-shaped spines, thin spines, mushroom spines, and mushroom spines with510

spine apparatus Figure S1. We see similar trends across volume as we observe across volume-511

to-surface area ratio. We plot all results together on the same plot for max Ca2+ peak, decay512

time constant, and synaptic weight against volume-to-PSD area and volume, Figure S2. We see513

almost no dependence on volume-to-PSD area for any of the readouts. We see similar trend514

versus volume as we see in volume-to-surface area ratio.515

S1.2 Spine neck size shows differences in the large mushroom spines but not the516

smaller thin spines517

The spine neck has long been discussed as a key parameter governing calcium signaling within518

dendritic spines (25). We also explored the effects of varying spine length and radius, while pre-519

serving spine volume. We first varied the spine neck on thin spines of the control volume, Fig-520

ure S3a. We saw that while the calcium transients have considerable overlap, the thin-necked521

spine shows significant variance at later time points compared to the other spines, Figure S3b-c.522

We see no statistically significant differences between peak calcium values and only decay differ-523

ences between the thinnest and thickest necks, Figure S3d-e. Synaptic weight changes for the524

thin spines with different neck geometries showed no significant differences but were trended to-525

wards negative weight changes for thicker necks, Figure S3f. We next explored mushroom spines526

with thinner or thicker neck geometries but with the same volume as the mushroom control spine,527

Figure S4a. While the mean of the calcium transients appeared quite close, there was significant528

difference in variance for the mushroom spine with the thick neck, Figure S4b-c. We saw differ-529

ences in peak calcium only between the thinnest and thickest of the mushroom neck cases, and530

no significant difference in decay time constant, Figure S4d-e. Synaptic weight calculations show531

that presence of the thinnest versus thickest neck on a mushroom spine does lead to statistically532

significant differences in synaptic weight updates, Fig. S4f. This indicates that spine neck mor-533

phology might have more implications for these larger mushroom spines, compared to the smaller534

thin spines.535
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S1.3 The presence of spine apparatus in thin spines cause no clear trend in synap-536

tic weight update537

We vary the size of spine apparatus in thin control spines with the spine apparatus acting as a cal-538

cium sink with SERCA pumps, Figure S5a. We see that the presence of spine apparatus makes539

the calcium transient response more complex with a double peak visible in the variance for thin540

spines, Figure S5b-c. While we can fit the peak calcium values and decay time constant trends541

against both volume (Figure S5d,e) and volume-to-surface area ratio (Figure S5g,h), spine appa-542

ratus presence shows no clear trend in synaptic weight change for thin spines and the differences543

were not statistically significant, Figure S5f.544

S1.4 Our previous deterministic results match the qualitative trends seen in these545

results546

We previously published a deterministic reaction diffusion model of calcium dynamics in dendritic547

spines of different morphologies (22). We found trends in the peak calcium concentration over548

spine volumes in that work and wanted to directly compare those results to our findings in this work.549

Using the results from (22), we integrate calcium concentration over the spine volume at each time550

point and find the peak calcium in ions and fit the decay dynamics of the calcium transient with an551

exponential decay function, c · exp(−kt). We compare the peaks and decay time constants over552

both volume and volume-to-surface area ratio, and find the same qualitative trends as our findings553

in this currents work, Figure S6.554

S1.5 Synaptic weight changes depends on calculations with ions versus concen-555

tration556

Synaptic weight update equations are typically phenomenological relationships based on Ca2+.557

Historically, many mathematical models considering synaptic weight changes have considered558

synaptic weight changes in terms of concentration (6, 7, 55). In this model, we consider Ca2+ in559

terms of Ca2+ ions. We want to consider if the use of ions versus concentration influences the560

synaptic weight update results. We converted the synaptic weight equations by converting the561

parameters from units involving molecules to concentration by dividing by the average spine vol-562

ume (0.09 µm3) and converting to µM. We convert all the Ca2+ transients to µM by dividing by563

each respective spine geometry volume and modifying units. We plot the synaptic weight change564

at 35 ms for all simulations when considering ions versus concentration Figure S7. We see that565

synaptic weight change does change between using ions versus concentration because the con-566

centration also considers the volume of the spines. Using concentration leads to a decreasing567

trend in synaptic weight with increasing volume which is the opposite of the trend seen using ions.568

