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ABSTRACT 20 
Here, we focus on a common class of enzymes that have multiple substrate-binding sites 21 
(multi-site enzymes), and analyse their capacity to generate bistable dynamics in the reaction 22 
systems that they are embedded in. Using mathematical techniques, we show that the inherent 23 
binding and catalysis reactions arising from multiple substrate-enzyme complexes creates a 24 
potential for bistable dynamics in a reaction system. We construct a generic model of an 25 
enzyme with n substrate binding sites and derive an analytical solution for the steady state 26 
concentration of all enzyme-substrate complexes. By studying these expressions, we obtain a 27 
mechanistic understanding for bistability and derive parameter combinations that guarantee 28 
bistability and show how changing specific enzyme kinetic parameters and enzyme levels can 29 
lead to bistability in reaction systems involving mjulti-site enzymes. Thus, the presented 30 
findings provide a biochemical and mathematical basis for predicting and engineering 31 
bistability in multi-site enzymes.  32 
 33 
INTRODUCTION 34 
Cellular reaction networks enable cells to remain out of thermodynamic equilibrium and to 35 
respond to external cues. The dynamics of these networks enable cellular homeostasis and 36 
decision making (1,2). Many decision-making processes involve so-called bistable dynamics, 37 
in which a system can attain two different steady states depending on initial conditions. 38 
Bistability is implicated in many cellular decision processes, including the cell cycle control 39 
(3), lysis-lysogeny decision (4), metabolic shifting (5-7), and persister formation (8).  40 
 41 
Manifestation of bistability requires some mechanism of feedback (9, 10). In the case of 42 
enzymatic reaction systems, feedback dynamics can arise from transcriptional, or substrate- or 43 
product-based regulation, or via post-translational modification of enzymes. Several models 44 
implementing these types of enzyme regulation are shown to display bistability and are used 45 
to explain different cellular responses (2, 5, 6, 11-13). In the case of substrate- and product-46 
based regulation of enzymes, a commonly used model considers an enzyme with two binding 47 
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sites, where binding of substrate at one side leads to catalysis, while binding of the substrate or 48 
product on the other site alters catalytic rate. In such a two-site enzyme model, both bistability 49 
and oscillations are attainable depending on the specific binding mechanisms and the assumed 50 
functional forms of the rate equations (2, 11, 14-15). Despite this wide application of the two-51 
site enzyme model, it is currently not clear how exactly a multi-site enzyme facilitates 52 
bistability and under which parameter regions and biochemical conditions it does so. This is a 53 
relevant question, considering that many enzymes found in central metabolism and signalling 54 
pathways are multimers comprising multiple substrate binding sites (16). Specific examples 55 
include dehydrogenases with key metabolic substrates (e.g. phosphoglycerate, malate and 56 
lactate) and commonly composed of dimers or tetramers with multiple binding sites (17), and 57 
kinases such as phosphofructokinase, which have multiple active binding sites (18). A better 58 
understanding of reaction dynamics of multi-site enzymes can allow us to predict which 59 
naturally existing enzymes might be implementing bistability for cellular decision making or 60 
might be suited for engineering of bistability through synthetic biology.  61 
 62 
Here, we undertake an extensive theoretical study of a generalised model of an enzyme with n 63 
substrate binding sites, in order to derive both a biochemical intuition and a set of mathematical 64 
conditions on kinetic parameters for bistability. We use primarily analytical approaches to 65 
show that the multi-site nature of an enzyme inherently results in a potential for bistability. We 66 
then use this insight to derive conditions on the kinetic rate parameters of simple reaction 67 
networks with multi-site enzymes, that guarantee bistability for some concentration of substrate 68 
and enzyme. These findings allow us to predict and outline enzyme engineering strategies that 69 
can be employed to achieve bistability in simple reaction networks. 70 
 71 
RESULTS 72 
To better understand how a multi-site enzyme can lead to bistability, we first create a generic 73 
model of substrate (S) to product (P) conversion mediated by an enzyme (E) that has n-substrate 74 
binding sites (Fig. 1A). In this initial model, we assume that the total concentration of substrate 75 
and product, and the total concentration of free and substrate-bound enzyme are conserved (see 76 
Methods and Supplementary Information (SI)). The former assumption is directly applicable 77 
when the substrate is a conserved moiety, such as enzyme co-factors or energy and reducing 78 
power equivalents (e.g. ATP-ADP and NADH-NAD+ pairs) (2, 19). This assumption is useful 79 
to illustrate our results, and relaxing it – as discussed below - show that our main conclusions 80 
remain intact for the cases where substrate concentration is freely changing (e.g. through fluxes 81 
by other reactions). The latter assumption of total enzyme concentration being conserved 82 
reflects the fact that the time scales of enzyme expression are in most cases slower compared 83 
to reaction dynamics.  84 
 85 
To make the model as generic as possible, we use mass-action kinetics with irreversible 86 
enzymatic catalysis, and consider substrate molecules binding to the enzyme in any order and 87 
also irrespective of how many substrates are already bound. As we show in the SI, more 88 
restricted assumptions about substrate binding order or affinity, do not alter our main 89 
conclusions. To exemplify our modelling approach, in the Methods section, we provide the set 90 
of reactions arising from the generic model for a 2-site enzyme, i.e. n = 2 (see also Fig. 1B). 91 
For our general n-site model, the full set of reactions can be formally written as:  92 
 93 
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 97 
where a, b and c are kinetic rate constants associated with the individual substrate binding sites 98 
i, which are numbered 1 through n. The set [n] is the complete set of binding sites [n]={1, …, 99 
n}, and ESI and ESJ are enzyme complexes in which a given number of substrate molecules are 100 
bound respectively to a set of sites I and J. In other words, I and J are sets with any number of 101 
elements from the list of sites 1 through to n; (𝐼, 𝐽 ⊆ [𝑛]). For example, for I = {1,3,4}, ESI is 102 
the enzyme complex where the sites numbered 1, 3, 4 are bound to substrate molecules (Fig. 103 
1A). Additionally, ESJ is formed by the binding of a single, additional substrate molecule to 104 
ESI, meaning the difference between the sets of I and J in Eq. 1 is one element. Note also that 105 
the system defined by Eq. 1, results in 2n-1 enzyme complexes (Fig. 1A).  106 
 107 
