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Abstract  12 

The use of CDK4/6 inhibitors in the treatment of a wide range of cancers is an area of 13 

ongoing investigation. Despite their increasing clinical use, there is limited 14 

understanding of the determinants of sensitivity and resistance to these drugs. Recent 15 

data has cast doubt on how CDK4/6 inhibitors arrest proliferation, provoking renewed 16 

interest in the role(s) of CDK4/6 in driving cell proliferation. As the use of CDK4/6 17 

inhibitors in cancer therapies becomes more prominent, an understanding of their 18 

effect on the cell cycle becomes more urgent. Here, we investigate the mechanism of 19 

action of CDK4/6 inhibitors in promoting cell cycle arrest. Two main models explain 20 

how CDK4/6 inhibitors cause G1 cell cycle arrest, which differ in their dependence on 21 

the CDK inhibitor proteins p21 and p27. We have used live and fixed single-cell 22 

quantitative imaging, with inducible degradation systems, to address the roles of p21 23 

and p27 in the mechanism of action of CDK4/6 inhibitors. We find that CDK4/6 24 

inhibitors can initiate and maintain a cell cycle arrest without p21 or p27. This work 25 

clarifies our current understanding of the mechanism of action of CDK4/6 inhibitors 26 

and has implications for cancer treatment and patient stratification.  27 
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 2 

Introduction 28 

CDK4/6 inhibitors have garnered interest as cancer treatments due to their efficiency 29 

in inhibiting cell proliferation. Three small-molecule CDK4/6 inhibitors (Palbociclib, 30 

Abemabiclib and Ribociclib) are clinically approved for the treatment of metastatic 31 

ER+/HER2- breast cancer, and their use in the treatment of other cancers is an area 32 

of active investigation (Álvarez-Fernández & Malumbres, 2020; Dickler et al., 2017; 33 

Finn et al., 2016; Fry et al., 2004; Gelbert et al., 2014; Hortobagyi et al., 2016; Rader 34 

et al., 2013; Sledge et al., 2017; Tripathy et al., 2017). However, not all patients 35 

respond to these drugs and it is unclear why. Understanding more about the 36 

mechanism of action of CDK4/6 inhibitors, and how they inhibit cell proliferation, will 37 

help to stratify patients for treatment based on biomarkers (Álvarez-Fernández & 38 

Malumbres, 2020; Spring et al., 2020).  39 

 40 

While the premise for the clinical use of CDK4/6 inhibitors is based on a “canonical” 41 

model of CDK4/6 activity, recent work has highlighted gaps in our understanding of 42 

the role of CDK4/6 in cell cycle entry (Pennycook & Barr, 2020; Hume et al., 2020; 43 

Rubin et al., 2020). In this canonical model, Cyclin D:CDK4/6 has a catalytic role, 44 

phosphorylating the transcriptional inhibitor Retinoblastoma protein (Rb) during G1, 45 

and partially relieving its inhibition of E2F-mediated transcription. This initiates 46 

expression of genes required for cell cycle entry, including Cyclin E. Later in G1, 47 

increasing Cyclin E:CDK2 activity results in the hyperphosphorylation and complete 48 

inhibition of Rb, allowing full activation of E2F-dependent transcription and entry into 49 

S-phase. More recent data has called this model into question, yet still supports a 50 

primarily catalytic role for CDK4/6 in cell cycle entry (Narasimha et al., 2014). Indeed, 51 

the catalytic activity of CDK4/6 towards Rb has been shown to be a major driver of 52 

proliferation(Chung et al., 2019; Harbour et al., 1999; Lundberg & Weinberg, 1998; 53 

Topacio et al., 2019; Yang et al., 2020). However, CDK4/6 may also promote cell cycle 54 

entry through a non-catalytic role, sequestering the Cip/Kip Cdk inhibitors, p21 and 55 

p27, away from CDK2, thus promoting CDK2 activity (Polyak et al., 1994; Sherr & 56 

Roberts, 1999). Whilst p21 and p27 inhibit CDK2 activity, they have a more 57 

complicated relationship with Cyclin D:CDK4/6. p21 and p27 are necessary for the 58 

formation of functional Cyclin D:CDK4/6 complexes and promote complex assembly 59 

(Cheng et al., 1999; Guiley et al., 2019; Labaer et al., 1997; Ray et al., 2009). In 60 

addition, p27 facilitates the phosphorylation of the T-loop in CDK4 by CDK activating 61 
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 3 

kinase (CAK), which is required for CDK4 kinase activity (Guiley et al., 2019). 62 

However, p21/p27 binding can also inhibit Cyclin D:CDK4/6 activity (Guiley et al., 63 

2019; Ray et al., 2009). Other roles for CDK4/6 in cell cycle entry have been suggested 64 

(Caillot et al., 2020; Hydbring et al., 2016; Wang et al., 2017). For example, CDK4/6 65 

substrates include proteins controlling mitochondrial function and glycolysis, co-66 

ordinating the cell cycle and metabolism (Caillot et al., 2020; Salazar-Roa & 67 

Malumbres, 2017; Wang et al., 2017). Other studies have reported that CDK4/6 are 68 

able to control transcription in a kinase-independent manner (Hydbring et al., 2016; 69 

Kollmann et al., 2013). Thus, the precise mechanism by which CDK4/6 activity leads 70 

to increased CDK2 activity and cell cycle entry during G1 is unclear. 71 

 72 

Our current understanding of CDK4/6 activity suggests two ways by which CDK4/6 73 

inhibitors could act to block proliferation. Our first assumption, based on canonical 74 

models of cell cycle entry, is direct CDK4/6 kinase inhibition resulting in cell cycle 75 

arrest (Chung et al., 2019; Fry et al., 2004; Toogood et al., 2005). However, it has 76 

been reported that CDK4/6 inhibitors are able to arrest cell cycle progression even in 77 

the presence of catalytically inactive CDK4/6 (Schade et al., 2019). Further, whilst RB1 78 