We do however still see protrusion-type specific trends within the overall dynamics. There are569

several considerations to make during this comparison. First, as mentioned, the synaptic weight570

equations used are phenomenological relationships between Ca2+ and the concept of synaptic571

weight which captures the idea of synaptic strengthening which would actually occur through the572

insertion of receptors, such as AMPAR, and potentially spine volume increase. It remains unclear573

if total ion count, which is a global consideration of the whole spine, or Ca2+ concentration, which574

considers the local environment, is the correct value to consider for synaptic weight calculations.575

Furthermore, we used average concentration in Figure S7c-d) but dendritic spines are known to576

have signaling nanodomains, so it could be possible that it would be more accurate to consider577

peak concentration instead of average concentration for this calculation. Additionally, it is possi-578
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ble that the thresholds for LTP versus LTD need to be modified for considering a global reading,579

such as total ions in the spine, versus a local measurement, such as local concentration. Should580

synaptic weight change depend on the total amount of Ca2+ influx or the local environment within581

the spine? This is an ongoing consideration that needs further analysis and discussion.582

S1.6 Two-tailed t-test results for all stochastic simulations583

We conduct two-tailed t-test calculations between all stochastic simulations for both idealized and584

real geometries for max Ca2+ peak, decay time constant, and synaptic weight change. We display585

both the h and p value for each comparison, Figure S8. We use a p threshold of 0.05 to determine586

the binary h value. A p value smaller than 0.05 indicates that the two results are statistically different587

and produce a h-value of 1. Reversely, a p value larger than 0.05 indicates that the two results are588

not statistically different and produce a h-value of 0. p-values have been truncated at two decimal589

points.590

Figure S1: Trends across volume are similar to trends across volume-to-surface area ratio Peak calcium levels,

decay time constant, and synaptic weight updates for size variations given as volumes for filopodia-shaped spines (a-c),

thin spines (d-f), mushroom spines (g-i), and mushroom spines with spine apparatus (j-l). Peak calcium is fit with a line

with a fixed zero intercept.

S1.7 Supplemental movies591

S1.7.1 Supplemental Movie S1592

Sample movie of idealized filopodia simulation. A single seed of an idealized filopodia simula-593

tion is shown for the whole time period from 0 to 35 ms. The plasma membrane mesh is shown in594

blue and the Ca2+ ions are red.595

S1.7.2 Supplemental Movie S2596

Sample movie of idealized thin spine simulation. A single seed of an idealized thin spine sim-597

ulation is shown for the whole time period from 0 to 35 ms. The plasma membrane mesh is shown598
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Figure S2: Trends across volume-to-PSD area ratio and across volume show different levels of significance a)

All calcium peaks as mean and standard error (n=50) across volume-to-PSD area ratio show no dependence. We fit

the trend in peak values with a linear function against the volume-to-PSD area ratio; r2 = 0.0152 for the linear fit. b)

We fit the decay dynamics of each calcium transient with c · exp(−kt) and report the decay time constant, k, as a mean
and standard error (n = 50) against volume-to-PSD area ratio. We fit the trend in decay time constants as a function of

volume-to-PSD area ratio with an exponential a · exp(−bβ), where β is the volume-to-PSD area ratio; r2 = 0.0091 for

the fit. c) Calculated synaptic weight change mean and standard error (n = 50) at the last time point for all idealized and

realistic spines shows no dependence on volume-to-PSD area ratio. We fit the trend in synaptic weight change with a

linear function against the volume-to-PSD area ratio; r2 = 0.0060 for the linear fit. d) All calcium peaks as mean and

standard error (n=50) across volume show a clear increasing trend. We fit the trend in peak values with a linear function

against volume; r2 = 0.5666 for the linear fit. e) We fit the decay dynamics of each calcium transient with c · exp(−kt)
and report the decay time constant, k, as a mean and standard error (n = 50) against volume. We fit the trend in decay

time constants as a function of volume with an exponential a · exp(−bV ), where V is the volume; r2 = 0.1478 for the fit.
f) Calculated synaptic weight change mean and standard error (n = 50) at the last time point for all idealized and realistic

spines shows an increasing trend. We fit the trend in synaptic weight change with a linear function against volume; r2

