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Abstract: 22 

Photo identification of individuals within a population is a common data source that is 23 

becoming more common given technological advances and the use of computer vision and 24 

machine learning to re-identify individuals. These data are collected through hand-held 25 

cameras, drones, and camera traps, and often come with biases in terms of sampling effort 26 

and distribution. In spite of these biases, a common goal of collecting these datasets is to 27 

better understand the habitat use pattern of individuals and populations. Here, we examine the 28 

potential for multilevel multinomial models to generate socio-spatial networks that capture 29 

the similarities in individual users across the spatial distribution of a species. We use this 30 

approach with 18 years of photo-ID data to better understand population structuring of beluga 31 

whales in the St. Lawrence River. We show using permuted and simulated data that this 32 

approach can identify community network structures within populations in a way that 33 

accounts for biases in collections methods. Applying this method to the entire 18 years 34 

dataset for SLE beluga, we found three spatially distinct communities. These results suggest 35 

that within the population’s summer range individuals are moving within restricted areas (i.e., 36 

home ranges), and have implications for the estimated impacts of localized anthropogenic 37 

stressors, such as chemical pollution or acoustic disturbances on animal populations. We 38 

conclude that multilevel multinomial models can be effective at estimating socio-spatial 39 

networks that describe community structuring within wildlife populations. 40 

 41 

Keywords: Multinomial Model, Beluga, Photo ID, Socio-Spatial Network, Bayesian 42 

Network, Community Detection   43 
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1. Introduction 44 

An understanding of the spatial and temporal distribution of a species of concern is of 45 

central importance to conservation and management (Evans & Hammond, 2004). 46 

Increasingly, photo and video are being used to monitor individuals within populations 47 

(hereafter photo-ID data), providing a view of within population social mixing and habitat 48 

use (Koivuniemi et al., 2016). The increased use of machine learning to identify individuals 49 

from these data streams has greatly facilitated the use of these photo-ID data (Schneider et 50 

al., 2019). These individual identifications have facilitated the use of novel statistical and 51 

computational methods to quantify within population structures, such as social network 52 

analysis (Perryman et al., 2019; Schilds et al., 2019). 53 

It is often the case, however, that efforts when collecting photo-ID are not evenly 54 

distributed. This differentiation in effort can heavily bias estimates of both habitat usage and 55 

population distribution estimates (Hupman et al., 2018).  Here we propose the novel use of 56 

multilevel multinomial models to account for these biases and to estimate socio-spatial 57 

structures within populations.  58 

The existence of social structuring within populations, such as communities, can have 59 

important ecological and management implications. If a population as a whole can be 60 

considered as highly mixed, i.e., with individuals showing no strong patterns of home range 61 

use or sub-structuring within the large population, then all individuals are equally likely to 62 

feel the impacts of local changes in the environment. In contrast, if the population cannot be 63 

considered to be highly mixed, and shows strong sub-structuring and site-fidelity patterns 64 

within the larger population, local stressors might have a disproportionate impact on 65 

subsections of the population. For example, if noise pollution increased in only one sector, in 66 

a highly mixed population all individuals would be lightly impacted, but in a structured 67 

population a subset of the population would be highly impacted. These differences in spatial 68 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442957doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442957
http://creativecommons.org/licenses/by-nc-nd/4.0/


structuring of populations can lead to biased estimation of the likelihood and magnitude of 69 

impacts from local stressors both at the individual and population levels (DeFur et al., 2007). 70 

The multilevel multinomial modeling approach does not have a large body of 71 

literature to draw on for use with photo-ID data. However, it does have some unique 72 

advantages (Koster & McElreath, 2017). For instance, if sampling effort is biased in different 73 

regions, the mean probability of being seen within highly sampled regions will be biased 74 

upwards. By taking advantage, however, of the multilevel structure of the model it is possible 75 

to extract individual deviations in the probability of being seen within a particular region. 76 

Decisively, these individual level deviations from the mean probability are not biased by 77 

changes in the sampling effort. That is the mean probability will increase with sampling 78 

effort, but the relative difference between individuals within the sector will not. High users of 79 

a particular region of a habitat will consistently be higher compared to low users of that 80 

habitat, and this difference between high and low users will not be biased by sampling effort.  81 

Furthermore, by comparing the individual differences between regions it is possible to see if 82 

the high/low users of one region are similarly the high/low users of another region. The 83 

similarity, or dissimilarity, between regions can then provide information about which 84 

regions share similar user profiles. We suggest that by using the correlations between these 85 

individual level deviations in high/low users between regions it is possible to generate socio-86 

spatial networks and identify social structuring within the population. In particular it can help 87 

to identify spatial communities, i.e., a set of regions that share similar usage patterns and that 88 

differ from other regions.   89 

To evaluate the use of multilevel multinomial models to identify socio-spatial 90 

structuring within a population, we make use of a long term photo-ID dataset of beluga 91 

whales in the St. Lawrence Estuary, Canada. This population has undergone a drastic 92 

decrease from around 10,000 in the late 1800s to less than 1,000 today, and is currently 93 
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considered as endangered in Canada according to the Species at Risk Act (COSEWIC 2014; 94 