Fully-bound and non-fully-bound enzyme complexes display distinct steady state 108 
dynamics with increasing substrate concentration. We analysed the above generic model 109 
using analytical methods to derive solutions for the steady state concentrations of all 2n – 1 110 
enzyme complexes, as functions of the steady state concentration of substrate ([S]) (see SI for 111 
details). We found that the steady state concentration of any complex (ESI) is given by: 112 
 113 
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 115 
Here, Etot is the total enzyme concentration including both free and bound forms of the enzyme, 116 
and M = 2n – 1 – n. The terms |I| and |J| are the number of elements (i.e bound sites) in a given 117 
complex, and thus, the index l, which also appears as an exponent to [S], is over the number of 118 
bound substrates. The terms aI,l and aJ,l indicate a positive function of the kinetic reaction 119 
constants associated with each of the enzyme complexes (see SI for details and Methods for an 120 
example with n = 2). We note that Eq. 2 is derived under the most generic case of substrates 121 
binding to different enzyme sites in any order, however, we show that Eq. 2 remains true if we 122 
assume more specific binding processes, e.g. binding at a specific enzyme site requiring other 123 
sites to be bound with substrate (see SI, Section 1.1 for details). In such cases, some of aI,l and 124 
aJ,l might be zero.  125 
 126 
A close inspection of Eq. 2 shows that [ESI] will always be given by a fraction of two 127 
polynomials in [S]. These polynomials will differ in their degree in [S] unless I is equal to the 128 
full set (i.e. I=[n]). This is because, when I≠[n], the summations in the denominator and the 129 
numerator in Eq. 2 are over different numbers of bound substrates. Specifically, the summation 130 
in the denominator is over all enzyme complexes and the largest degree of this polynomial will 131 
be equal to M + n = 2n – 1, the total number of enzyme complexes. In contrast, the summation 132 
in the numerator is over the enzyme complexes that can be generated from the enzyme complex 133 
ESI. If ESI is the fully-bound enzyme complex, then the degree of the numerator will be equal 134 
to that of the denominator, as the largest possible value of the index l would be M + | I | = 2n – 135 
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1. If ESI is not the fully-bound complex, then the degree of the numerator will be equal to that 136 
of the denominator minus the number of empty binding sites in ESI. For instance, if the enzyme 137 
has two substrate binding sites, leading to three potential different enzyme complexes, the 138 
degree of the polynomial in the denominator will be three (Fig. 1B and C). The polynomial in 139 
the numerator would have a degree of three for the fully bound complex, while for the two 140 
complexes, consisting of one filled and one empty binding site, it would have a degree of two 141 
(Fig. 1B and C).  142 
 143 
The specific structure of Eq. 2 provides an insight to the behaviour of steady state 144 
concentrations of the different enzyme complexes with increasing [S] (Fig. 1C). Considering 145 
the fact that the polynomials comprising Eq. 2 have positive coefficients (given by aI,l and aJ,l, 146 
which are functions of kinetic rates), the steady state concentration of all enzyme complexes 147 
will initially increase from zero with increasing [S]. Since Eq. 2 for the fully-bound complex 148 
has polynomials of the same degree in the numerator and denominator, the limit value of Eq. 149 
2 at very high [S] for this complex will be the ratio of the coefficients of the highest degree 150 
terms of the numerator and denominator. We show that this ratio is equal to Etot, the total 151 
enzyme concentration in the network (see SI, Theorem 1). Thus, for the fully-bound enzyme 152 
complex the steady state concentration will initially increase with increasing [S] and approach 153 
finally a positive value given by Etot (Fig. 1C, last panel). In the case of the non-fully-bound 154 
enzyme complexes, Eq. 2 will have a lower degree polynomial in the numerator than the 155 
denominator, and therefore, its limit value at very high [S] will approach zero. Thus, for the 156 
non-fully-bound enzyme complexes their steady state concentration will initially increase with 157 
increasing [S], show at least one peak, and then approach towards zero from above (Fig. 1C, 158 
first two panels).  159 
 160 
Note that, while Fig. 1C shows the behaviour of Eq. 2 for an enzyme with n = 2, the analytical 161 
summary presented here is independent of n. It shows that, for a multi-site enzyme, we will 162 
always have two distinct, and qualitatively different curves describing the different enzyme 163 
complexes’ steady state concentrations (as exemplified in Fig. 1C). From here on, we refer to 164 
these two qualitatively distinct types of curves as ‘positive’ and ‘negative’ type, respectively. 165 
Both positive and negative type curves will increase when [S] is small and increasing. At large 166 
values of [S], both curves will approach a limit value, with positive type curve approaching its 167 
limit from below and a negative type curve approaching its limit from above (Fig. 1C). These 168 
overall conclusions for curve shapes against small and large values of [S] are independent of 169 
the specific values of the kinetic rate parameters. They arise solely because of the polynomial 170 
degree structure of Eq. 2, in other words, from the multi-site structure of the enzyme.  171 
 172 
The exact shape of the curves for intermediate, increasing values of [S], however, and in 173 
particular the number of peaks they will display before approaching the limit value, will depend 174 
on the catalytic and Michaelis-Menten (Km’s) rate constants of the individual enzyme-substrate 175 
complexes (i.e the functions aI,l and aJ,l in Eq. 2). For an enzyme with n = 2, the negative type 176 
curves (of the single substrate complexes) will always show a single peak and have one 177 
inflection point (see SI, Section 1.1). The positive type curve (of the fully-bound, two substrate 178 
complex) mostly shows no peaks and is a steady increasing function of [S], but there are kinetic 179 
parameters for which it would display peaks, as we discuss below (see SI, Section 2.4). With 180 
higher n, both the negative and positive type curves can readily display multiple peaks. 181 
Intuitively, and from a biochemical perspective, the positive type curve can be thought of as a 182 
saturation process, in which increasing [S] pushes more enzyme binding sites to be filled, 183 
ultimately leading to an increase of the steady state concentration of the fully-bound enzyme 184 
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complex. Correspondingly, the steady state concentrations of the non-fully-bound enzyme 185 
complexes decrease with increasing [S], giving rise to the negative type curve.  186 
 187 
The negative type curves of non-fully-bound enzyme complexes underpin the potential 188 
for bistability. We now consider the catalytic flux through each enzyme complex. We refer to 189 
the catalytic flux through complex ESI, as 𝑉23$

