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ABSTRACT14

Numerous questions in phylogenetic comparative biology revolve around the correlated evolution of two
or more phenotypic traits on a phylogeny. In many cases, it may be sufficient to assume a constant
value for the evolutionary correlation between characters across all the clades and branches of the tree.
Under other circumstances, however, it’s desirable or necessary to account for the possibility that the
evolutionary correlation differs through time or in different sections of the phylogeny. Here, we present
a method designed to fit a hierarchical series of models for heterogeneity in the evolutionary rates and
correlation of two quantitative traits on a phylogenetic tree. We apply the method to two datasets: one for
different attributes of the buccal morphology in sunfishes (Centrarchidae); and a second for overall body
length and relative body depth in rock- and non rock-dwelling South American iguanian lizards. We also
examine the performance of the method for model selection using a small set of numerical simulations.

15

16

17

18

19

20

21

22

23

24

INTRODUCTION25

The evolutionary correlation is defined as the tendency of two phenotypic characteristics to co-evolve26

over evolutionary time or on a phylogenetic tree (Felsenstein, 1985; Revell and Collar, 2009; O'Meara,27

2012; Harmon, 2019). Lots of hypotheses about evolution that are tested using phylogenetic comparative28

methods involve the evolutionary correlation between traits. For instance, when Garland et al. (1992)29

tested the hypothesis of a correlation between phylogenetically independent contrasts (Felsenstein, 1985)30

for home range size and body mass in mammals, they were really asking if evolutionary increases in body31

size tend to be associated with increases in home range size, as well as the converse. In effect, they asked32

if the two traits were evolutionarily correlated. Likewise, when Ruiz-Robleto and Villar (2005) used33

phylogenetic contrasts to explore the relationship between relative growth rate and leaf longevity in woody34

plants, they were in fact investigating the tendency of these two traits to co-evolve on the phylogeny. They35

were measuring the evolutionary correlation between different phenotypic characteristics of plant leaves36

(Ruiz-Robleto and Villar, 2005).37

Most analyses of the evolutionary correlation assume that the tendency of traits to co-evolve is constant38

over all of the branches and clades of the phylogeny. Revell and Collar (2009), however, proposed a39

new (at the time) likelihood-based method for testing a hypothesis of a discrete shift in the evolutionary40

correlation or correlations between two or more traits in certain predefined parts of the phylogeny.41

According to this method, which was a relatively simple multivariate extension of an important related42

approach by O'Meara et al. (2006; also see Thomas et al., 2006; Revell and Harmon, 2008), the rate of43

evolution for individual traits, and the evolutionary correlation between them, were free to vary between44

different regimes mapped onto the phylogeny by the user. Revell and Collar (2009) applied the method to45
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a phylogeny and dataset for the buccal morphology of sunfishes (Centrarchidae) to test the hypothesis that46

the evolutionary tendency of gape width and buccal length to co-evolve was affected by feeding mode.47

Revell and Collar’s (2009) approach is implemented in the phytools R package (Revell, 2012) and has48

been applied to various questions since its original publication. For instance, Damian-Serrano et al. (2021)49

used the method to test whether the the evolutionary correlation between different aspects of the prey50

capture apparatus in siphonophore hydrozoans changes as a function of the type of prey they consume.51

The method has also been updated or adapted in different ways (e.g., Clavel et al., 2015; Caetano and52

Harmon, 2017). For example, Clavel et al. (2015) developed software for modeling multivariate evolution,53

but with different types of constraints on the evolutionary rates or correlations between traits; and Caetano54

and Harmon (2017) implemented an extension of Revell and Collar (2009) that uses Bayesian MCMC for55

estimation, instead of maximum likelihood.56

The underlying model of Revell and Collar (2009) is multivariate Brownian motion (Felsenstein, 1985;57

Revell and Harmon, 2008; Harmon, 2019). Brownian motion is a continuous time stochastic diffusion58

process in which the variance that accumulates between diverging lineages is proportional to the time59

since they shared a common ancestor (O'Meara et al., 2006; Revell and Harmon, 2008; Revell, 2021). The60

amount of covariance between species related by the tree is a direct function of the distance above the root61

of their most recent ancestor. At the tips of the tree, species values for a trait, x, are anticipated to have a62

multivariate normal distribution with a mean equal to the value at the root node of the phylogeny, and a63

variance-covariance matrix equal to σ2C in which C is an n × n matrix (for n total taxa) that contains the64

height above the root node of the common ancestor of each i,jth species pair for i 6= j; and the total length65

of the tree from the root to each ith tip, otherwise (O'Meara et al., 2006; Revell et al., 2008).66