Fisheries and Oceans Canada, 2012; Mosnier et al., 2015). The population is part of a larger 95 

study on the mitigation of noise pollution due to marine traffic (Chion et al., 2017; Lesage et 96 

al., 2014; McQuinn et al., 2011; Parrott et al., 2011).  97 

In this paper we first evaluate the performance of the multilevel multinomial models 98 

using simulated data, testing if the method correctly estimates no community structuring 99 

when none is present, and identifies the correct structure when it is present. In both cases we 100 

use the 18 year beluga photo-ID dataset, randomly permuting uniquely identified individuals 101 

to generate unstructured datasets, and randomly placing individuals within pre-specified 102 

communities to generate structured datasets. We then apply the method to the observed data 103 

and quantify community structures within the population’s summer range in the St. Lawrence 104 

Estuary. Finally, we discuss some potential extensions to the multilevel multinomial 105 

modeling approach.   106 

 107 

2. Material and Methods  108 

2.1 Data 109 

Photo-ID data were collected using a handheld camera onboard a boat that was able to 110 

navigate near to beluga, hereafter referred to as an encounter. Once near beluga a photo ID 111 

protocol was then followed to generate photographs used to attempt to identify individuals. 112 

Due to the logistical difficulty of covering a large body of water, the sampling effort was 113 

unequally distributed across 14 sectors within the St. Lawrence Estuary (Fig. 1). The photo-114 

ID dataset used in this study was collected from 1989-2007 and are part of an ongoing 115 

project. The data is stored in a database that facilitates the identification and association 116 

between photos to help track the individual identification process.  This resulted in a dataset 117 

of 7,525 individual encounters where the individual was successfully identified by photo 118 
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sampling (hereafter referred to as a photo-ID), and where a GPS point was taken and the 119 

sector recorded. This resulted in 821 unique individuals being successfully identified, with a 120 

mean number of photo-IDs per individual of 9 (min = 1, max = 90) (Fig. 1). 121 

 122 
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Figure 1: Spatial distribution of photo-ID data (red points) within the St. Lawrence Estuary, 124 

Quebec, Canada (red square in the inset map). The 14 sectors are outlined and labeled in 125 

white, and covers the summer habitat of this beluga population. 126 

 127 

2.2 Statistical Analysis 128 

Our aim was to use photo-ID data to estimate the probability of seeing an individual 129 

in each delineated sector of the St. Lawrence Estuary, and to use these individual 130 

probabilities to estimate socio-spatial structures within the beluga population (Fig. 1). To 131 

accomplish this aim we used a multilevel multinomial model, where the dependent variable 132 

was the number of times an individual was captured photographically (i.e., photo-identified) 133 

in each sector. The use of a multilevel model structure allows for the estimation of both the 134 

mean probability of photo-identifying an individual in each sector, and the individual level 135 

differences in this probability by using individual ID as a random intercept. If we take, as an 136 

example, a case where there is only two sectors, then the log-odds of finding individual � in a 137 

sector other than the reference sector can be modeled using a multilevel multinomial 138 

following (Koster & McElreath, 2017) as: 139 

��� ���,���,�

� � 	� 
  ���  

��� ���,���,�

� � 	� 
  ��� 

 

Where ��,�  is the probability of seeing beluga � in sector 1, whereas ��,� is the 140 

probability of seeing beluga � in the reference sector. The �
�
 and �

�
 are the intercepts, i.e., the 141 

mean probability of seeing a beluga in sectors 1 and 2. This mean probability represents 142 

preference/avoidance of the specified sector, however, it is very likely to be biased due to 143 

variation in sampling effort.  Finally, the ���  and ���  are the estimated individual differences 144 

(i.e., random intercepts) from the mean probability of capture in sectors 1 and 2, respectively. 145 
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These individual differences from the mean probability capture if an individual beluga is a 146 

high/low user of that sector, and is not biased by variation in sampling. It is then possible to 147 

model the covariance of the individual differences between two sectors using a multivariate 148 

normal distribution: 149 

��1��2�� ~ ����� �������0, �	� 

 

�
 � ���,� ��,�
��,� ��,��   

This multivariate normal distribution has a mean of 0 and a covariance matrix �
. 150 

Here the diagonal entries in the covariance matrix (e.g., ��,�) represent the magnitude of 151 

individual differences within a sector, i.e., are their high and low users in a sector or are all 152 

individuals equally likely to be seen? The off-diagonal entries (e.g., ��,�) are the covariance 153 

estimates between sectors, i.e., do sectors share similar high and low users? By estimating the 154 

correlation of individual differences between sectors, this multilevel modeling approach 155 

quantifies how much information individual differences in one sector can provide about 156 

another sector. Positive correlations suggest that the high/low users in one sector are similarly 157 

high/low users in another sector, while negative correlations suggest high/low users in one 158 

sector are the low/high users in another sector.  159 

This model can be fit using brms in the R environment using a multivariate syntax: 160 

bf(y | trials(n) ~ 1 + (1|q|ID)) + multinomial(). Here, y is a set of column vectors where each 161 

column is a sector and each row is an individual. The values in this column vector indicate 162 

how many times each individual was seen in each sector. The n is the total number of times 163 

an individual was captured, and q is an arbitrary character choice that allows correlations 164 