3→5, and note that its steady state value will be a 190 
function of the steady state complex concentration, [ESI]. Furthermore, the total catalytic flux 191 
through the enzyme, VSàP, will be given by the sum of the individual fluxes through each of 192 
its complexes. By the analysis above, VSàP tends to Etot, times the sum of the catalytic rate 193 
constants of the fully-bound complex. To illustrate the ideas for general n, we consider first the 194 
example case for an enzyme with n = 2 (shown in Fig. 1B and 1C). It is easier to graphically 195 
understand how bistability arises in this system if we analyse the behaviour of the catalytic 196 
fluxes against [Ssum] = Stot - [P], where Stot is a constant describing the combined amount of 197 
product and free and bound substrate (see SI, Section 1.1). As we show in the SI, for n = 2, 198 
[Ssum] is an increasing function of [S] and hence, the qualitative behaviour of VSàP against 199 
increasing [S] or [Ssum] is the same.  200 
 201 
In Fig. 2, we show 𝑉23$

3→5against [Ssum] for two different parameter sets, and as expected, we see 202 
that the behaviour of 𝑉23$

3→5against [Ssum] qualitatively follows that of [ESI] against [S] as given 203 
by Eq. 2 and shown in Fig. 1. In the example shown in Fig. 2A, where we have the same 204 
parameters as in Fig. 1C, the total catalytic flux VSàP is dominated by the fluxes through the 205 
non-fully-bound complexes, and as such, VSàP displays a negative type behaviour in [Ssum]. In 206 
Fig. 2B, we see the results for a second set of parameters, where VSàP is dominated by the flux 207 
through the fully-bound complex, and as a result, it displays a positive type curve in [Ssum]. As 208 
illustrated by these examples, which type of behaviour VSàP displays will depend on the 209 
specific values of the catalytic and Michaelis-Menten (Km’s) rate constants of the individual 210 
enzyme complexes.  211 
 212 
We now consider the shape of the VSàP curve in the context of a reaction system. To start with, 213 
we consider a simple scenario, involving a back reaction from product to substrate, creating a 214 
reaction cycle (see Fig. 2C). We initially assume that the product to substrate conversion is a 215 
non-enzymatic, hydrolysis type reaction, governed by a constant kh (note that, below and in the 216 
SI, we relax this assumption without loss of the presented conclusions). The catalytic flux of 217 
this back reaction, VPàS, is given by kh ∙[P] and therefore, behaves linearly with increasing 218 
[Ssum]. This linear relation has slope -kh and intercept Stot (Fig. 2C). When we plot VSàP and 219 
VPàS against [Ssum] on the same plot, the intersection points represent the steady states of the 220 
reaction system, i.e. points where the product formation flux, VSàP, equals that of product loss, 221 
VPàS. Using the fact that VPàS is a line with negative slope, we can see that a negative type 222 
VSàP curve opens the possibility to have three intersections between VSàP and VPàS, and 223 
therefore three steady states. Three steady states are the hallmark of bistability, and indeed, for 224 
this parameter set, our model displays bistability, where different starting conditions can lead 225 
to different steady state dynamics (Fig. 2D). Since adjusting the value of Stot results in shifting 226 
the VPàS line along the x-axis, we can graphically see that as long as kh is below a certain 227 
threshold value, there will be some value of Stot that ensures three intersections. In other words, 228 
tuning the Stot value would allow shifting the VPàS line across the x-axis on Fig. 2C, until three 229 
intersections with the VSàP curve are obtained.  230 
 231 
While we analyse a system with n = 2 and a sample parameter set in Fig. 2, we can use the 232 
above discussion to draw a general conclusion that will be true for any n. If VSàP is of the 233 
negative type and its slope at the inflection point is smaller than the slope of VPàS (that is -kh), 234 
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then the curves will intersect three times if the line VPàS passes through the inflection point. 235 
The slope of VSàP at the inflection point depends on Etot and the reaction rate constants, while 236 
the slope of VPàS at the inflection point depends on kh. This graphical analysis, therefore, 237 
provides an intuition about why having a VSàP of the negative type and with a slope at its 238 
inflection point smaller than -kh provides a route to bistability in a system with a multi-site 239 
enzyme for some value of Stot. On the contrary, if VSàP is of the positive type and does not 240 
display any peaks (as shown in Fig. 2B), bistability is precluded as VPàS cannot intersect VSàP 241 
in more than one point. When VSàP is of the positive type and displaying a single or multiple 242 
peak, there is again the possibility for three intersection points and bistability (see SI, Section 243 
2.4). In summary, this graphical discussion shows that a negative type curve for VSàP 244 
guarantees three steady states after appropriately choosing the other relevant parameters (e.g. 245 
kh and Stot). 246 
 247 
Kinetic rate parameter conditions that guarantee multiple steady states in a reaction 248 
system with a multi-site enzyme. In order to formalise and generalise the graphical 249 
considerations made above, we take a mathematical approach to determining conditions on 250 
kinetic parameters that result in multiple steady states. The idea is to identify the conditions 251 
when VSàP is of the negative type, that is, when it converges to its limiting value from above, 252 
and use these conditions to guarantee that VPàS and VSàP will intersect at multiple points.  253 
 254 
We find that VSàP is of the negative type exactly when the following condition holds (SI, 255 
Section 1.2):  256 
 257 