= 0.4635 for the linear fit.
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Figure S3: Effect of spine neck variation on synaptic plasticity in thin spines. a) Spatial plots at 15 and 30 ms

for thin spines of the same volume with different neck geometries (neck radius of 0.04, 0.06, 0.07 µm). The number

above each spine corresponds to the number of calcium ions present at that time point. Scale bar: 2 µm. Calcium

ions over time (b) and variance (c) for all three thin spines with different neck cases. Shaded regions in (b) denote

standard deviation. d) Peak calcium ion number for each thin spine with the mean and standard error (n=50) show

no statistically significant differences using a two-tailed t-test. We fit the trend in peak calcium as a linear function of

spine neck base surface area; r2 = 0.0009 for the linear fit. e) We fit the decay portion of each calcium transient with

the exponential decay function c · exp(−kt). The decay time constant mean and standard error (n=50), k, only shows
statistically significant differences between the thin and thick necks; p*** = 0.0322 from a two-tailed t-test. We fit the

trend in decay time constants as a function of spine neck base surface area with an exponential a · exp(−bψ), where ψ
is the spine neck base surface area; r2 = 0.0256 for the exponential fit. f) Calculated synaptic weight change at the last
time point for all three thin spines shows no statistically significant difference due to neck size.
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Figure S4: Effect of spine neck variation on synaptic plasticity in mushroom spines. a) Spatial plots at 15 and

30 ms for mushroom spines of the same volume with different neck geometries (neck radius of 0.08, 0.10, 0.13 µm).

The number above each spine corresponds to the number of calcium ions present at that time point. Scale bar: 2 µm.

Calcium ions over time (b) and variance (c) for all three mushroom spines with different neck cases. Shaded regions

in (b) denote standard deviation. d) Peak calcium ion number for each mushroom spine with the mean and standard

error (n=50) show statistically significant differences between the thin and thick spines; p*** = 0.0029 using a two-tailed

t-test. We fit the trend in peak calcium as a linear function of spine neck base surface area; r2 = 0.0528 for the linear

fit. e) We fit the decay portion of each calcium transient with the exponential decay function c · exp(−kt). The decay
time constant mean and standard error (n=50), k, shows no statistically significant differences from a two-tailed t-test.
We fit the trend in decay time constants as a function of spine neck base surface area with an exponential a ·exp(−bψ),
where ψ is the spine neck base surface area; r2 = 0.0036 for the exponential fit. f) Calculated synaptic weight change
at the last time point for all three mushroom spines only shows a statistically significant difference between the thin and

thick spines, p*** = 0.0244 from two-tailed t-test.
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Figure S5: Spine apparatus size modulates synaptic weight change in thin spines. a) Spatial plots at 15 and 30

ms for thin spines with spine apparatus of different volumes (spine cytosolic volumes of 0.026, 0.030, 0.0.033 µm3).

The numbers on top of the shape indicate the total number of calcium ions at that instant in both the spine apparatus

and cytoplasm. Calcium ions over time as mean and standard deviation (b) and variance (c) for all three thin spines with

different spine apparatus sizes. Shaded regions in (b) denote standard deviation. d) Peak calcium ion number for each

thin spine with a spine apparatus, with the mean and standard error (n=50), show statistically significant differences

between two of the three paired cases; p* = 0.0461; p*** = 0.0453 from two-tailed t-test. We fit the trend in peak values

with a linear function against the cytoplasm volume; r2 = 0.0145 for the linear fit. e) We fit the decay dynamics of each

calcium transient with c ·exp(−kt) and report the decay time constant, k, as a mean and standard error (n = 50). We find

only find statistically significant differences between the second and third spines; p* = 0.0289 from a two-tailed t-test.
We fit the trend in decay time constants as a function of cytosolic volume with an exponential a · exp(−bV ), where V is