between the estimates of random intercepts for each sector (Bürkner, 2017). 165 

 166 

2.2.1 Addition of a common reference sector 167 
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Tests using simulated data suggested that adding a preset reference category (i.e., a 168 

fifteenth sector used as a reference sector) to the data was required to estimate the correlation 169 

between sectors (Fig. S1). To create this reference category, we tally up the observations for 170 

each individual and add that number of observations to the new reference sector. This 171 

essentially sets the probability of a capture in the reference sector to 0.5 for all individuals, 172 

i.e., equal to the probability of being captured outside of this reference sector. This ensures 173 

that all individuals have the same baseline probability in the reference category, and as the 174 

parameters in the multinomial model measure deviations away from the reference sector, we 175 

gain better estimates of the relative deviations between individuals (Fig. S1).  176 

 177 

2.2.2 Dealing with biases in photo-ID datasets 178 

This multilevel multinomial approach accounts for repeated sampling of individuals, 179 

and provides an estimate of whether some individuals are found more or less often than the 180 

mean probability of captures in each sector. We are particularly interested in the estimates of 181 

individual differences from the mean probability of capture (i.e., the random intercepts) as 182 

these estimates are not impacted by bias in sampling effort among sectors. This is not the 183 

case for estimates of the mean probability of capture for each sector, which are expected to 184 

increase in highly sampled sectors.  For example, the Saguenay River is over-sampled 185 

compared to the other sectors (SAG in Fig. 1), increasing the mean probability of capturing 186 

individuals in that sector. However, over-sampling should not affect the individual 187 

differences in the probability of being captured, i.e., all individuals' chances of being captured 188 

go up or down equally.  189 

Similarly, potential biases due to ease of recognition, e.g., some beluga or age classes 190 

might have more distinctive markings, are minimized using a multilevel multinomial 191 

approach where the differences in the probability of being seen between sectors is the main 192 
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focus. For example, if juveniles are less likely to be successfully identified by photo, then 193 

they might have a reduced number of photo-IDs compared to other age classes, but the 194 

difference in distribution of these fewer photo-IDs across sectors will not be impacted. For 195 

example, if both an adult and juvenile spend twice as much time in the SAG sector compared 196 

to all other sectors, you might expect a photo-ID distribution (Sag:not-sag) of 10:5 and 2:1, 197 

respectively. In both cases the probability of being captured in the SAG sector is twice that of 198 

the remaining sector. Due to the adaptive partial pooling properties of multilevel models, 199 

individuals with few photo-IDs will, however, be less likely to show differences to the mean 200 

probability, i.e., they contain less information. This means that if an age class has very little 201 

chance of being identified by photo-ID, they will likely contribute less to the estimated socio-202 

spatial structures estimated by the multilevel multinomial approach.  203 

By using a multilevel modeling approach we also reduce the chance of false positives 204 

when making comparisons between many different individuals in many different sectors (i.e., 205 

problem of multiple comparisons). For example, if we were to estimate the differences in the 206 

probability of each sector separately for each individual, the risk of false positives would be 207 

increased. By using a multilevel approach to estimating the differences we can make effective 208 

use of partial pooling of information to reduce extreme values, especially where the number 209 

of photo IDs is not equal between individuals. Furthermore, by running this in a Bayesian 210 

framework we are able to place priors on the individual differences within sectors that start 211 

the model assuming that there are no differences between individuals in their use of each 212 

sector, e.g., student_t(3,0,1).   213 

 214 

2.3 Social Network Analysis 215 

Social networks are often used when visualizing and quantifying social structures 216 

within populations, with individuals often represented as nodes and their interactions as edges 217 
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between these nodes. In our case, we use sectors as nodes, and the similarities in user profiles 218 

between sectors as edges. The correlations between sectors estimated from the multilevel 219 

multinomial model can be used to create a network where the posterior predictions of each 220 

correlation parameter corresponds to an edge weight in the network. In this way, each edge 221 

has a posterior distribution and can be used to create many networks from which a 222 

distribution of network metrics can be generated, e.g., the distribution of node strength values 223 

can be calculated for each sector. The advantage of having distributions of network measures 224 

is that the measures can be readily compared, e.g., does one sector have a higher node 225 

strength than another? It is also possible to use the distribution of edge weights, and a chosen 226 

threshold (e.g., 95% credible interval), to highlight only the edges where the sign of the 227 

correlation is known with a particular range of certainty. In this paper, we used this latter 228 

approach to generate a signed network (i.e., a network with positive and negative edges) and 229 

use a simple signed-edge rule to define communities: where a distinct community is a set of 230 

nodes that share positive edges but no negative edges. We also made use of signed 231 

blockmodeling, an algorithm that can also be used to identify blocks of nodes that maximize 232 

within block positive edges and minimize within block negative edges (Doreian & Mrvar, 233 