>
∑ 𝑐%∖{#},%#∈%

∑ 𝐾&/𝐾%|&|-0:;
> > 𝑐[0]\{#},[0]

#=[0]|%|-0:;

														(𝐸𝑞. 3) 258 

 259 
Here, KI and 𝑐%∖ {#},% represent the Michaelis Menten (Km) and catalytic rate constants as in Eq. 260 
1, respectively, for the enzyme complexes with all binding sites bound but the i’th one (i.e. 261 
enzyme complexes with n-1 sites bound). The term 𝑐[0]∖ {#},[0] represents the catalytic rate 262 
constants of the fully-bound enzyme complex, where catalysis happens at the i-th binding site 263 
(see also Fig. 3).  264 
 265 
We note that the condition defined by Eq. 3 is aligned with the graphical analyses we discussed 266 
in the previous sections (Fig. 1 and 2). There, we have shown that the curve type of VSàP is 267 
determined by whether the fully-bound or non-fully-bound enzyme complexes are dominating 268 
the dynamics of catalysis. In line with these arguments, for Eq. 3 to hold and hence for VSàP to 269 
be of the negative type, the sum of the catalytic rate constants for the n-1 non-fully-bound 270 
complexes, each adjusted by the contribution of that complex in the system dynamics 271 
(represented by their Km’s), have to be greater than the sum of the catalytic rate constants of 272 
the fully-bound complex. 273 
 274 
Eq. 3 determines the condition for VSàP to be of the negative type. How this leads to 275 
multistability relates to the system, in which the multi-site enzyme is embedded in. We first 276 
study the simple case of a non-enzymatic back reaction from product to substrate (see next 277 
section for results of alternative reaction systems). We find that we are guaranteed to have three 278 
positive steady states in such a cyclic reaction system, for some values of Stot and Etot, if the 279 
reaction rate constants satisfy the following condition (SI, Section 2.1): 280 
 281 
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 283 
This condition is identical to Eq. 3, but with the extra term kh on the right-hand side. This is 284 
again in line with our analysis above. First, if Eq. 4 holds, then Eq. 3 must also hold, and hence 285 
VSàP is of negative type. Second, Eq. 4 tells us that kh cannot be larger than a certain amount. 286 
This ensures that, with the appropriate choice of Stot and Etot, VPàS passes through the last 287 
inflection point of VSàP with slope larger than the slope of VSàP at that point. As discussed, this 288 
gives rise to multiple steady states. 289 
 290 
Conditions for multiple steady states exist for different reaction systems involving a 291 
multi-site enzyme. Using the same approach as above, we expanded our analysis to other 292 
realistic reaction motifs featuring a multi-site enzyme. We considered two common motifs, 293 
involving an enzymatic back reaction from the product to substrate or in- and out-fluxes of 294 
both substrate and product (Fig. 3A). The former case represents two enzymes creating a cyclic 295 
reaction motif and is commonly found in metabolism and in signalling systems (2,14,15,19). 296 
The latter case represents another widely applicable scenario, where any upstream and 297 
downstream reactions can generate or consume the substrate and product. In this case, there is 298 
no assumption of total substrate amount being conserved. 299 
 300 
For each of the cases depicted in Figure 3A, we found that the existence of multiple steady 301 
states is guaranteed by an inequality almost identical to Eq. 4 (see SI sections 2.2 and 2.3). In 302 
the case of a reaction system with an enzymatic back reaction from product to substrate, the 303 
catalytic rate constant of the back reaction replaces kh in Eq. 4. In the case of the reaction 304 
system involving fluxes of substrate and product, kh is eliminated entirely from the inequality, 305 
that is, the inequality reduces simply to Eq. 3. These resulting inequalities need to be 306 
supplemented with a distinct choice of additional parameters. For the system with enzymatic 307 
back reaction, Eq. 4 guarantees multiple steady states after appropriately selecting Stot, Etot and 308 
the conserved total amount of the enzyme catalysing the back reaction from product to substrate 309 
(SI, Section 2.2). For the system with fluxes, Eq. 3 guarantees multiple steady states after 310 
appropriately choosing Etot and flux rate constants (SI, Section 2.3). So, in this case, the 311 
possibility of multiple steady states is not conditioned on the value of Stot as the total amount 312 
of substrate is no longer conserved.  313 
 314 
The key, intuitive message, as depicted in Fig. 3B, is that a key sufficient mechanism for 315 
existence of multiple steady states is related to the dynamics of two distinct sets of enzyme 316 
complexes, those that are fully-bound and those that have one binding site empty. When the 317 
kinetics of the latter dominates over that of the former, and Eq. 3 is satisfied, a negative type 318 
VSàP curve emerges from the multi-site enzyme dynamics and multiple steady states are 319 
guaranteed to exist in some parameter regime in the system.  320 
 321 