the cytosolic volume; r2 = 0.0177 for the fit. f) Calculated synaptic weight change at the last time point for all three thin
spines shows no statistically significant difference due to spine apparatus size. We also plot peak calcium ion number

and decay time constant against the cytosolic volume to surface area ratio, g and h, respectively. g) We fit the trend

in peak values with a linear function against the volume-to-surface area ratio; r2 = 0.0214 for the linear fit. h)We fit the

trend in decay time constants as a function of volume-to-surface area ratio with an exponential a · exp(−bζ), where ζ is
the volume-to-surface area ratio; r2 = 0.0178 for the fit.
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Figure S6: Previous calcium simulation results match the qualitative trends in these results. a) We fit the trend

in peak values with a linear function against the cytoplasm volume; r2 = 0.8242 for the linear fit. We fix the y intercept

at zero. b) We fit the decay dynamics of each calcium transient with c · exp(−kt) and report the decay time constant,
k. We fit the trend in decay time constants as a function of cytosolic volume with an exponential a · exp(−bV ), where
V is the cytosolic volume; r2 = 0.4283 for the fit. c) We fit the trend in peak values with a linear function against the

volume-to-surface area ratio; r2 = 0.8776 for the linear fit. h) We fit the trend in decay time constants as a function of

volume-to-surface area ratio with an exponential a · exp(−bζ), where ζ is the volume-to-surface area ratio; r2 = 0.9054
for the fit.
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Figure S7: Synaptic weight updates when considering Ca2+ in terms of ions or concentration Synaptic weight

updates for each stochastic idealized and real geometry simulation when synaptic weight calculations are in terms of

ions (a-b) and concentration (c-d). We plot the synaptic weight changes against the spine volume for calculations using

ions (b) and concentration (d). We fit the trends using a linear function of volume. We get r2 = 0.4635 for the ion fit and
r2 = 0.1229 for the concentration fit.
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Figure S8: Two-tailed t-test comparison between all simulations We conduct two-tailed t-test between all simu-

lations and display the h value and p value for max Ca2+ peaks (a-b), decay rate constant (c-d), and synaptic weight

change (e-f). Displayed p values are truncated at two decimal points.

in blue and the Ca2+ ions are red.599

S1.7.3 Supplemental Movie S3600

Sample movie of idealized mushroom spine simulation. A single seed of an idealized mush-601

room spine simulation is shown for the whole time period from 0 to 35 ms. The plasma membrane602

mesh is shown in blue and the Ca2+ ions are red.603

S1.7.4 Supplemental Movie S4604

Sample movie of realistic mushroom spine 13 simulation. A single seed of a realistic mush-605

room spine 13 simulation is shown for the whole time period from 0 to 35 ms. The plasma mem-606

brane mesh is shown in blue and the Ca2+ ions are red.607

S1.7.5 Supplemental Movie S5608

Sample movie of realistic filopodia 17 simulation. A single seed of a realistic filopodia 17609

simulation is shown for the whole time period from 0 to 35 ms. The plasma membrane mesh is610

shown in blue and the Ca2+ ions are red.611

S1.7.6 Supplemental Movie S6612

Sample movie of realistic mushroom spine 18 simulation. A single seed of a realistic mush-613

room spine 18 simulation is shown for the whole time period from 0 to 35 ms. The plasma mem-614
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brane mesh is shown in blue and the Ca2+ ions are red.615

S1.7.7 Supplemental Movie S7616

Sample movie of realistic filopodia 37 simulation. A single seed of a realistic filopodia 37617

simulation is shown for the whole time period from 0 to 35 ms. The plasma membrane mesh is618

shown in blue and the Ca2+ ions are red.619

S1.7.8 Supplemental Movie S8620

Sample movie of realistic thin spine 39 simulation. A single seed of a realistic thin spine 39621

simulation is shown for the whole time period from 0 to 35 ms. The plasma membrane mesh is622

shown in blue and the Ca2+ ions are red.623

S1.7.9 Supplemental Movie S9624

Sample movie of realistic thin spine 41 simulation. A single seed of a realistic thin spine 41625

simulation is shown for the whole time period from 0 to 35 ms. The plasma membrane mesh is626

shown in blue and the Ca2+ ions are red.627
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