(encoding Rb) status may be an important biomarker for CDK4/6 inhibitor sensitivity, 79 

some Rb-deficient tumour cells remain sensitive (Álvarez-Fernández & Malumbres, 80 

2020). An alternative, indirect model of CDK4/6 inhibitor action resolves this issue, 81 

implicating CDK2 inhibition as the cause of G1 arrest. Recent experimental work 82 

suggests that the CDK4/6 inhibitor Palbociclib can only bind to CDK4 monomers (or 83 

potentially also Cyclin D:CDK4 dimers) but not to Cyclin D:CDK4:p21/p27 trimers 84 

(Guiley et al., 2019). In this model, cell cycle arrest occurs through inhibition of CDK2 85 

activity by redistribution of p21 and p27 from CDK4 to CDK2 complexes (Guiley et al., 86 

2019). Indeed, resistance to CDK4/6 inhibitors is linked to amplification of Cyclin E 87 

and CDK6 which may enable continued proliferation through increased CDK2 activity 88 

(Álvarez-Fernández & Malumbres, 2020; Rubin et al., 2020). Increased CDK2 activity 89 

has also been reported to result from increased Cyclin D expression, which sequesters 90 

p21 and p27 away from CDK2 (Vilgelm et al., 2019). This lack of CDK2 inhibition is 91 

proposed to drive proliferation in CDK4/6 inhibitor-treated cells. 92 

 93 

CDK4/6 inhibitors are able to arrest cells in G1 despite continued mitogen stimulation 94 

(Trotter & Hagan, 2020), indicating that p21 is the most likely candidate for mediating 95 
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an indirect inhibition of CDK2. Mitogen stimulation results in the abrogation of the 96 

inhibitory activity of p27 towards CDK4 due to phosphorylation of the Y74 residue by 97 

non-receptor tyrosine kinases (NRTK) such as Src (Chu et al., 2007; Grimmler et al., 98 

2007; Guiley et al., 2019; Hume et al., 2020; Tsytlonok et al., 2019). Further, NRTK 99 

signalling can also result in Y88 phosphorylation of p27, which ejects the inhibitory 310 100 

helix of p27 from the CDK2 active site, partially restoring CDK2 activity (Grimmler et 101 

al., 2007).  Tyrosine phosphorylation of the 310 helix of p21 does not appear to lead to 102 

helix ejection, which would allow p21 to retain its function as a CDK inhibitor despite 103 

mitogen signalling, which is vital for a robust DNA damage response (Barr et al., 2017; 104 

Swadling et al., 2021). 105 

 106 

The difference between the two models of CDK4/6 inhibitor action on cell cycle arrest 107 

is their dependence on p21 and p27 (Figure 1a). To investigate whether CDK4/6 108 

inhibitors require p21 and p27 to enter or maintain a G1 arrest in cells, we have 109 

characterised the expression of p21 and p27 in hTert-RPE1 cells, generated new cell 110 

line models to manipulate p21 expression and used live cell imaging to monitor cell 111 

cycle arrest in response to Palbociclib. We find that Palbociclib is able to initiate and 112 

maintain cell cycle arrest, even when p21 and p27 are removed. Our data call into 113 

question the importance of the indirect model of CDK4/6 inhibitor action and suggest 114 

that direct inhibition of CDK4/6 by Palbociclib can be sufficient to inhibit proliferation 115 

and maintain cell cycle arrest, at least in a non-transformed cellular context.   116 
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Results 117 

 118 

p21, and not p27, is enriched in the nuclei of cycling hTert-RPE1 cells  119 

For this study we used telomerase-immortalised hTERT-RPE1 cells (RPE1) as they 120 

are near diploid, non-transformed, have intact cell cycle control pathways and are 121 

sensitive to CDK4/6 inhibitors (Bodnar et al., 1998; Trotter & Hagan, 2020). As such, 122 

we assume that cell cycle regulatory complexes will be present at the correct 123 

stoichiometries. Previous studies investigating the mechanism of action of CDK4/6 124 

inhibitors have used cancer cells, where the extent to which cell cycle control networks 125 

are perturbed is poorly understood. We reasoned that by studying CDK4/6 inhibitor 126 

action in RPE1 cells, we could establish a baseline of how Palbociclib modulates a 127 

well-controlled cell cycle, which, in the future, can be used to understand the effects 128 

of mutations and perturbations observed in cancer cells. We focus on Palbociclib here 129 

as it is the best characterised in terms of both its mechanism and its effect on RPE1 130 

cells (Guiley et al., 2019; Trotter & Hagan, 2020).  131 

 132 

Whilst RPE1 cells do have reported mutations in CDKN2A and KRAS, there is no clear 133 

link between KRAS mutations and Palbociclib sensitivity (di Nicolantonio et al., 2008; 134 

Libouban et al., 2017). We confirmed the expression of p16 protein in our RPE1 cells 135 

by western blot, indicating that it is not the loss of p16 protein which causes Palbociclib 136 

sensitivity in these cells and that cells with functional p16 can still be sensitive (Figure 137 

1b) (Wiedemeyer et al., 2010; Young et al., 2014). 138 

 139 

We first characterised the protein expression and localisation of Cip/Kip CDK inhibitor 140 

proteins which have been implicated in the response to Palbociclib. Quantification of 141 

p21 and p27 levels by immunofluorescence in cycling RPE1 cells, plated at a low 142 

density, revealed that p21 protein is exclusively nuclear and is expressed 143 

heterogeneously (as previously shown, Barr et al., 2017; Figure 1c). p27 has low 144 

nuclear expression in cycling RPE1 cells, and its nuclear levels only increase as cells 145 

enter quiescence, as observed when cells are plated at high density and start to enter 146 

quiescence through contact inhibition (Figure 1c). This, together with previous data 147 

indicating that p21 and Cyclin D levels are correlated in cycling cells (Chen et al., 2013; 148 