It is important to note that especially with increasing n many multiple steady states may arise, 322 
and not just three. We note that a formal analysis of the stability of each steady state cannot be 323 
done using the presented general framework. In the case of systems with n = 2 and 3, we have 324 
sampled kinetic parameter values satisfying Eq. 4, and found that when the system displays 325 
three steady states, then bistability arises, showing that at least two steady states are stable. 326 
Finally, we also note, that Eq. 3 and 4 do not define necessary conditions for multiple steady 327 
states, but rather conditions that guarantees multiple steady states. As we argued above, there 328 
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can be parameter sets that lead to a positive type VSàP curve with multiple peaks and therefore 329 
still lead to multiple steady states without fulfilling Eq. 4 (SI, Section 2.4). 330 
 331 
Enzyme parameters in the physiological ranges that satisfy Eq. 3 permit bistability. As 332 
described above, Eq. 4 describe conditions on the catalytic rates and Km constants that are 333 
guaranteed to result in multiple steady states for some set of Stot and Etot values. To identify 334 
ranges of these latter parameters, we used numerical and analytical methods with the 2-site 335 
enzyme model with a cyclic reaction motif involving a non-enzymatic back reaction as a case 336 
study (first panel of Fig. 3A). We have chosen kinetic parameters in a physiological range using 337 
available information from the literature on multi-site enzymes involved in cyclic reaction 338 
systems (see Methods). We then derived a bifurcation diagram for the parameters Stot and Etot 339 
(see Methods). We find that for physiologically relevant kinetic parameters, there is a relatively 340 
wide range of Stot and Etot values allowing for multiple steady states, but Etot is always much 341 
smaller than Stot (Fig. 4A, red area bounded by dashed lines). In other words, the manifestation 342 
of multiple steady states in this cyclic reaction scheme happens in a regime of substrate-343 
saturated enzymes. In fact, for this reaction system, we find that the relation Stot > n ⋅	Etot needs 344 
to hold for systems satisfying Eq. 4 to display multiple steady states (see SI, Section 2.1).  345 
 346 
How would changing kinetic parameters affect the Stot and Etot ranges permitting multiple 347 
steady states? As discussed above, Stot determines the intersection point of the VPàS line with 348 
the x-axis, while Etot determines the height of the VSàP curve. We can therefore expect that 349 
kinetic parameters affecting the slope and shape of the VPàS line and the VSàP curve will alter 350 
the Stot and Etot ranges permitting multiple steady states. In line with this prediction, we find 351 
that decreasing kh and increasing the catalytic rates of the non-fully-bound enzyme complexes 352 
widens the Stot and Etot range for multiple steady states (Fig. 4A, regions bounded by straight 353 
and dotted lines). The latter creates this effect by changing the slope of the VPàS line, while the 354 
latter by changing the height of the VSàP curve.  355 
 356 
In the case of the reaction system with substrate and product fluxes (Fig. 3A, left-most panel), 357 
i.e. where Stot is not a constant anymore, the bistable regime is determined by enzyme kinetic 358 
parameters, substrate in- and out-flux, product out-flux, and Etot (see SI section 2.3). For this 359 
case, we derived a bifurcation diagram for substrate in-flux and product out-flux rates for a 360 
given, physiologically realistic Etot and found that changing Etot can result in widening of the 361 
bistable regime for these two parameters (Figure 4B).  362 
 363 
METHODS  364 
Core biochemical model. We considered first a core model involving an enzyme with multiple 365 
substrate-binding sites, each able to convert the substrate into a product, as shown in Fig. 1. 366 
For this model we assumed that the total enzyme concentration and the total substrate 367 
concentration, that is free substrate, substrate bound to enzyme, and the product, are conserved. 368 
We relaxed the latter assumption in subsequent models that were built from this core model. 369 
For the core model, the resulting binding and catalytic reactions for an enzyme with n–binding 370 
sites is given in Eq. 1. Additional reactions in the subsequent models and involving the product, 371 
and sometimes the substrate, are considered, either as occurring with a constant rate or 372 
mediated by an additional enzyme. Our mathematical analyses consisted of writing ordinary 373 
differential equations (ODEs) for such reaction systems using mass action kinetics. The ODEs 374 
for the core, general model shown in Fig. 1, as well as the alternative models shown in Fig. 3, 375 
are provided in full in the SI along with the detailed derivations leading to Eq. 2, Eq. 3 and Eq. 376 
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4. As an illustration, we provide here the reaction system for the core model, for n = 2, i.e. a 377 
two-binding-site enzyme:  378 
 379 