In the case of multivariate Brownian motion, the diffusion process can no longer be described by a67

single parameter, σ2. Now, Brownian motion evolution is governed by an m × m matrix, for m traits,68

sometimes referred to as the evolutionary rate matrix (Revell and Harmon, 2008; Revell and Collar, 2009;69

Caetano and Harmon, 2017). An example of a simple, 2 × 2 Browian evolutionary rate matrix is given by70

equation (1).71

R =

[
σ2

1 σ1,2
σ2,1 σ2

2

]
(1)

In this expression, σ2
1 and σ2

2 are the instantaneous variances, or Brownian motion rates (O'Meara72

et al., 2006), for traits 1 and 2, respectively. Meanwhile σ1,2 (and σ2,1 – which always has the same value;73

i.e., R is a symmetric matrix) is the instantaneous covariance of the traits 1 and 2 (Revell and Harmon,74

2008). The evolutionary correlation between traits 1 and 2, in turn, is calculated as follows.75

r =
σ1,2√
σ2

1 σ2
2

(2)

Alternatively then, of course, equation (1) can be recomposed and expressed uniquely in terms of r,76

σ1, and σ2.77

R =

[
σ2

1 rσ1σ2
rσ2σ1 σ2

2

]
(3)

The primary innovation of Revell and Collar (2009), as well as related methods (such as Adams,78

2013; Clavel et al., 2015; Caetano and Harmon, 2017), was to permit the instantaneous evolutionary79

variances and covariances of the Brownian motion process to differ in different parts of the tree that had80

been specified a priori by the investigator. Figure 1 shows just this type of analysis for a phylogeny81

of Centrarchidae (sunfishes), a discrete pair of evolutionary regimes (feeding mode: piscivorous or82

non-piscivorous), and a quantitative phenotypic trait dataset comprised of two different attributes of the83

feeding morphology: relative gape width and relative buccal length (Collar et al., 2005; Revell and Collar,84

2009). Panel 1a gives the phylogeny with a hypothesis about how the evolutionary regime (feeding mode)85

may have evolved on the tree. Panel 1b shows the phylogeny projected into the trait space. Finally, panel86

1c shows the results of fitted one and two Brownian evolutionary rate matrix models (Figure 1).87
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Figure 1. a) Phylogeny of centrarchid fishes with feeding mode (piscivory or non-piscivory) mapped
onto the edges of the tree. b) Projection of the tree in (a) into a phenotypic trait space defined by different
aspects of the mouth morphology in Centrarchidae. c) Fitted two-matrix evolutionary model. The
evolutionary covariance between relative gape width and buccal length is higher in piscivorous compared
to non-piscivorous fishes, and this model fits significantly better than a model in which the evolutionary
covariance is assumed to be equal for the two regimes. Note that although this analysis is similar to the
one that accompanied Revell and Collar (2009), here we’ve used a slightly different set of taxa and a
different mapping of regimes onto the phylogeny. The phylogenetic tree is modified from Near et al.
(2005).

The simpler of these two models, with only one value for the evolutionary variance-covariance matrix88

of the Brownian process, contains a total of five parameters to be estimated: σ2
1 and σ2

2 for the two89

traits; σ1,2, the evolutionary covariance (or, in the equivalent reparameterization given by equation (3), r);90

and ancestral values at the root node for each trait (O'Meara et al., 2006; Hohenlohe and Arnold, 2008;91

Revell and Collar, 2009). By contrast, the more complex model of Figure 1c contains a total of eight92

estimated parameters: σ2
1 , σ2

2 , σ1,2 for each of two modeled regimes (non-piscivory and piscivory), plus93

two ancestral states at the root.94

Based on an approximately 8.1 log-likelihood unit difference between the two fitted models of our95

example (Figure 1), we would conclude that the two-matrix model significantly better explains the trait96

data than a model in which the evolutionary rates (variances) and covariances are constant across all the97

edges and clades of the phylogeny (P < 0.001; Revell and Collar, 2009). We obtain a similar result if we98

use information theoretic model selection (such as the Akaike Information Criterion, AIC, see below;99