Labaer et al., 1997; Yang et al., 2017), and that p27 would be largely tyrosine 149 

phosphorylated and degraded in growth-factor stimulated cells (Chu et al., 2007; 150 
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Grimmler et al., 2007; Swadling et al., 2021), suggests that p21, and not p27, is likely 151 

to be the primary regulator of Cyclin D:CDK4/6 activity in cycling RPE1 cells. We 152 

therefore focussed the majority of our efforts on investigating the role of p21 in the cell 153 

cycle response to Palbociclib. However, since the contribution of p27 cannot be 154 

discounted, we also perform our assays in the presence and absence of p27.  155 

 156 

Palbociclib is only effective as a cell cycle inhibitor during G1 in RPE1 cells 157 

As it has been established that Palbociclib is limited in its actions to G1 phase (Rubin 158 

et al., 2020), we asked when RPE1 cells are sensitive to Palbociclib during the cell 159 

cycle with respect to cell cycle arrest. We imaged asynchronous RPE1 cells following 160 

Palbociclib addition and followed their cell cycle progression using endogenously 161 

tagged mRuby-PCNA (Zerjatke et al., 2017; Supplementary Movie 1). We observed 162 

that cells in G1 phase of the cell cycle at the point of drug addition arrest immediately, 163 

whilst cells in S, G2 or mitosis complete their current cycle and re-enter G1 phase 164 

before arresting (Figure 1d). A small fraction of G1 cells (14.3%) do enter S-phase in 165 

the presence of Palbociclib and complete the current cycle before arresting in the next 166 

G1. All of these cells enter S-phase within 2 hours of Palbociclib addition and likely 167 

represent late G1 cells that were close to the G1/S transition at the time of drug 168 

addition. Thus, Palbociclib can only induce cell cycle arrest in cells which are in 169 

early/mid G1 phase.  170 

 171 

p21 and p27 are not required for entry into G1 arrest with Palbociclib in RPE1 172 

cells 173 

We hypothesised two possible mechanisms for a G1 arrest response to Palbociclib. 174 

One, that consistent with a direct model of Palbociclib action, CDK4/6 activity is only 175 

essential for cell cycle progression during early and mid G1 phase of the cell cycle. In 176 

this case, whilst CDK4/6 may be inhibited by Palbociclib during the whole cell cycle, 177 

this does not affect progression until G1. Alternatively, this could be explained by the 178 

indirect model (Figure 1a) as p21 is degraded abruptly at S-phase entry (Barr et al., 179 

2017; Bornstein et al., 2003; Heldt et al., 2018; Nathans et al., 2021) and is therefore 180 

only present at high levels during G1 (Rubin et al. 2020). 181 

 182 

To test this indirect model of Palbociclib action and determine if cell cycle arrest 183 

induced by CDK4/6 inhibitors is dependent upon p21 and p27, we assayed cell cycle 184 
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 7 

distribution by immunofluorescence in fixed cells following 48 h treatment with 185 

Palbociclib, in the presence and absence of p21 and p27. We measured EdU 186 

incorporation, phospho-S807/811 Rb (P-Rb) levels and DNA content. Cells were pulse 187 

labelled with the nucleotide analogue 5-ethynyl-2’-deoxyuridine (EdU) 30 minutes 188 

before fixation and Click-iT chemistry used to assay the proportion of cells in S phase 189 

(see Methods, Supplementary Figure 2a). Whilst EdU incorporation enabled us to 190 

assess the percentage of cells in S phase, P-Rb and Hoechst staining was used to 191 

determine cell cycle phase distribution more specifically. Quantification of DNA 192 

content by Hoechst sum intensity allows the gating of cells into G1, S and G2/M 193 

phases (Supplementary Figure 2b; Chung et al. 2019). P-Rb is bimodally distributed 194 

in a population of asynchronously cycling cells, reflecting the proliferation status of the 195 

population with G0 cells (and Palbociclib arrested cells) displaying 196 

hypophosphorylated Rb (Stallaert et al. 2021, Crozier et al. 2021, Spencer et al. 2013) 197 

(Supplementary Figures 2c).  198 

 199 

Assessing the cell cycle distribution of untreated p21 knockout (KO) cells (Barr et al., 200 

2017) showed that p21KO does not appreciably alter the fraction of cells in G1 or S 201 

phase (Figure 2a columns 1 vs 5), and reduces the fraction of cells with 202 

hypophosphorylated Rb compared to p21 wild-type (WT) cells (Supplementary Figure 203 

2d). Assaying the proliferative status of p21KO cells following Palbociclib treatment 204 

revealed an arrest in G1 to the same extent as for p21WT cells (Figure 2a columns 2 205 

vs 6, Supplementary Figure 2d).  206 

 207 

Whilst we hypothesised that p21 would be more likely than p27 to mediate an indirect 208 

mechanism of G1 arrest in Palbociclib in RPE1 cells (Figure 1c), we wanted to ask if 209 

Palbociclib could induce arrest in the absence of both CIP/KIP proteins, as p27 has 210 

also been implicated in this mechanism (Guiley et al., 2019; Polyak et al., 1994; Sherr 211 

& Roberts, 1999). siRNA-mediated knockdown of p27 prior to Palbociclib treatment 212 

did not affect proliferation (Figure 2a columns 1 vs 3 and 5 vs 7) or the ability of cells 213 

to arrest in G1 (columns 2 vs 4 and 6 vs 8) in p21WT or p21KO backgrounds at a 214 

range of Palbociclib concentrations (Figure 2b, Supplementary Figure 2e, f). 215 

 216 

Our fixed cell analyses indicated that RPE1 cells arrest in G1 in response to 217 