𝐸 + 𝑆
𝑘;
⇆
𝑘@
𝐸𝑆

A&→ 𝐸 + 𝑃 380 

 381 

𝐸 + 𝑆
𝑘B
⇆
𝑘C
𝑆𝐸

A'(() 𝐸 + 𝑃 382 

 383 

𝐸𝑆 + 𝑆
𝑘;!
⇆
𝑘;;

𝑆𝐸𝑆
A'&() 𝐸𝑆 + 𝑃 384 

 385 

𝑆𝐸 + 𝑆
𝑘D
⇆
𝑘E
𝐸𝑆

A)→ 𝑆𝐸 + 𝑃													(𝐸𝑞. 5)  386 

 387 
where the single- and double-bound enzyme complexes are denoted as ES, SE, and SES 388 
respectively. The corresponding set of ODEs resulting from this reaction system can be written 389 
using mass action kinetics for each of the reactions shown in Eq. 4, as we have done in the 390 
provided MATLAB code (see SI file1). The conservation relations for this system are: 391 
 392 

[Stot]	=	[S]	+	[ES]	+	[SE]	+	2[SES]	+	[P]	393 
	394 

[Etot]	=	[E]	+	[ES]	+	[SE]	+	[SES]	 	 (Eq.	6)	395 
  396 
Symbolic and numerical computations. For all symbolic computations, utilised in finding 397 
steady state solutions and deriving mathematical conditions on rate parameters, we used the 398 
software Maple 2020. For simulations, run to numerically analyse select systems, we again 399 
used Maple, or the MATLAB package, with the standard solver functions. 400 
 401 
Bifurcation analysis and physiologically realistic kinetic parameters and Stot and Etot 402 
ranges. To analyse if multiple steady states would be realised in physiologically realistic 403 
parameter regimes, we used a cyclic reaction system with a two-binding site enzyme (Fig. 4A). 404 
For such an enzyme, we have used kinetic parameter values in physiologically feasible ranges 405 
as found in the literature and listed below (16,20,21). We then used our mathematical condition 406 
shown in Eq. 4, and bifurcation analyses to derive the Stot and Etot ranges that guarantee multiple 407 
steady states. The analysis was performed using cylindrical algebraic decomposition in Maple, 408 
using the package RootFinding[parametric] (22). As an example, the kinetic rate values used 409 
for Fig. 2, as listed on its legend, result in Eq. 4 to be satisfied and hence would result in 410 
multiple steady states when combined with any combination of Stot and Etot that are in the 411 
permissible range shown in Fig. 4. The literature based, physiologically realistic kinetic 412 
parameter ranges we have considered were: 107 – 1010 M-1 min-1 for substrate-enzyme binding, 413 
102 – 106 min-1 for substrate dissociation from a substrate-enzyme complex, 50 – 107 min-1 for 414 
catalytic rates of enzyme complexes and hydrolysis rate (i.e. kh), and 10-6 – 10-2 M for their KM 415 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442945doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442945
http://creativecommons.org/licenses/by-nc/4.0/