Akaike, 1974) instead of likelihood-ratio hypothesis testing. Looking specifically at the evolutionary100

correlation (r), based on equation (2), above, we estimate that the correlation changes from being very101

slightly negative (r =−0.05) in non-piscivorous taxa, to quite strongly positive in their piscivorous kin102

(r = 0.80). This is consistent with stronger selection for functional integration of the different elements of103

the feeding apparatus in piscivorous vs. non-piscivorous lineages (Collar et al., 2005; Revell and Collar,104
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2009).105

This analysis is implemented in the phytools (Revell, 2012) software library for the R statistical106

computing environment (R Core Team, 2021).107

METHODS AND RESULTS108

A hierarchical set of models109

One obvious limitation of the approach illustrated in Figure 1 is that it only considers two possible110

alternative models for the evolutionary variance-covariance matrix among traits: one in which both the111

evolutionary variances and the evolutionary correlation are constant; and a second in which the two112

mapped regimes have no similarity in evolutionary process for the two traits (Figure 1c). In fact, it’s113

possible to identify a number of different alternative models between these two extremes.114

Table 1 lists a total of eight alternative models (our original two models, from above, and six others).115

In square parentheses after each model, we’ve also provided the alphanumeric code that’s been used to116

denominate the different models in the phytools (Revell, 2012) R software function evolvcv.lite where117

these models have been implemented.118

Table 1. Model description, model parameter estimates, log-likelihood, log(L), and AIC for one
homogeneous and seven heterogeneous rate or correlation multivariate Brownian evolution models fit to
the data of Figure 1. σ2

i, j gives the instantaneous variance of the Brownian process (evolutionary rate) for
the ith trait and jth regime. (Note that this is a different use of subscripts as compared to equation (1) in
which only traits, and not regimes, were being indicated.) r j gives the evolutionary correlation between
traits 1 and 2 for evolutionary regime j. In the table, regime 1 is non-piscivory and regime 2 is piscivorous
feeding mode; while trait 1 is relative gape width and trait 2 is relative buccal length (Figure 1). The
best-supported model using AIC as our model selection criterion (highlighted in bold font) is model 3c:
different rates for trait 2, different correlations.

Model description σ2
1,1 σ2

1,2 σ2
2,1 σ2

2,2 r1 r2 log(L) AIC
common rates, 0.11 – 0.056 – 0.41 – 72.2 -134.4
common correlation [1]

different rates, 0.18 0.05 0.02 0.09 0.45 – 78.0 -142.0
common correlation

different rates (trait 1), 0.20 0.04 0.06 – 0.55 – 76.0 -140.0
common correlation [2b]

different rates (trait 2), 0.11 – 0.02 0.10 0.33 – 75.3 -138.7
common correlation [2c]

common rates, 0.10 – 0.06 – 0.16 0.68 73.6 -135.2
different correlation [3]

different rates (trait 1), 0.17 0.05 0.06 – 0.36 0.65 76.5 -139.0
different correlation [3b]

different rates (trait 2), 0.11 – 0.01 0.16 0.00 0.85 80.7 -147.4
different correlation [3c]

no common structure [4] 0.14 0.08 0.01 0.13 -0.05 0.80 81.2 -146.5

The eight models of Table 1 are as follows: model (1) common rates, common correlation; model (2)119

different rates, common correlation; model (2b) different rates for trait 1 only, common correlation; model120

(2c) different rates for trait 2 only, common correlation; model (3) common rates, different correlation;121
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model (3b) different rates for trait 1 only, different correlation; model (3c) different rates for trait 2 only,122

different correlation; finally, model (4) no common structure between the two different evolutionary123

variance-covariance matrices of the multivariate Brownian process.124

When we analyze this complete set of models for our centrarchid dataset of Figure 1, we find that125

the best fitting model (that is, the model with the highest log-likelihood) is the no common structure126

model in which the Brownian evolutionary variance-covariance matrix is free to differ in all possible127

ways depending on the mapped regime. It is, in fact, a logical necessity that model 4 has a log-likelihood128

that’s greater than or equal to the next best model. This is because model 4, our no common structure129

model, has all of our other seven models as special cases. On the other hand, the best supported model130

(that is, the model that’s best-justified by our data taking into account model complexity; Burnham and131

Anderson, 2002) is model 3c (different rates in trait 2, relative buccal length, different correlations; Table132