2015). While the signed-edge rule generally provides relatively intuitive results with simple 234 

networks, using the signed blockmodeling is likely to be particularly advantageous when 235 

dealing with large networks. 236 

 237 

2.4 Testing data 238 

To assess the accuracy of the multilevel multinomial modelling approach, we generated 239 

test datasets from the observed photo-ID data. We ensured that the test datasets contained the 240 

same number of unique individuals, distribution of sightings (i.e., some individuals are seen 241 

more than others), and overall number of photo-IDs as the observed dataset. We, however, 242 
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varied the spatial mixing of the test datasets. To test if the proposed method correctly 243 

detected no pattern when none existed, we created a completely random test dataset by 244 

permuting the sector associated with each photo-ID in the observed dataset. The expected 245 

result was to find no correlations between sectors given that the sectors for each photo-ID had 246 

been randomly permuted. To then test whether the proposed method could also correctly 247 

identify patterns when a known pattern existed, we generated a structured test dataset by 248 

randomly assigning each individual to four equally populated communities with the 249 

following and hypothetical home range of adjacent sectors: community 1-BSM, SAG, CTN, 250 

community 2- CTN, CTO, AMN, community 3- AVO, AVS, AVN, and community 4-AME, 251 

CTS, CTE. Following this, we altered the sector of where the individual photo-IDs were 252 

taken so as to fall within sectors associated with an individual’s community, i.e., one of their 253 

home range sectors. We did this by choosing a sector for each photo-ID based on the 254 

individual’s assigned community 80% of the time; a random sector was chosen for the other 255 

20% of the time, introducing noise in the assignment of sectors. We then tested whether the 256 

model correctly identified the correlations between sectors that defined the home range of 257 

each of the communities. 258 

  259 

3. Results 260 

3.1 Testing data 261 

When the multinomial multilevel model was fit to the data with sectors randomly 262 

permuted between all photo-IDs, the model found no evidence for positive/negative 263 

correlations between sectors (Fig. 2a). Similarly, when we simulated data with some known 264 

structure, i.e., when we artificially created spatially distinct communities, we found that the 265 

model accurately estimated the correlations between sectors that defined these artificial 266 

communities (Fig. 2b). The simple signed-edge rule and blockmodelling algorithm applied to 267 
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the simulated datasets both revealed the four artificially generated communities, though the 268 

blockmodeling algorithm had difficulty with the multi-membership node as it could not 269 

assign a node to two blocks (i.e., the CTN node that was shared between communities 1 and 270 

2). 271 

 272 

 273 

Figure 2: Similarity and dissimilarity between sectors in the simulated datasets: a) randomly 274 

permuted data, where there are no spatial communities, and b) structured data, where there 275 

are four distinct communities. In b) the simulated communities are represented by color codes 276 

for each of their sectors (Note: CTN is part of the orange and yellow communities). The 277 

green edges between two sectors signify that the sectors share high/low users, while red 278 

edges signify that they have dissimilar high/low users. The lack of an edge signifies that the 279 

high/low users of one sector does not provide information about the high/low users of other 280 

sectors. Nodes represent sectors, and are coloured based on the communities imposed when 281 

simulating the data. 282 

 283 
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3.2 Observed data 284 

The results from our multilevel multinomial model found that within sectors there 285 

were consistent individual differences in how likely it was to see individual beluga (Table 1). 286 

That is, within sectors, there were some beluga that used the sector heavily, while others did 287 

not. The model also found that between sectors these individual differences were correlated 288 

(Table S1). These correlations quantify the magnitude of similarity/dissimilarity between 289 

sectors in terms of which beluga are using those sectors heavily or rarely. If we take two 290 

sectors as examples, e.g., the SAG and CTE sectors, representing, respectively, a tributary to 291 

the St. Lawrence Estuary and a sector on the opposite side close to the South shore of the 292 

Estuary, and we look at the top 10 estimated high users (i.e., relatively high probability of 293 

being found there) within the SAG, we find that they are found to be low users in the CTE 294 

sector (see blue dots in Fig 3 a) and b)).  295 

 296 
Figure 3: Estimate of the relative use (i.e., deviation from mean use) for each individual 297 

within the SAG (a) and CTE sectors (b) of the St. Lawrence beluga summer habitat. The 298 

values are deviations from the mean probability of observing individuals within a sector and 299 
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are on the logit scale. The red dashed line represents the mean use, black points represent the 300 

estimated deviation from the mean, while the horizontal grey lines represent the 95% credible 301 

interval. To highlight how correlations are estimated between sectors, the estimated top 10 302 

users of the SAG sector are represented by blue dots (panel a), and those same individuals are 303 

also highlighted in blue in the CTE sector (panel b).  304 

 305 

The use of a multilevel model also allowed us to estimate the magnitude of individual 306 

differences in each sector, i.e., the extent to which there are high/low beluga users in a sector. 307 

Our model found that the CTN sector showed very little individual differences in use (Table 308 

1, i.e., low “sd” value) compared to other sectors, suggesting very little differences in high 309 

and low users of that sector. While the BSM sector showed large individual differences, with 310 

some very high/low users of that sector (Table 1). 311 

 312 

Table 1: Parameter estimates from the multilevel multinomial model predicting the 313 

probability of capturing a photo-ID by sector. Estimated magnitudes of individual differences 314 