 10 

values. The literature based, physiologically realistic values of Stot and Etot that we considered 416 
were 10-6 – 10-2 M and 10-8 – 10-4 M respectively.  417 
 418 
DISCUSSION 419 
We have shown that multi-substrate binding enzymes have an inherent capacity to generate 420 
bistability when placed within a reaction system. Specifically, the very act of an enzyme 421 
binding two or more molecules of the same substrate is guaranteed to result in a specific 422 
nonlinear relation between substrate amount and catalytic flux rate (VSàP) in a certain 423 
parameter regime (we called the resulting relation a negative type curve in the main text). When 424 
the multi-substrate enzyme is placed within a reaction system, this inherent dynamical feature 425 
of a negative type curve then guarantees the emergence of multiple steady states. The wider 426 
reaction systems, embedding a multi-site enzyme can involve either substrate-product-427 
substrate cycles or systems involving open substrate and product fluxes arising. 428 
 429 
These types of reaction systems, as well as multi-site enzymes embedded in them, are common 430 
occurrences in metabolic and signalling pathways. Dehydrogenases and kinases, for example, 431 
are commonly involved in substrate-to-product cycles (as shown in Fig. 3A), either via redox 432 
cycling or phosphorylation/dephosphorylation of substrate-product pairs. Examples include 433 
reactions involving dehydrogenases such as lactate or glutamate dehydrogenase (23), and 434 
kinase/phosphatase pairs such as those involved in the conversion of fructose-6-phosphate (24). 435 
The case with substrate and product fluxes (Fig. 3A, left panel) is a particularly generic 436 
scenario, where there is no mass conservation assumption with regards to the substrate and 437 
product, and no requirement for a cyclic reaction motif. In these different, common reaction 438 
systems, we demonstrate that a multi-site enzyme can lead to bistable dynamics. This is 439 
because the negative type VSàP curve is an inherent feature of the multi-site enzyme and 440 
therefore independent of downstream product (and substrate) conversions. Thus, any 441 
arrangement of a reaction system resulting in substrate and product conversion dynamics that 442 
is capable of intersecting a VSàP curve of a negative type three times, will result in a system 443 
capable of multiple steady states, as we show here. 444 
 445 
To directly ascertain bistable parameter regimes, we derived here a mathematical inequality 446 
(Eq. 3) that guarantees the VSàP to be of the negative type. This inequality constitutes the core 447 
part of additional inequalities (see Eq. 4 and SI) that are derived for different, and common, 448 
scenarios of reaction systems embedding a multi-site enzyme, and that guarantee the existence 449 
of multiple steady states in them. A key, biochemical intuition arising from these mathematical 450 
inequalities is that bistability within a system containing a multi-site enzyme requires non-451 
fully-bound enzyme complexes to ‘outcompete’ the fully-bound complex in terms of catalysis 452 
(or flux) from substrate to product. This relates our work to the concept of ‘substrate inhibition’, 453 
which is observed in the case of many multi-site enzymes and specifically dehydrogenases and 454 
kinases (25), and which is commonly attributed to allosteric effects (i.e. substrate binding also 455 
at a non-catalytic, regulatory site on the enzyme). In our case, we emphasize that we do not 456 
consider allosteric effects, however, we note that the dynamics we describe here would produce 457 
a similar effect as the commonly observed reduction in catalytic rate with increasing substrate 458 
concentration (i.e. substrate inhibition). Indeed, when the criteria on kinetic parameters given 459 
in Eq. 3 are fulfilled, the resulting dynamics of catalysis rate with increasing substrate 460 
concentration (as shown in Fig 2A) will be similar as seen with substrate inhibition. Whether, 461 
in the case of specific, natural enzymes displaying substrate inhibition, the fully-bound enzyme 462 
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complexes have indeed specifically lower catalytic rates than complexes with non-fully-bound 463 
complexes, needs to be determined through kinetics experiments.  464 
 465 
In addition to the presented inequalities to be satisfied, bistability also requires additional 466 
system parameters to be chosen appropriately when we consider systems with cyclic reaction 467 
motifs. We find that these additional system parameters, total substrate and enzyme 468 
concentrations, as well as kinetic rate constants of additional reactions leading to bistability, 469 
exist within physiologically feasible parameter values obtained from enzymatic studies. A key 470 
aspect that we note, in the case of cyclic system, is that total substrate levels (i.e. substrate and 471 
product combined)  need to be larger than total enzyme concentration. This condition is found 472 
to be satisfied for many enzymes in vivo (21). In line with these findings demonstrating 473 
physiological feasibility, bistability in systems involving cyclic reaction motifs are observed 474 
when multi-site enzymes are re-constituted in vitro, for example using pyruvate kinase, lactate 475 
dehydrogenase, or isocitrate dehydrogenase enzymes and their corresponding partners, 476 
bistability has been demonstrated experimentally (15,23,26). In the case of systems with open 477 
substrate and product fluxes, Eq. 3 guarantees multiple steady states after appropriately 478 
choosing Etot and flux rate constants. Interestingly, in this case, we find that tuning of total 479 
enzyme levels, which can be implemented with gene expression control, can widen, or limit 480 
the bistable parameter regime. Therefore, our findings of bistability and the parameter regimes 481 
it is manifested in, can be of wide relevance for the study of a large range of cellular reaction 482 
systems.  483 
 484 
Reaction system dynamics are implicated to possess a level of autonomous regulation (1,2). 485 
Our findings show that multi-site enzymes can indeed provide such regulation by providing 486 
reaction systems with the capability of bistability. When bistability is realised, this will 487 
manifest itself as two different steady state concentrations, among which the system can 488 
quickly switch. Multi-site enzymes can provide a simple mechanism to achieve such higher-489 
level functions. To this end, our findings provide clear experimental routes towards generating 490 
or removing bistability in natural reaction systems or engineered enzymes through the control 491 
of kinetic parameters or expression levels with synthetic biology approaches (27). The 492 