1), indicated with bold font in the table.133

Note that some other software, such as the mvMORPH R package of Clavel et al. (2015), also fits134

alternative models for multivariate Brownian evolution – such as a model in which the rate of evolution for135

different traits or for different regimes are constrained to be equal, or a model in which the evolutionary136

correlation between traits, r, is constrained to be 0.137

An empirical example: South American rock- and non rock-dwelling lizards138

In addition to the centrarchid data, above, we also applied the method to a morphological dataset of139

South American iguanian lizards (members of the lizard family Tropiduridae sensu lato; Toyama, 2017).140

For this example, we mapped habitat use of rock-dwelling vs. non rock-dwelling (Revell et al., 2007;141

Goodman et al., 2008) on a phylogeny of 76 lizard species. Our phylogeny was obtained from Pyron et al.142

(2013), but pruned to contain only the taxa of the present study, and rescaled to have a total length of 1.0.143

(We rescaled the tree to unit length merely so that our parameter wouldn’t need to be represented using144

scientific notation. Relative model fits should be completely unaffected by this rescaling.)145
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Figure 2. Phylogenetic tree of 76 South American iguanian lizards species based on Pyron et al. (2013).
Colors indicate two different mapped ecological regimes: rock-dwelling (in black) and non rock-dwelling
(white). The tree has been rescaled to have a total depth of 1.0.

To set our regimes, we used a single Maximum Parsimony reconstruction of the discrete trait (rock-146

vs. non rock-dwelling) on our phylogeny, in which we fixed all transitions between regimes to be located147

at the precise midpoint of each edge containing a state change in our reconstruction. In an empirical148

study, we would probably recommend using multiple reconstructions from a statistical method such as149
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stochastic character mapping (Huelsenbeck et al., 2003), and then averaging the results across stochastic150

maps (e.g., O'Meara et al., 2006; but see Revell, 2013). Our lizard phylogeny with mapped regimes is151

shown in Figure 2.152

We next fit all eight of the models listed in Table 1 to a dataset consisting of body size and relative153

body dorsoventral depth from Toyama (2017), both calculated using geometrical definitions for size and154

shape (Mosimann, 1970; Klingenberg, 2016). Since rock-dwelling has previously been suggested to favor155

the evolution of dorsoventral flattening (e.g., Revell et al., 2007; Goodman et al., 2008), we hypothesized156

that the evolutionary correlation between body size and depth, while generally positive across this group,157

could decrease or become negative in rock-dwelling forms due to ecological selection to decouple body158

depth from size. In Table 2, we show the parameter estimates, model fits, and Akaike weights (see section159

below) of the top-four best-supported models from this analysis.160

Table 2. Model rank, model name, model parameter estimates, log-likelihood, log(L), AIC, and Akaike
weights for the top four heterogeneous rate or correlation multivariate Brownian evolution models fit to
overall size and relative body depth in South American iguanian lizards (Figure 2). Column headers are
as in Table 1, except for w, which indicates Akaike weight as calculated using equation (4).

Rank Model σ2
1,1 σ2

1,2 σ2
2,1 σ2

2,2 r1 r2 log(L) AIC w
1 model 3 0.23 – 0.06 – 0.34 -0.31 55.11 -98.22 0.28
2 model 3c 0.23 – 0.05 0.10 0.33 -0.31 56.04 -98.08 0.26
3 model 3b 0.21 0.27 0.06 – 0.33 -0.32 55.32 -96.63 0.13
4 model 4 0.21 0.28 0.05 0.10 0.32 -0.34 56.29 -96.58 0.12

Although the weight of evidence is distributed among our top four models in the table, the most161

notable aspect of all of the best-supported models for these data is that they each allow the evolutionary162

correlation (r) to differ between the two different mapped regimes on the tree. Models that don’t allow163

the evolutionary correlation to different by regime (models 1, 2, 2b, and 2c from Table 1) each received164

less than 10% support.165

We also found that the evolutionary correlation between body size and size-adjusted body depth166

was positive in non rock-dwelling lizards, indicating that larger lizards tended to evolve proportionally167

greater body depth (Table 2). By contrast, rock-dwelling forms actually exhibited a negative evolutionary168

correlation between body size and size-adjusted body depth. This is because larger rock-dwelling animals169

do not tend to evolve proportionally greater body depths. To the contrary, their size-adjusted body depth170