Palbociclib in the absence of p21 and/or p27. However, we wanted to test the 218 
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hypothesis that it is the presence of p21 (and perhaps p27) during G1 that makes G1 219 

cells sensitive to Palbociclib (Rubin et al., 2020). We reasoned that, if this was the 220 

case, then in the absence of p21 and/or p27, a higher fraction of cells in G1 at the time 221 

of Palbociclib addition may progress through S-phase and complete the cycle, before 222 

arresting in the next G1. Therefore, we repeated our live-imaging experiment in 223 

mRuby-PCNA labelled p21WT and p21KO cells treated with non-targeting control 224 

(NTC) or p27 targeting siRNA (Barr et al., 2017; Zerjatke et al., 2017). We observed 225 

that cells respond in the same way to Palbociclib, arresting in G1, independent of the 226 

presence of p21 and p27 (Figure 2c; fraction of G1 cells progressing into S-phase: 227 

p21WT NTC 6.5%, p21WT p27si 0%, p21KO NTC 6.7%, p21KO p27si 6.1%).  228 

 229 

Together, these data suggest that p21 and p27 are not essential for entry into a 230 

Palbociclib-mediated cell cycle arrest and that CDK4/6 activity is only required for cell 231 

cycle entry during early and mid G1.  232 

 233 

Generating p21-degron cell lines 234 

In our previous experiments, the absence of p21 and p27 in RPE1 cells at the time of 235 

Palbociclib addition means that Palbociclib can bind directly to CDK4 and CDK6 to 236 

inhibit their activity (Guiley et al., 2019) and that Palbociclib can only act to arrest the 237 

cell cycle through a direct CDK4/6 inhibition mechanism. However, this does not 238 

address the question of whether, when present, p21 and p27 are required to mediate 239 

an indirect mechanism of cell cycle arrest? 240 

 241 

One way to address this question is to allow cells to enter a Palbociclib-mediated 242 

arrest in the presence of p21 and p27, and then remove the Cip/Kips and see if any 243 

cells re-enter the cell cycle. To be able to efficiently and inducibly degrade p21, we 244 

used a double degron system (Hégarat et al., 2020). In this way, we could test if p21 245 

is needed for maintaining a Palbociclib-induced arrest in a system where p21 is 246 

normally present to promote the assembly of functional Cyclin D:CDK4/6 complexes, 247 

and where p21 could potentially relocalise upon Palbociclib addition to Cyclin:CDK2 248 

complexes to mediate cell cycle arrest (Figure 1a). We introduced an mVenus-mAID-249 

SMASh tag at the C-terminus of p21 in RPE1 cells expressing myc-OsTIR1 under a 250 

doxycycline-inducible promoter (p21-degron cells). Homozygous gene targeting was 251 

confirmed by PCR and western blot, and an siRNA directed against p21 was used to 252 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442976doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442976
http://creativecommons.org/licenses/by/4.0/


 9 

confirm specificity of tagging (Figure 3a, Supplementary Figure 3a, c). We verified that 253 

addition of DIA (doxycycline, IAA and ASV) resulted in the depletion of p21 to 254 

undetectable levels by immunoblot after 24 h and that the tag did not affect cell growth 255 

and p21 protein localised normally to the nucleus (Figure 3a, Supplementary Figure 256 

3b-d).  257 

 258 

We first used the p21-degron cells to ask if acute depletion of p21 and/or p27 259 

abrogates Palbociclib-induced cell cycle arrest in a system where p21 is normally 260 

present to stabilise assembly of Cyclin D:CDK4/6 complexes (in contrast to the p21KO 261 

cells which may also have adapted to the loss of p21). Cells were reverse transfected 262 

with siRNA, to deplete p27, and treated with DIA, to degrade p21, then treated with 263 

Palbociclib 24 h later for 48 h. EdU incorporation, Hoechst and P-Rb staining were 264 

used to assess if (and at what cell cycle phase) cells were arrested. Degradation of 265 

p21 did not significantly affect the percentage of EdU positive cells, the percentage of 266 

G1 phase cells or the distribution of P-Rb staining in DMSO and siNTC treated cells 267 

(Figure 3b column 1 vs 3, Supplementary Figure 3e). p21 degradation also did not 268 

affect entry into cell cycle arrest mediated by Palbociclib (Figure 3b, column 2 vs 4, 269 

Supplementary Figure 3e). Following p27 knockdown alone, proliferation was largely 270 

unaffected, similar to what we observed in p21WT and p21KO cells (Figure 3b, 271 

columns 1 vs 5, Supplementary Figure 3e). p27 knockdown also did not affect entry 272 

into cell cycle arrest in Palbociclib, independently of DIA addition prior to treatment 273 

(Figure 3b columns 2 vs 6 and 4 vs 8, Supplementary Figure 3e). 274 

 275 

In summary, neither p21 nor p27 are necessary for the initiation of a Palbociclib-276 

mediated arrest in RPE1 cells. 277 

 278 

p21 and p27 are not required for maintenance of G1 arrest with Palbociclib 279 

To further clarify the importance of direct or indirect mechanisms of Palbociclib action 280 

in our system, we wanted to ask if maintenance of cell cycle arrest initiated in 281 

unperturbed conditions is dependent on p21 and p27. We reasoned that if an indirect 282 

mechanism maintains cell cycle arrest during Palbociclib treatment then a decrease 283 

in p21 or p27 protein levels during arrest would result in cell cycle re-entry.  284 

 285 
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To test if removal of p21 and/or p27 promoted cell cycle re-entry in Palbociclib-arrested 286 

cells, we first degraded p21 following 24 h Palbociclib treatment in p21-degron cells. 287 