(sd) are presented for each sector. Higher ‘sd’ estimates indicate more individual differences 315 

in individual use of that sector, whereas lower estimates indicate individuals are using the 316 

sector at very similar levels. To facilitate interpretation we have ordered the table by lowest 317 

to highest estimates of individual differences. As the number of parameters in the model is 318 

large, the overall mean by sector, and estimated correlations between individual differences, 319 

are presented in the supplementary section (Table S1). 320 

Parameter Estimate SD l-95% CI u-95% CI 

sd(mu_CTN) 0.33 0.03 0.27 0.39 

sd(mu_AMO) 0.65 0.38 0.05 1.41 

sd(mu_AMN) 0.76 0.29 0.14 1.31 
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sd(mu_AVO) 0.78 0.05 0.68 0.88 

sd(mu_CTE) 0.78 0.05 0.68 0.89 

sd(mu_AVS) 0.83 0.07 0.70 0.97 

sd(mu_AVE) 1.16 0.20 0.78 1.57 

sd(muy_SAG) 1.16 0.08 1.01 1.31 

sd(mu_CTS) 1.18 0.11 0.97 1.40 

sd(mu_CTO) 1.27 0.14 1.00 1.55 

sd(mu_AVN) 1.30 0.17 0.98 1.65 

sd(mu_BSM) 1.30 0.11 1.09 1.52 

sd(mu_AMS) 1.53 0.22 1.10 1.98 

sd(mu_AME) 2.00 0.19 1.64 2.38 

 321 

Using the between sector correlations to generate a signed network overlaid on top of 322 

the sectors in the St. Lawrence, suggests, for example, that individuals that are seen in the 323 

SAG sector a lot, are also seen in the BSM and CTN sectors a lot, but are seen very little in 324 

the CTE and CTS sectors (Fig. 4). Applying the simple-signed rule and the blockmodeling 325 

algorithm to delineate communities, both find that there are three distinct communities (Fig. 326 

4). Though, in the case of AVS the simple sign-rule suggested multi-membership, while the 327 

blockmodeling algorithm found AVS to be part of the cluster containing (AVO, AVN, AVE) 328 

or that the two clusters (orange and purple in fig. 4) merged into one depending on the choice 329 

of weighting parameter (i.e., emphasizing positive or negative edges).  330 
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331 

Figure 4: Similarity and dissimilarity between sectors in the beluga whale population of the 332 

St. Lawrence. The green edges between two sectors signify that the sectors share high/low 333 

users, while red edges signify that they have dissimilar high/low users. The lack of an edge 334 

signifies that the high/low users of one sector does not provide information about the 335 

high/low users of other sectors. Nodes represent sectors, and are coloured based on shared 336 

communities: i.e., shared green edges, and no red edges. Node sizes represent the magnitudes 337 

of individual differences in use within the sector, i.e., larger nodes suggest larger differences 338 

between high and low users. 339 
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 340 

4. Discussion 341 

 Here we’ve shown that using photo-ID data with a multilevel multinomial model it is 342 

possible to estimate socio-spatial networks, identifying spatial communities while controlling 343 

for sampling biases. Our results suggest that the beluga population shows a non-random 344 

social-spatial structuring within the summer range. 345 

Within sectors of the St. Lawrence, our model suggests that subsets of belugas are 346 

heavily using some sectors, while other sectors show little evidence of differences in use. The 347 

magnitude of individual differences in each sector, i.e., how much individuals differ in their 348 

probability of being observed in a particular sector, shows that the CTN sector, in particular, 349 

has very little in the way of individual differences in the probability of being seen in that 350 

sector (Table 1). This result suggests that the CTN sector is used similarly by most 351 

individuals, and represents a potential high mixing zone for the population. In contrast, the 352 

AME sector shows the highest level of individual differences, suggesting that there are large 353 

differences in how beluga are using this sector.  These results suggest that the population is 354 

not randomly mixing with the St. Lawrence, and that there are belugas that make use of some 355 

sectors more than other belugas. 356 

Between sectors of the St. Lawrence, our results add to the evidence that the beluga 357 

population cannot be assumed to be randomly mixing within its summer habitat. Rather, 358 

comparing the individual differences in beluga usage patterns within sectors suggests 359 

similar/dissimilar user populations across sectors (Fig. 4). By using correlations between 360 

sector usage patterns to create a socio-spatial network, and running community detection 361 

algorithms, our results found that there are spatially distinct communities that make use of 362 

particular regions of the St. Lawrence and the Saguenay River (Fig. 4).  We found that the 363 

beluga population in the St. Lawrence could be separated into three distinct communities: 1) 364 
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The lower St. Lawrence (AVO, AVS, AVE, AVN), the Saguenay River and mouth (BSM, 365 

SAG, CTN), and the upper and eastern portion of the St. Lawrence (CTE, CTS, CTO, AME, 366 