actually decreases. This is largely consistent with what’s expected given behavioral and biomechanical171

considerations (Revell et al., 2007; Goodman et al., 2008).172

A small simulation test of the method173

In addition to the empirical applications given above, we tested the method using a small simulation174

experiment as follows. We first generated twenty 100-taxon pure-birth random phylogenetic trees. On175

each of these trees, we simulated the history of a three-state discrete character. We rejected and repeated176

any simulation in which any of the three states of the trait was not observed in at least twenty tips. An177

example simulated tree with evolutionary regimes is given in Figure 3a.178

For all of the twenty random trees, we simulated data under each of the eight models of Table 1. To179

begin each simulation, we first drew values for log(σ2
1 ) and log(σ2

2 ) for the two traits from a standard180

normal distribution (that is to say, σ2
1 and σ2

2 were randomly sampled from a log-normal distribution);181

and we drew a random value or values of the correlation coefficient (r) from a uniform distribution on182

the interval −1 to 1. Naturally, we sampled different numbers of values for log(σ2
1 ), log(σ2

2 ), and r183

depending on the model that was being used for simulation. For instance, a model with three mapped184

regimes (e.g., Figure 3a) and different rates for trait 1, equal rates for trait 2, and different correlations185

between traits 1 and 2, would involve randomly sampling three values for log(σ2
1 ), one value for log(σ2

2 ),186

and three values for r from their respective distributions. Our simulation procedure doesn’t fix any specific187

difference in the rates or evolutionary correlations between regimes. Nonetheless, it will on average result188

in a geometric mean ratio of the highest evolutionary rate over the lowest (for any variable σ2 simulation)189

of around 5.4; and a mean difference between the highest evolutionary correlation and the lowest (for any190

variable r simulation) of about 1.0.191
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An example simulated dataset generated using our procedure for different rates (trait 1), and different192

correlations (model 3b) is shown in Figure 3b. In this example, we simulated the data using an evolutionary193

correlation between traits x1 and x2 that was negative for regimes 1 and 3, but positive for regime 2 (Figure194

3b).195

regime 1
regime 2
regime 3

a)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

x1
x 2

b)

Figure 3. a) Example simulated phylogenetic tree with three mapped evolutionary regimes. b) The
phylogeny of panel (a) projected into a two dimensional phenotypic trait space. The trait data in panel (b)
were simulated under model 3b from Table 1 (different rates in trait 1, different correlations), in which the
simulated evolutionary correlation between traits x1 and x2 was negative in regimes 1 and 3, but positive
in regime 2.

After completing the numerical simulations, we then proceeded to fit each of the same eight models to196

each simulated dataset. For each fitted model, we computed AIC and Akaike weights as follows (Akaike,197

1974; Burnham and Anderson, 2002).198

AICi = 2k−2ln(li) wi =
e−∆AICi/2

Σe−∆AIC j/2 (4)

Here, AICi is the value of AIC for the ith model; k is the number of parameters in the model; ln(li)199

is the log-likelihood of the ith model; and ∆AICi is the difference in AIC between the ith model and the200

model with the minimum AIC score in the set. In general, we should prefer the model with the lowest201

overall value for AIC, and can interpret the Akaike model weights (w), from equation (4), as a measure202

of the strength of evidence supporting each of the models in our set (Akaike, 1974; Wagenmakers and203

Farrell, 2004).204

After fitting all eight models to each of our 20×8 = 160 simulated datasets, we next simply calculated205

the fraction of times in which the generating model was selected as the ‘best’ model (as well as second206

best, third best, and so on). These results are summarized in Table 3. In general, we found that the207

generating model tended to be selected as the best or second best model over 86% of the time in simulation,208

under the simulation conditions described above (Table 3).209

In addition, we also calculated the average weight (w̄) of each of the twenty datasets for each model.210

These results are summarized in Figure 4. This analysis shows that the generating model (in rows) also211

tended to have the highest average Akaike model weight (in columns; Figure 4).212
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Table 3. Model name and the fraction of times from twenty simulations in which the generating model
was identified as the best, 2nd best, 3rd best, or worse than third best model using AIC model selection.