Assaying proliferation as before, we saw that cell cycle arrest was maintained following 288 

p21 degradation (Figure 4a columns 5 vs 6, Supplementary Figure 4a). Further, p27 289 

knockdown following Palbociclib treatment did not affect the arrest, independent of the 290 

presence of p21 (Figure 4a columns 7 vs 8, Supplementary Figure 4a). Additionally, 291 

in Palbociclib treated p21KO cells, the knockdown of p27 did not affect the arrest 292 

(Figure 4b columns 7 vs 8, Supplementary Figure 4b). 293 

 294 

We observed that Palbociclib treatment induces an increase in p21 and p27 protein 295 

levels in cells in a time-dependent manner, and that p21 localisation remains 296 

exclusively nuclear. The largest increase in p21 protein occurs between 48 and 72 h 297 

Palbociclib treatment (p21: Figure 4c; p27: Supplementary Figure 2d columns 1 vs 2). 298 

We hypothesised that this might reflect an increased dependence on p21 and p27 to 299 

maintain cell cycle arrest in the presence of Palbociclib. To test this, we decreased 300 

p21 and p27 protein levels following a long-term Palbociclib-mediated arrest, to ask if 301 

these proteins are necessary to maintain a prolonged arrest initiated in unperturbed 302 

conditions. We used p21-degron cells to degrade p21 72 h following Palbociclib 303 

treatment. Assaying proliferation 48 h following the induction of p21 degradation 304 

revealed a similar extent of arrest, independent of the presence of p21 (Figure 4d 305 

columns 5 vs 6, Supplementary Figure 4c) or p27 (columns 5 vs 7 and 7 vs 8). 306 

 307 

Together, our data demonstrate that RPE1 cells are not dependent on p21 or p27 for 308 

maintenance of a Palbociclib-mediated cell cycle arrest.  309 
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Discussion 310 

In this study, we have established that a Palbociclib-mediated cell cycle arrest is not 311 

dependent on the CIP/KIP inhibitor proteins p21 and p27 in RPE1 cells. Using this 312 

non-transformed cell line, we have demonstrated that cell cycle arrest in response to 313 

Palbociclib can both be initiated and maintained without p21 or p27.  314 

 315 

Importantly, in a system in which a ‘normal’ Palbociclib-mediated arrest has been 316 

allowed to occur, the presence of p21 and p27 is not necessary for the maintenance 317 

of cell cycle arrest (Figure 4). This indicates that an arrest initiated in the presence of 318 

Cyclin D:CDK4/6 trimeric complexes with p21 (and potentially p27), which might be 319 

predicted to occur through an indirect mechanism of action of Palbociclib, is not 320 

dependent on p21/p27. If the arrest were maintained through the indirect inhibition of 321 

CDK2, we would predict that the absence of p21/p27 would result in the release of, at 322 

least a fraction of, cells into the cell cycle despite the continued presence of 323 

Palbociclib. Whilst we are unable to rule out that in the presence of p21 and p27, 324 

Palbociclib acts through an indirect mechanism to inhibit CDK2 to initiate arrest that is 325 

then maintained by direct Palbociclib-mediated CDK4/6 inhibition, our data suggests 326 

that the presence of p21 and/or p27 is not essential for entry into cell cycle arrest or 327 

maintenance of that arrest in a non-transformed cell line. 328 

 329 

This calls into question a solely indirect model of Palbociclib driven cell cycle arrest, 330 

which is dependent upon the presence of p21 and/or p27 both before and during the 331 

arrest (model 2, Fig 1A). Our data support the direct inhibition of CDK4/6 by Palbociclib 332 

to inhibit proliferation. This is supported by work assaying CDK4/6 and CDK2 activity 333 

in single non-transformed MCF10A cells using live cell CDK4/6 and CDK2 activity 334 

reporters (Yang et al., 2020). In both G1 and S phase cells released from 335 

synchronisation in G0, Palbociclib addition decreases CDK4/6 activity within one hour, 336 

while CDK2 activity decreases at a much slower rate. Further, recent data from 337 

multiple cell line models suggested that in contrast to CDK2, CDK4 catalytic activity 338 

towards Rb is inhibited by Palbociclib treatment (Simoneschi et al., 2021). Together, 339 

this suggests that Palbociclib directly inhibits CDK4/6 catalytic activity and that this is 340 

sufficient for a G1 phase arrest.  341 

 342 
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Whilst sensitivity to Palbociclib is known to be restricted to G1, here we have reported 343 

that cells become insensitive to drug addition in late G1, at approximately two hours 344 

before S phase entry (Figure 1d). This corresponds with early reports of restriction 345 

point timing (Campisi et al., 1982; Foster et al., 2010; Yen & Pardee, 1978). This could 346 

reflect an increasing rate of p21 degradation as cells approach the G1/S transition 347 

(Heldt et al., 2018; Nathans et al., 2021) or could be the result of a change in the 348 

dependency of cells on CDK4/6 activity for cell cycle progression at the restriction 349 

point. Since we see no change in sensitivity of G1 cells to Palbociclib in the absence 350 

of p21 and/or p27, it is likely that it is the latter hypothesis that is correct here and that 351 

cells only require CDK4/6 activity in early and mid G1 to complete the cell cycle.  352 

 353 

Interestingly, p21 has been implicated in cellular resistance mechanisms to CDK4/6 354 

inhibitors, indicating it still has an important role in their mechanism of action in some 355 

contexts. The loss of p53, a major driver of p21 expression, has been implicated in 356 

resistance to the CDK4/6 inhibitor Abemaciclib, with a significant enrichment in TP53 357 

mutations in resistant breast cancer (Patnaik et al., 2016; Wander et al., 2020). 358 

Further, increasing p21 expression is linked to re-sensitising resistant cells to 359 

Palbociclib, indicating that low p21 levels may contribute to Palbociclib resistance 360 