AMS) (Fig. 4).  367 

Our findings have direct implications for estimating the impacts of anthropogenic 368 

disturbances on this population. As the population shows evidence of spatially restricted 369 

habitat use, disturbances to particular regions can have a disproportionate impact on 370 

particular segments of the larger population. In particular, the cumulative impacts over time 371 

are likely to be greatly increased in some segments while reduced in other segments of the 372 

population, altering estimations of the distribution of impacts. If cumulative impacts, such as 373 

noise, or environmental contaminants, have a threshold beyond which individual survival is 374 

greatly reduced, properly estimating the distribution of cumulative impacts can have large 375 

implications for conservation management. Our results add to the current understanding of 376 

socio-spatial structuring within this population (Michaud, 1993, 2005), and suggest that more 377 

empirical data, e.g., photo-ID data, movement data, aerial surveillance, should be collected to 378 

better refine socio-spatial mixing in this population.     379 

The modeling approach presented in this paper relies on defined sectors within a 380 

particular spatial range, e.g., SAG sector, CTN sector… etc (Fig. 1). In some cases, these 381 

delineations can be justified as they identify management zones, but in other cases, the 382 

delineation and scale of these sectors can be delineated somewhat arbitrarily. Future work 383 

could assess the use of continuous random effects (as opposed to categorical) where 384 

individual differences in the probability of being seen could be on a continuous surface. Point 385 

estimates of individual differences could then be estimated at any location, and correlations 386 

between individual differences obtained between any two points in continuous space. This 387 

approach could avoid reliance on user-defined sectors and facilitate a means of looking at the 388 

results at different scales (e.g., grids of points at various scales could be used when estimating 389 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442957doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442957
http://creativecommons.org/licenses/by-nc-nd/4.0/


correlations). Similarly, given that the method requires repeated sampling of individuals to 390 

obtain probability of being seen in any one sector, there is a reliance on longitudinal data. In 391 

well sampled populations, it could be feasible to estimate the change in time of individuals 392 

being seen in particular sectors.  Here differences in being seen in any particular area could 393 

be explicitly modeled to capture any temporal changes in community substructures, or 394 

developmental trajectories related to habitat use. 395 

In terms of implementing the multilevel multinomial model on other photo-ID 396 

datasets, the use of test datasets should hold a prominent role in the analysis. The use of 397 

permutation/randomization methods to both generate structured and unstructured datasets, 398 

while maintaining the sample size distribution of the original datasets, can be very valuable in 399 

helping to set model priors and to interpret the final model results. The use of permutation 400 

approaches is common in social network analysis (Croft et al., 2011; Farine, 2017), and is 401 

becoming more common in statistical workflows more generally (Gelman et al., 2013; 402 

McElreath, 2020). 403 

 404 

5. Conclusions 405 

We have introduced the use of multilevel multinomial modeling to estimate socio-406 

spatial networks from photo-ID data. We’ve shown, using testing datasets, that the proposed 407 

method is effective at detecting socio-spatial structures. When applied to 18 years of photo-408 

ID data from an endangered population of beluga whales in the St. Lawrence, our results 409 

suggest strong evidence that the population has three distinct spatial communities. We 410 

suggest that multilevel multinomial models can be effective in extracting socio-spatial 411 

structuring within animal populations monitored by photo-ID, and can have direct 412 

implications for conservation management.  413 

 414 
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Supplementary material: 497 

 498 

Use of a preset reference sector: 499 

 We use the simulated dataset with structure, presented in the main text, to fit a 500 

multilevel multinomial model with and without a preset reference sector. That is, in the 501 

model with the preset reference sector we duplicated each individual’s photo-IDs and placed 502 

them in the reference sector. This results in a probability of 0.5 for being seen in the reference 503 

sector for all individuals. The results suggest that using a preset reference sector where all 504 

individuals have the same probability of being seen is required to estimate correlations 505 

between sectors and produces appropriate socio-spatial networks (Fig S1). 506 

 507 

 508 

Fig S1: The estimate socio-spatial networks for a multilevel multinormial model a) without a 509 

preset reference sector, i.e., AME is used as the reference, and b) with a preset reference 510 

sector. The green edges between two sectors signify that the sectors share high/low users, 511 

while red edges signify that they have dissimilar high/low users. The lack of an edge signifies 512 

that the high/low users of one sector does not provide information about the high/low users of 513 
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other sectors. Nodes represent sectors, and are coloured based on the communities imposed 514 

when simulating the data. 515 

 516 

Full model table: 517 

 518 

Table S1: Parameter estimates from the multilevel multinomial model predicting probability 519 

of capturing a photo-ID by sector. Estimated mean probability (logit scale), individual 520 

differences in mean probability (‘sd’), and correlation of individual differences between the 521 

different sectors are presented along with an estimate of their 95% credible intervals. Positive 522 

correlations suggest that the high/low users in one sector are similarly high/low users in 523 

another sector, while negative correlations suggest high/low users in one sector are the 524 

low/high users in another sector. 525 

Type Parameter Estimate SD l-95% CI u-95% CI 

Mean probability (logit scale)         

 mu_AME -5.85 0.28 -6.43 -5.33 

 mu_AMN -5.60 0.24 -6.15 -5.17 

 mu_AMO -6.68 0.34 -7.41 -6.08 

 mu_AMS -6.33 0.33 -7.00 -5.73 

 mu_AVE -5.47 0.24 -5.99 -5.02 

 mu_AVN -5.06 0.22 -5.52 -4.65 

 mu_AVO -1.82 0.05 -1.93 -1.72 

 mu_AVS -2.90 0.07 -3.04 -2.76 

 mu_BSM -3.78 0.13 -4.04 -3.52 

 mu_CTE -2.20 0.05 -2.30 -2.10 

 mu_CTN -1.24 0.03 -1.30 -1.18 

 mu_CTO -4.58 0.16 -4.92 -4.28 
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 mu_CTS -4.09 0.13 -4.35 -3.85 