Model name Best 2nd best 3rd best ≥4th
model 1 0.65 0.15 0.05 0.15
model 2 0.70 0.20 0.05 0.05
model 2b 0.65 0.10 0.15 0.10
model 2c 0.80 0.10 0.10 0.00
model 3 0.75 0.15 0.05 0.05
model 3b 0.75 0.15 0.05 0.05
model 3c 0.40 0.35 0.20 0.05
model 4 0.65 0.35 0.00 0.00

For each generating model, the next highest average Akaike model weights tended to be observed213

in models of similar complexity. For instance, when the generating model was model 4 (no common214

structure), we found the highest average model weight for model 4 (0.65); and then the next highest215

average model weights for models 3b (different rates for trait 1, different correlations; 0.14) and 3c216

(different rates for trait 2, different correlations; 0.13). Conversely, when the generating model was model217

1 (common rates, common correlation), we found the highest average model weight for model 1 (0.37),218

and the next highest average model weight for model 3 (common rates, different correlation; 0.14).219
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model 3
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0.36

0.44

0.51

0.58

0.65

Figure 4. Mean Akaike weight for all eight models (in columns) for each of the eight generating models
(in rows). Simulation conditions were as described in the text.

Notes on implementation220

The model and methods of this study have been implemented for the R statistical computing environment221

(R Core Team, 2021), and all simulations and analyses for this study were done using R.222

The method that we describe in the article is implemented as the function evolvcv.lite of the phytools223

R package (Revell, 2012). phytools in turn depends on the important R phylogenetics packages ape224

(Paradis and Schliep, 2019) and phangorn (Schliep, 2011), as well as on a number of other R libraries225
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(Venables and Ripley, 2002; Ligges and Mächler, 2003; Lemon, 2006; Plummer et al., 2006; Chasalow,226

2012; Becker et al., 2018; Gilbert and Varadhan, 2019; Azzalini and Genz, 2020; Qiu and Joe, 2020;227

Warnes et al., 2020; Goulet et al., 2021; Pinheiro et al., 2021).228

DISCUSSION229

The evolutionary correlation is defined as the tendency of two different phenotypic traits to co-evolve230

(Harmon, 2019). Traits are said to have a positive evolutionary correlation if a large increase in the value231

of one trait tends to be a accompanied by a similarly large increase in the second, and vice versa. Traits232

can be evolutionarily correlated for a wide variety of reasons. For instance, a genetic correlation between233

traits, if persistent over macroevolutionary time periods, will tend to cause two phenotypic characteristics234

to evolve in a correlated fashion, even under genetic drift (Schluter, 1996; Blows and Hoffmann, 2005;235

Hohenlohe and Arnold, 2008; Revell and Harmon, 2008). Genetic correlations between traits in turn tend236

to be causes by pleiotropy, such as when one quantitative trait locus affects the expressed value of two237

different phenotypic attributes (e.g., Gardner and Latta, 2007).238

More often, however, when an evolutionary correlation between traits is observed, natural selection239

tends to be purported. For instance, the evolutionary correlation between water-related plant traits240

observed by Sun et al. (2020) was interpreted by the authors as evidence for natural selection acting to241

favor certain combinations of trait values over others. Likewise, when Goodwillie et al. (2009) found an242

evolutionary correlation between reproductive outcrossing rate and the product of flower number and size243

in plants, they hypothesized that this was due to selection favoring increased investment in structures to244

attract pollinators in outcrossing compared to selfing taxa. Numerous questions in evolutionary research245

involve measuring the evolutionary correlations between traits (Felsenstein, 1985; Harmon, 2019), and in246

many cases it may be sufficient to fit a single value of the evolutionary correlation between characters for247

all the branches and nodes of the phylogeny. Under other circumstances, however, it’s useful or necessary248

to permit the evolutionary correlation to assume different values in different parts of the tree.249

For example, in the present study we used data for centrarchid fishes to test whether feeding mode250

influences the evolutionary tendency of two different aspects of the buccal morphology to co-evolve251

(Revell and Collar, 2009). We hypothesized that natural selection for functional integration of the feeding252

apparatus constrains different buccal traits to evolve in a coordinated fashion in piscivorous lineages,253

but not in their non-piscivorous kin (Collar et al., 2005). Indeed, our analysis reiterates the finding of254