(AbuHammad et al., 2019; Vilgelm et al., 2019). However, loss of p53 does not prevent 361 

proliferative arrest induced by CDK4/6 inhibitors, supporting our hypothesis that 362 

CDK4/6 inhibitors are able to act through multiple potential mechanisms (Wander et 363 

al., 2020). In contrast, Y88 phosphorylation of p27, a modification which prevents its 364 

inhibitory activity towards CDK2, correlates with sensitivity to Palbociclib (Gottesman 365 

et al., 2019).  366 

 367 

Our data does not rule out a potential role for p21/p27 during Palbociclib-induced cell 368 

cycle arrest in some cells (Guiley et al., 2019). Indeed, it indicates that Palbociclib is 369 

able to arrest the cell cycle through parallel direct and indirect mechanisms and that 370 

the dominant mechanism depends upon the cellular context. A parallel pathways 371 

model explains how both RPE1 cells acutely depleted of p21/p27 and cells with 372 

impaired CDK4/6 or Rb activity are sensitive to Palbociclib (Guiley et al., 2019; Schade 373 

et al., 2019; Zhao & Burgess, 2019). 374 

 375 
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This could represent a difference between healthy and cancer cells in their 376 

dependence on CIP/KIP proteins for arrest. Whilst MCF7 breast cancer cells are at 377 

least partly dependent on CDK4/6 activity for cell cycle entry (Grillo et al., 2006), 378 

p21/p27 appear to mediate their Palbociclib sensitivity (Guiley et al., 2019). It therefore 379 

seems likely that Palbociclib is able to arrest cell cycle progression through both direct 380 

and indirect mechanisms, meaning the sensitivity of a cancer cell to Palbociclib may 381 

be dependent upon both its reliance on CDK4/6 activity for cell cycle entry and the 382 

relative expression levels of p21/p27. As the activity of these pathways is often 383 

perturbed in cancer, this may alter the effect of Palbociclib on the cell cycle, 384 

determining a cell’s sensitivity to Palbociclib and the mechanism by which it may cause 385 

cell cycle arrest. For example, the lack of sensitivity of some triple-negative breast 386 

cancer cells (TNBC) may reflect both a decreased dependence on CDK4/6 activity for 387 

cell cycle entry (due to high Cyclin E expression and CDK2 activity) and low p21 and/or 388 

p27 levels (Asghar et al., 2017). The prediction of a cell’s sensitivity to Palbociclib may 389 

therefore require information about the balance between the activity of multiple cell 390 

cycle pathways (Table 1). For example, we would predict that in Rb-deficient cells 391 

which remain sensitive to Palbociclib would be sensitive to decreases in p21/p27. 392 

These different potential mechanisms of action of Palbociclib may explain why there 393 

are no clear biomarkers for sensitivity. 394 
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Methods 406 

Cell culture 407 

hTert-RPE1 cells were from ATCC and were maintained in DMEM (Gibco) 408 

supplemented with 10% FBS and 1% Penicillin-Streptomycin at 37C and 5% CO2. 409 

RPE1 mRuby-PCNA p21-GFP cells, in which both alleles of the endogenous CDKN1A 410 

locus were labelled with GFP at the C-terminus and one allele of PCNA was labelled 411 

at the N-Terminus with mRuby, were described previously (Barr et al., 2017). RPE1 412 

mRuby-PCNA p21 KO 1A cells were described previously (Barr et al., 2017). 413 

 414 

Drugs used and working concentrations: Etoposide 10 M, Doxycycline 1 g/ml, 415 

Indole-3-acetic acid (IAA) 500 M, Asunaprevir (ASV) 3 M, Palbociclib 1 M (unless 416 

otherwise stated). 417 

 418 

Generation of p21-Venus-AID-SMASh tagged hTert-RPE1 cell line 419 

An mVenus-mAID-SMASh tag was introduced to the C terminus of the human 420 

CDKN1A gene using targeting vectors and gRNA/Cas9 cleavage.  421 

For the homology donor plasmid primers used for the left and right homology arms 422 

were the same as in Barr et al. 2017. To PCR amplify mVenus, we used the following 423 

primers: forward, 5’-424 

TCTTCTCCAAGAGGAAGCCCGGAGGAGGAGTGAGCAAGGGCGAGGAG-3’, 425 

reverse 5’-GCTGATGCCGCTGAGGCGCCCTTGTACAGCTCGTCCAT-3’. mAID-426 

SMASh-Neomycin was amplified with the primers forward: 5’-427 

GGCGCCTCAGCGGCATCAGCTGCAGGAGCTGGAGGTGCATC-3’ and reverse: 5’-428 

GCAGGCTTCCTGTGGGCGGATCAGAAGAACTCGTCAAGAAG-3’. LHA, mVenus, 429 

mAID-SMASh-Neomycin, RHA PCR products were ligated into pAAV p21 vector by 430 

Gibson assembly at a ratio vector:inserts of 1:2:2 using T4 DNA ligase (NEB). All 431 

constructs were checked by sequencing before transfection into cells. To generate 432 

stable clones, hTERT-RPE1 OsTIR1 cells (a gift from Helfrid Hoechegger, Hégarat et 433 

al., 2020) were transfected with pX330 g21 gRNA plasmid (Barr et al., 2017) and the 434 

p21 homology donor plasmid at a ratio of 1:1 using Lipofectamine 2000, according to 435 

the manufacturer’s instructions (Invitrogen). Cells were incubated for 3 weeks in media 436 

containing 0.5 g/ml G418 and selected clones were screened by western blot and 437 

genomic DNA PCR. 438 
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siRNA transfection 439 

Cells were transfected with siRNA at a final concentration of 20 nM using 440 

Lipofectamine RNAiMAX, according to the manufacturer’s instructions (Invitrogen). 441 

Briefly, 40 nl of Lipofectamine RNAiMAX (Invitrogen) was mixed with siRNA in 10 l 442 