 mu_SAG -2.78 0.09 -2.96 -2.61 

Individual Differences         

 sd(mu_AME) 2.00 0.19 1.64 2.38 

 sd(mu_AMN) 0.76 0.29 0.14 1.31 

 sd(mu_AMO) 0.65 0.38 0.05 1.41 

 sd(mu_AMS) 1.53 0.22 1.10 1.98 

 sd(mu_AVE) 1.16 0.20 0.78 1.57 

 sd(mu_AVN) 1.30 0.17 0.98 1.65 

 sd(mu_AVO) 0.78 0.05 0.68 0.88 

 sd(mu_AVS) 0.83 0.07 0.70 0.97 

 sd(mu_BSM) 1.30 0.11 1.09 1.52 

 sd(mu_CTE) 0.78 0.05 0.68 0.89 

 sd(mu_CTN) 0.33 0.03 0.27 0.39 

 sd(mu_CTO) 1.27 0.14 1.00 1.55 

 sd(mu_CTS) 1.18 0.11 0.97 1.40 

 sd(mu_SAG) 1.16 0.08 1.01 1.31 

Correlations between individual differences       

 cor(mu_AME,mu_AMN) 0.39 0.19 -0.03 0.71 

 cor(mu_AME,mu_AMO) 0.27 0.24 -0.26 0.67 

 cor(mu_AMN,mu_AMO) 0.14 0.24 -0.36 0.57 

 cor(mu_AME,mu_AMS) 0.63 0.11 0.39 0.82 

 cor(mu_AMN,mu_AMS) 0.25 0.21 -0.19 0.62 

 cor(mu_AMO,mu_AMS) 0.27 0.24 -0.26 0.67 

 cor(mu_AME,mu_AVE) 0.18 0.16 -0.14 0.46 

 cor(mu_AMN,mu_AVE) 0.15 0.21 -0.28 0.56 
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 cor(mu_AMO,mu_AVE) 0.10 0.23 -0.36 0.52 

 cor(mu_AMS,mu_AVE) 0.05 0.19 -0.32 0.41 

 cor(mu_AME,mu_AVN) -0.04 0.15 -0.33 0.25 

 cor(mu_AMN,mu_AVN) -0.02 0.21 -0.42 0.39 

 cor(mu_AMO,mu_AVN) 0.00 0.22 -0.42 0.44 

 cor(mu_AMS,mu_AVN) -0.07 0.18 -0.41 0.28 

 cor(mu_AVE,mu_AVN) 0.50 0.14 0.19 0.75 

 cor(mu_AME,mu_AVO) -0.21 0.10 -0.40 0.00 

 cor(mu_AMN,mu_AVO) 0.03 0.19 -0.35 0.40 

 cor(mu_AMO,mu_AVO) -0.06 0.21 -0.45 0.36 

 cor(mu_AMS,mu_AVO) -0.28 0.14 -0.54 0.01 

 cor(mu_AVE,mu_AVO) 0.48 0.13 0.22 0.71 

 cor(mu_AVN,mu_AVO) 0.50 0.10 0.28 0.69 

 cor(mu_AME,mu_AVS) 0.13 0.12 -0.10 0.36 

 cor(mu_AMN,mu_AVS) 0.21 0.18 -0.16 0.53 

 cor(mu_AMO,mu_AVS) 0.13 0.21 -0.31 0.50 

 cor(mu_AMS,mu_AVS) 0.03 0.15 -0.26 0.32 

 cor(mu_AVE,mu_AVS) 0.40 0.14 0.12 0.66 

 cor(mu_AVN,mu_AVS) 0.38 0.12 0.14 0.60 

 cor(mu_AVO,mu_AVS) 0.54 0.08 0.38 0.69 

 cor(mu_AME,mu_BSM) -0.57 0.09 -0.75 -0.38 

 cor(mu_AMN,mu_BSM) -0.37 0.17 -0.66 0.00 

 cor(mu_AMO,mu_BSM) -0.22 0.23 -0.62 0.26 

 cor(mu_AMS,mu_BSM) -0.37 0.13 -0.62 -0.10 

 cor(mu_AVE,mu_BSM) -0.34 0.13 -0.59 -0.06 

 cor(mu_AVN,mu_BSM) -0.22 0.12 -0.44 0.02 
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 cor(mu_AVO,mu_BSM) -0.16 0.08 -0.32 0.01 