engineering principles described here for bistability can be further extended to explore the 493 
possible sources of multistability and oscillatory dynamics, both of which are observed in 494 
models with multi-site enzymes with flux (2,14,28), through further mathematical approaches. 495 
 496 
FIGURES AND FIGURE LEGENDS 497 
 498 
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 499 
 500 
Figure 1. A. Cartoon representation of a generic n-site model, where n-E indicates an enzyme with n 501 
substrate binding sites. The substrate binding sites are numbered in a consecutive fashion and substrate-502 
bound sites are shown in blue. Note that there are 2n – 1 possible substrate-enzyme complexes. B. 503 
Cartoon representation of a 2-site enzyme model. The substrate (S) and product (P) are shown in blue 504 
and red respectively. Substrate binding is allowed in any order on each site, and both sites are assumed 505 
to have catalytic activity. The 3 possible substrate-enzyme complexes are shown on the right. See 506 
Methods for reactions and differential equations for this 2-site enzyme model. C. The steady state 507 
concentration of each of the substrate-enzyme complexes with increasing concentration of substrate. 508 
The parameters, as listed in Eq. 4, are set to the following values for these simulations; k1 = k4 = k6 = 509 
k10 = 108 M-1min-1, k2 = k5 = k7 = k11 = 104 min-1, k3 = 105 , k12 = 1.5 ⋅105 min-1, k8 = k13 = 103 min-1, Stot 510 
= 2.31 ⋅10-3 M, Etot = 4.15 ⋅	10-5 M. Panels from left to right show the steady state concentrations of the 511 
two single-substrate complexes, and the fully-bound complex. A simplified version of Eq. 2, describing 512 
the steady state concentration of the complexes is shown on each panel, highlighting the degree of the 513 
polynomials. On the right-most panel, the dashed line indicates total enzyme concentration. 514 
 515 
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 517 
 518 
Figure 2. A. Steady state reaction flux through different substrate-enzyme complexes in the 2-site 519 
model against total substrate concentration. The straight and dashed red curves are for the reaction flux 520 
through the single-substrate bound complexes, while the blue curve is for the reaction flux through the 521 
fully-bound enzyme complex. The black curve shows the total reaction flux, i.e. VSàP. The parameters 522 
used are as in Fig. 1C. B. Steady state reaction flux through different substrate-enzyme complexes in 523 
the 2-site model against total substrate concentration. Curve shapes and colours have the same meaning 524 
as in part A. The parameters used are: k1 = k4 = k6 = k10 = 108 M-1min-1, k2 = k5 = 104 min-1, k3 = 105, k7 525 
= k11 = 105 min-1, k8 = 2.5 ⋅104 min-1, k12 = 1.5 ⋅105 min-1, k13 = 2 ⋅104 min-1, Stot = 2.5 ⋅10-2 M, Etot = 4.15 526 
⋅	10-5 M. C. The 2-site enzyme embedded in a simple reaction system involving a back reaction from 527 
product to substrate, as shown on inset. The black curve shows the total reaction flux VSàP. The blue 528 
line shows the back reaction flux, i.e VPàS. Note that the intersection points of these two curves 529 
represent the steady state points in the system. These points are marked on the plot, with stable and 530 
unstable steady states represented with filled and open circles respectively. The parameters are the same 531 
as those used in Fig. 1C A, with kh  = 102 min-1. D. Product concentration over time, resulting from a 532 
numerical simulation of the system shown in part C and using the same kinetic parameters as used there. 533 
Each curve shows the result of an individual numerical simulation, starting from a different initial 534 
condition.  535 
 536 
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 537 
 538 
Figure 3. A. The three different reaction systems, embedding a multi-site enzyme, considered in this 539 
work. For simplicity, each system is shown with a 2-site enzyme model and with only a single reaction 540 
via one example binding site, while the mathematical analysis presented in the main text considers a n-541 
site model with all possible binding and catalysis reactions. The resulting inequality for each 2-site 542 
system is provided under each cartoon, with the inequalities for the full model provided in the SI. B. 543 
The core inequality, as shown in Eq. 3 and common to all the cases considered, is written for the generic, 544 
n-site model. This inequality characterizes when VSàP is of negative type. We note that the right side 545 
of this equation correspond to only the sum of catalytic rates from the fully bound enzyme complex, as 546 
depicted in the cartoon below. The right side of the inequality involves both catalytic rates and 547 
equilibrium constants of those enzyme complexes that are unbound only on one site. 548 
 549 
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Figure 4. A. Two-parameter bifurcation diagram for the reaction system shown on the inset of Fig. 2C 551 
and involving a 2-site enzyme with a P to S back reaction. The diagram shows the regime with three 552 
steady states for varying Stot (x-axis) and Etot (y-axis) values (in M) for three different sets of 553 
physiologically relevant enzyme kinetic parameters. The kinetic parameters used for the region bounded 554 
by the dashed lines (covering all of the red area) were: k1 = k4 = k6 = k10 = 108 M-1min-1, k2 = k5 = k7 = 555 
k11 = 104 min-1, k3 = 105, k12 = 1.5 ⋅105 min-1, k8 = k13 = 103 min-1, kh  = 0.5·103 min-1. For the region 556 
bounded by the straight lines (covering all of the grey area and some of the red area), the only parameter 557 
altered was the hydrolysis rate of the product; kh =102 min-1. For the region bounded by the dotted lines 558 
(covering all the blue and grey areas, and some of the red area), the two parameters altered were the 559 
hydrolysis rate of the product and the catalytic rate of one of the single-bound complex; kh  = 102 min-1 560 
and k3 = 106. Note that the left boundary of the regions bounded by the straight and dotted lines overlap.  561 
B. Two-parameter bifurcation diagram for the reaction system with free substrate and product fluxes 562 
(as shown on the right most cartoon on Fig. 3A) and involving a 2-site enzyme. The diagram shows the 563 
regime with three steady states for varying substrate in-flux rate kS,in (y-axis) and product out-flux rate, 564 
kP,out (x-axis). Parameters used were as for the straight-line case of part A, and with additional 565 
parameters set as; kS,out = 10 min-1, kP,in = 0 (no product in-flux). The parameter Etot was set to 4.15 ⋅	10-566 
5 M and 10-4 M for the areas bounded by the straight and dashed lines respectively.  567 
 568 
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