OptiMEM (Gibco) per well of a 384 well plate. 20 l of cells at a density of 2.5x104 443 

cells/ml were plated on top of this, and cells were incubated at 37 °C. siRNAs used 444 

were Dharmacon ON-TARGETplus Non-targeting siRNA #1 (NTC) and CDKN1A (set 445 

of 4), Ambion Silencer Select siRNA CDKN1B (Cat. No 4427038) and p16 siRNA 446 

sequence used: UACCGUAAAUGUCCAUUUAUA. 447 

 448 

Immunofluorescence 449 

Cells were grown on 384 well CellCarrierUltra (PerkinElmer) plates. For EdU staining, 450 

a final concentration of 10 M EdU was added to the growth media 30 minutes prior 451 

to fixation. Cells were fixed in 4% paraformaldehyde in PBS for 15 minutes, washed 452 

three times with PBS. Permeabilization in PBS 0.2% Triton X-100 for 15 minutes was 453 

followed by blocking in 2% BSA in PBS for 1 hour. Cells were incubated with primary 454 

antibodies diluted in blocking buffer at 4C overnight, washed three times with PBS 455 

then incubated with a 1:1000 dilution of secondary antibodies for 1 hour at room 456 

temperature. For EdU detection cells were incubated for 30 minutes in TBS 100 mM 457 

pH 7.5, CuSO4 4mM, Sulfo-cyanine 3 azide 5 M, sodium ascorbate 100 mM. Cells 458 

were washed three times in PBS, incubated for 10 minutes with 1 g/ml Hoechst, then 459 

washed a further three times in PBS. 460 

 461 

Antibodies used: p21 (Invitrogen MA5-14949 1:1000), p27 (CST 3688 1:1000), P-Rb 462 

S807/811 (CST 8516, 1:2000); secondary Goat anti-rabbit IgG (H+L) Alexa Fluor 647 463 

(Invitrogen A21245, 1:1000). Plates were imaged using a 20X (NA 0.8) objective using 464 

an Operetta CLS microscope. 465 

 466 

Western blot 467 

Whole cell extract of RPE1 cells was collected following aspiration of medium from 468 

culture plate, two washed in PBS and the addition of 1X Novex Tris-glycine SDS 469 

sample buffer (Invitrogen) and collection of cells by scraping. Samples were incubated 470 

at 95C for 10 minutes before loading on 12-15% precast NuPAGE gels (Invitrogen). 471 
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Primary antibodies used: p16 (CST 80772, 1:1000), p21 (Invitrogen MA5-14949 472 

1:1000), vinculin (CST 13901 1:1000); secondary antibodies HRP linked Anti Rabbit 473 

IgG (CST 7074, 1:2000). 474 

 475 

Growth curves 476 

Cells were plated at a density of 20,000 cells per well in duplicate in 6-well plates. 477 

Brightfield images were taken every 2 hours for 5 days and the percentage confluency 478 

calculated using an Incucyte Live-Cell analysis system (Sartorius). 479 

 480 

Live imaging of Palbociclib addition 481 

hTert-RPE1 cells were seeded into 384 well CellCarrier Ultra plates (PerkinElmer) one 482 

day prior to imaging at a density of 1000 cells/well in 20 l of phenol-red free 483 

DMEM:F12 with 10% FBS and 1% P/S. In cases where cells were transfected with 484 

siRNA, cells were plated onto siRNA:lipofectamine RNAiMax (Invitrogen) complexes 485 

(as described elsewhere). Prior to imaging, media was added to all wells to a final 486 

volume of 100 l, with a final concentration of 1 M Palbociclib. A breathable film was 487 

applied to the plate (ThermoFisher) to prevent media evaporation and cells were 488 

imaged on the Operetta CLS (PerkinElmer) at 37 °C and 5% CO2, using a 20x (N.A. 489 

0.8) objective, every 10 (Figure 2) or 15 (Figure 1) mins. Image analysis was 490 

performed in FIJI and NucliTrack (Cooper et al., 2017). Endogenously tagged mRuby-491 

PCNA was used, as previously described to determine cell cycle timing (Zerjatke et 492 