 cor(mu_AVS,mu_BSM) -0.66 0.07 -0.80 -0.51 

 cor(mu_AME,mu_CTE) 0.54 0.10 0.34 0.72 

 cor(mu_AMN,mu_CTE) 0.34 0.18 -0.04 0.65 

 cor(mu_AMO,mu_CTE) 0.21 0.23 -0.29 0.60 

 cor(mu_AMS,mu_CTE) 0.38 0.14 0.10 0.62 

 cor(mu_AVE,mu_CTE) 0.07 0.14 -0.21 0.36 

 cor(mu_AVN,mu_CTE) -0.11 0.12 -0.35 0.14 

 cor(mu_AVO,mu_CTE) -0.10 0.08 -0.26 0.07 

 cor(mu_AVS,mu_CTE) 0.52 0.08 0.34 0.67 

 cor(mu_BSM,mu_CTE) -0.80 0.06 -0.89 -0.68 

 cor(mu_AME,mu_CTN) -0.26 0.12 -0.49 -0.03 

 cor(mu_AMN,mu_CTN) -0.24 0.19 -0.59 0.16 

 cor(mu_AMO,mu_CTN) -0.12 0.21 -0.50 0.32 

 cor(mu_AMS,mu_CTN) -0.09 0.15 -0.39 0.21 

 cor(mu_AVE,mu_CTN) -0.53 0.13 -0.77 -0.26 

 cor(mu_AVN,mu_CTN) -0.44 0.12 -0.67 -0.18 

 cor(mu_AVO,mu_CTN) -0.75 0.07 -0.86 -0.60 

 cor(mu_AVS,mu_CTN) -0.63 0.09 -0.79 -0.44 

 cor(mu_BSM,mu_CTN) 0.47 0.09 0.28 0.64 

 cor(mu_CTE,mu_CTN) -0.25 0.10 -0.46 -0.05 

 cor(mu_AME,mu_CTO) 0.63 0.09 0.43 0.79 

 cor(mu_AMN,mu_CTO) 0.28 0.20 -0.15 0.63 

 cor(mu_AMO,mu_CTO) 0.16 0.22 -0.30 0.56 

 cor(mu_AMS,mu_CTO) 0.55 0.13 0.27 0.78 

 cor(mu_AVE,mu_CTO) -0.12 0.17 -0.45 0.22 
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 cor(mu_AVN,mu_CTO) -0.24 0.15 -0.54 0.07 

 cor(mu_AVO,mu_CTO) -0.55 0.09 -0.72 -0.36 

 cor(mu_AVS,mu_CTO) -0.16 0.12 -0.39 0.07 

 cor(mu_BSM,mu_CTO) -0.33 0.11 -0.53 -0.12 

 cor(mu_CTE,mu_CTO) 0.39 0.11 0.17 0.60 

 cor(mu_CTN,mu_CTO) 0.19 0.12 -0.06 0.42 

 cor(mu_AME,mu_CTS) 0.70 0.08 0.53 0.85 

 cor(mu_AMN,mu_CTS) 0.42 0.19 0.00 0.73 

 cor(mu_AMO,mu_CTS) 0.21 0.23 -0.27 0.61 

 cor(mu_AMS,mu_CTS) 0.42 0.14 0.14 0.67 

 cor(mu_AVE,mu_CTS) 0.16 0.16 -0.15 0.45 

 cor(mu_AVN,mu_CTS) 0.06 0.14 -0.23 0.33 

 cor(mu_AVO,mu_CTS) -0.04 0.10 -0.23 0.15 

 cor(mu_AVS,mu_CTS) 0.42 0.11 0.20 0.61 

 cor(mu_BSM,mu_CTS) -0.72 0.08 -0.85 -0.55 

 cor(mu_CTE,mu_CTS) 0.64 0.09 0.46 0.80 

 cor(mu_CTN,mu_CTS) -0.37 0.11 -0.57 -0.14 

 cor(mu_CTO,mu_CTS) 0.48 0.11 0.25 0.68 

 cor(mu_AME,mu_SAG) -0.43 0.09 -0.61 -0.24 

 cor(mu_AMN,mu_SAG) -0.36 0.17 -0.66 0.00 

 cor(mu_AMO,mu_SAG) -0.17 0.22 -0.56 0.29 

 cor(mu_AMS,mu_SAG) -0.22 0.13 -0.47 0.03 

 cor(mu_AVE,mu_SAG) -0.44 0.12 -0.68 -0.19 

 cor(mu_AVN,mu_SAG) -0.37 0.10 -0.57 -0.16 

 cor(mu_AVO,mu_SAG) -0.48 0.06 -0.60 -0.35 

 cor(mu_AVS,mu_SAG) -0.80 0.06 -0.90 -0.68 
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 cor(mu_BSM,mu_SAG) 0.83 0.04 0.74 0.91 

 cor(mu_CTE,mu_SAG) -0.68 0.06 -0.79 -0.55 

 cor(mu_CTN,mu_SAG) 0.67 0.07 0.52 0.80 

 cor(mu_CTO,mu_SAG) -0.12 0.11 -0.32 0.09 

  cor(mu_CTS,mu_SAG) -0.62 0.08 -0.77 -0.45 

 526 

 527 
 528 

Note on interpreting low sd within sectors: 529 

Similar to the CTN sector, the sector AMO is also estimated to have a low magnitude of 530 

individual differences. However, it has a large uncertainty in this estimate. This highlights 531 

that it is possible to have little individual differences in a sector due to either: 1) limited data, 532 

resulting in all individuals being pooled to the mean value, and 2) limited data is not a factor, 533 

but individuals are using this sector relatively equally. Care should therefore be taken when 534 

interpreting the magnitude of individual differences, nevertheless, the estimated uncertainty 535 

around magnitude estimates is one way to help identify sectors with limited data. 536 
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