Revell and Collar (2009) in showing that a model with different evolutionary correlations between traits255

depending on feeding mode significantly better explains our morphological trait data, compared to a256

model in which the evolutionary correlation is forced to have a constant value across all the branches of257

the phylogeny. Like Revell and Collar (2009), we also found that the evolutionary correlation between258

buccal traits is high and positive in piscivorous but not non-piscivorous lineages (Table 1). Unlike Revell259

and Collar (2009), however, we found that the best-supported model was one in which the evolutionary260

rate (σ2) for buccal length, but not gape width, was also free to differ in different parts of the phylogeny.261

Likewise, we present data for the evolution of overall body size and size-adjusted dorsoventral body262

depth in South American iguanian rock-dwelling and non rock-dwelling lizards, a group rich in habitat263

transitions (Figure 2; Toyama, 2017). Based on prior research (Revell et al., 2007; Goodman et al., 2008),264

we hypothesized that selection might favor the decoupling of a normally positive evolutionary correlation265

between the two traits to permit the evolution of greater dorsoventral compression in rock-dwelling species.266

Indeed, all four of the best-fitting models in our analysis were ones in which the evolutionary correlation267

was permitted to differ by habitat use: rock or non-rock (Table 2). Models where the evolutionary rates268

(σ2), but not the evolutionary correlation (r), differed across the tree received very little support.269

Finally, we undertook a small simulation study of our method. We found that the generating model in270

simulation also tended to be the model that was most often chosen via our model selection procedure (Table271

3; Figure 4). When the generating model was not best-supported, a model of similar parameterization272

tended to be selected instead (Figure 4).273

Relationship to other methods274

Readers of this article who are familiar with phylogenetic comparative methods might observe that it’s275

also possible to model multivariate trait evolution in which the relationship between traits changes as a276

function of a discrete factor using a phylogenetic generalized analysis of covariance (Grafen, 1989; Rohlf,277

2001; Revell, 2010; Mundry, 2014; Fuentes-G. et al., 2016).278
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In this case, we’d simply fit a linear model in which a single dependent variable (y) varied as a279

function of a discrete factor (the tip regime), a continuous variable (x), and their interaction (to permit280

differences in slope between regimes), while assuming that the residual error in y has a multivariate281

normal distribution given by the structure of the tree (Rohlf, 2001; Revell, 2010; Fuentes-G. et al., 2016).282

Indeed, this is a valid approach for asking how the relationship between traits changes among lineages283

of a reconstructed phylogeny. We nonetheless feel that our method adds value for many investigators284

because it permits an arbitrary (not just tip) mapping of discrete regimes, because it doesn’t require the285

user to specify dependent and independent variables in the model, because it easily allows us to take286

into account sampling error in the estimation of species’ means (following Ives et al., 2007), because287

it’s readily extensible to more than two traits whose correlations might also be expected to change as288

a function of the mapped regimes, and, finally, because it’s more directly connected to a hypothesized289

evolutionary process for the traits on our phylogeny (Hohenlohe and Arnold, 2008; Revell and Harmon,290

2008).291

Conclusions292

The evolutionary correlation is defined as the tendency for changes in one phenotypic attribute to be293

associated (positively or negatively) with changes in a second trait through evolutionary time or on294

a phylogenetic tree (Harmon, 2019). Many questions in phylogenetic comparative biology involve295

measuring the evolutionary correlations between characters using phylogenies. Often, it’s sufficient to296

assume a constant value of this evolutionary correlation through time or among clades. Here, however,297

we present a hierarchical series of models in which we permit the rate of evolution for traits, and their298

evolutionary correlation, to differ in different parts of the phylogeny that have been specified a priori by299

the investigator.300
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Ligges, U. and Mächler, M. (2003). Scatterplot3d - an r package for visualizing multivariate data. Journal360

of Statistical Software, 8(11):1–20.361

Mosimann, J. E. (1970). Size allometry: Size and shape variables with characterizations of the lognormal362

and generalized gamma distributions. Journal of the American Statistical Association, 65(330):930–363

945.364

Mundry, R. (2014). Statistical issues and assumptions of phylogenetic generalized least squares. In365

Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology, pages366

131–153. Springer Berlin Heidelberg.367

Near, T. J., Bolnick, D. I., and Wainwright, P. C. (2005). Fossil calibrations and molecular divergence368

time estimates in centrarchid fishes (Teleostei: Centrarchidae). Evolution, 59(8):1768–1782.369

O'Meara, B. C. (2012). Evolutionary inferences from phylogenies: A review of methods. Annual Review370

of Ecology, Evolution, and Systematics, 43(1):267–285.371
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