al., 2017).  493 
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Figure 1. p21 correlates with Cyclin D1 expression and Palbociclib is only effective in 756 
G1 in hTert-RPE1 cells. A. Models of Palbociclib mechanism of action. Model 1: direct 757 
inhibition of CDK4/6 catalytic activity by Palbociclib. Palbociclib binds and inhibits 758 
CDK4/6 monomers, CyclinD:CDK4/6 dimers and Cip/Kip:CyclinD:CDK4/6 trimers. 759 
Depending when in the cell cycle Palbociclib is added, CDK2 would be active or 760 
inactive depending on Cyclin E/A expression. In this model CDK4/6 complexes titrate 761 
p21/p27 from CDK2 complexes. Model 2: indirect inhibition of CDK2 activity through 762 
redistribution of Cip/Kip inhibitor proteins. Palbociclib binds and inhibits CDK4/6 763 
monomers and CyclinD:CDK4/6 dimers but not Cip/Kip:CyclinD:CDK4/6 trimers. 764 
Cip/Kip redistribution from CDK4/6 complexes to CDK2 results in cell cycle arrest. B. 765 
Western blot showing expression of p16 in hTert-RPE1 cells. Cells were treated with 766 
increasing concentrations (1 = 25 nM, 2 = 50 nM, 3 = 75 nM, 4= 100 nM) of siRNA 767 
targeting CDKN2A for 48 h. Vinculin in included as a loading control. NTC = Non-768 
targeting control siRNA. C. Images show hTert-RPE1 cells plated at high density or 769 
low density and fixed and stained for p21 (left-hand side) or p27 (right-hand side; both 770 
yellow in merged image) and Hoescht (blue in merged image). Insets in lower panels 771 
show magnified images of cells in the image to highlight lack of nuclear p27 in cells 772 
cycling at low density. Scale bar is 100 µm. D. Graph shows how cell cycle stage 773 
affects response to Palbociclib addition. hTert-RPE1 mRuby-PCNA cells were imaged 774 
after Palbociclib addition at time 0 and cells were manually analysed to determine cell 775 
cycle phenotypes. Each row represents a single cell (n=57 cells) and only one 776 
daughter cell was followed post-mitosis. See Supplementary Movie 1 for an example 777 
of the imaging data.  778 
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Figure 2. p21 and p27 are not required for Palbociclib-mediated arrest in hTert-RPE1 779 
cells. A. hTert-RPE1 p21KO cells were reverse transfected with siNTC or sip27 and 780 
treated with DMSO or Palbociclib 6 h after plating, as indicated. Cells were pulse 781 
labelled with 10 µM EdU for 30 min before fixation 48 h following drug treatment. EdU 782 
positive cells quantified as cells with a nuclear:cytoplasmic ratio of EdU signal as 783 
greater than or equal to 1.2. Right, cells were classified in G1 phase according to their 784 
DNA content as quantified by Hoechst nuclear sum intensity. Dots in superplots 785 
represent replicate wells, colour coded by experimental repeat, triangles represent 786 
mean values for each of n=3 experimental repeats with mean and SEM shown. Scale 787 
bar, 100 µm. B. hTert-RPE1 mRuby-PCNA p21 WT and p21KO cells were treated 788 
with the indicated concentrations of Palbociclib for 48 h before 30 min EdU pulse and 789 
fixation. Superplot of percentage of EdU positive cells, left, and of cells in G1 phase, 790 
right. Mean and SEM from n=3 experimental repeat shown on error bars. C. Graphs 791 
show timing of cell cycle arrest when Palbociclib is added to asynchronous cells (at 0 792 
mins) and imaged by live cell imaging. Cell cycle phenotypes were monitored and 793 
tracked manually over 24 hrs using mRuby-PCNA as a readout. Three fields of view 794 
were quantified per condition. Each row represents an individual cell. Wild-type NTC 795 
siRNA n=68, wild-type p27 siRNA n=61, p21KO NTC siRNA n=73 and p21KO 796 
p27siRNA n=70 cells.   797 
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Figure 3. Generation of p21-degron lines A. Western blot of whole cell extract from 798 
indicated cell lines probing for p21, indicating all p21 expressed in the hTert-RPE1 799 
OsTIR1 mRuby-PCNA p21-mVenus-mAID-SMASh cell line is tagged with mVenus-800 
mAID. Cells were reverse transfected with the indicated siRNAs, non-targeting control 801 
(NTC) or p27 and collected after 48 h. 10 µM Etoposide (ETO) was added 24h prior 802 
to sample collection to induce DNA damage as p21 expression is low in untreated 803 
hTert-RPE1 cells. p21-mVenus-mAID has a predicted molecular weight of 55 kDa, no 804 
p21-mVenus-mAID-SMASh is detected as the SMASh tag self-cleaves from the 805 
protein. Vinculin was used as a loading control. Right, western blot of whole cell extract 806 
indicating that p21-mVenus-AID-SMASh is degraded following DIA (doxycycline, IAA 807 
and ASV) addition after induction of p21 expression by ETO.  ETO and DIA: 808 
Doxycycline (1 µg/ml), IAA (500 µM) and ASV (3 µM) were added 24 h before sample 809 
collection. B. hTert-RPE1 mRuby-PCNA p21-Venus-AID-SMASh cells were reverse 810 
transfected with the indicated siRNAs, 6 h later DMSO or DIA were added as indicated, 811 
and 24 h DMSO or Palbociclib added for 48 h. Cells were pulse labelled with EdU 812 
before fixation and EdU incorporation and G1 percentage were quantified.  813 
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Figure 4. Palbociclib-dependent arrest can be maintained in the absence of p21/p27. 814 
A. hTert-RPE1 p21WT and KO cells were treated with DMSO/Palbociclib, transfected 815 
with the indicated siRNAs 18 h later, then treated with DIA 6 h following transfection. 816 
Cells were pulse labelled for 30 minutes with 10 µM EdU and fixed 48 h following DIA 817 
addition. Dots represent replicate wells, colour coded by experimental repeat. 818 
Triangles represent mean values for each experimental repeat with mean and SEM 819 
shown. B. hTert-RPE1 p21-degron cells were treated with DMSO/Palbociclib, 820 
transfected with the indicted siRNAs 24 h after drug treatment, then treated with 821 
DMSO/DIA 6 h following transfection. 48 h after DIA addition, cells were pulse labelled 822 
with 10 uM EdU for 30 minutes and fixed. C. hTert-RPE1 mRuby-PCNA p21GFP cells 823 
were treated with DMSO for 72 h or Palbociclib for the indicated times, and p21GFP 824 
levels quantified. Representative frequency distribution of measured intensities from 825 
one experimental repeat shown. Right, percentage of cells classified as p21 high 826 
above a threshold of p21 intensity, n=3 experiments shown. Data was normalised to 827 
72 h DMSO treatment within each experimental repeat. D. hTert-RPE1 p21-degron 828 
cells were treated with DMSO/Palbocilib for 72 h, transfected, then DMSO/DIA added 829 
6 h later. Cells were pulse labelled with 10 µM EdU for 30 minutes 48 h after DIA 830 
addition. 831 
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Table 1.  Predictions of sensitivity to CDK4/6 inhibitors. 

Dependence on CDK4/6  p21/p27 levels CDK4/6 inhibitor 

sensitivity prediction 

Yes High/normal Yes – both mechanisms 

Yes Low Yes – direct inhibition 

No High Yes – indirect mechanism 

No Low No 
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