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Abstract 

The complement system is a critical host defense against infection, playing a protective role that can also 
enhance disease if misregulated. Although many consequences of complement activation during viral 10 
infection are well-established, specific mechanisms that contribute to activation by different human 
viruses remain elusive. Here, we investigate complement activation by human respiratory syncytial virus 
(RSV), a respiratory pathogen that causes severe disease in infants, the immunocompromised, and the 
elderly. Using a strain of RSV harboring tags on the surface glycoproteins F and G, we were able to 
monitor opsonization of single RSV particles with monoclonal antibodies and complement components 15 
using fluorescence microscopy. These experiments revealed an antigenic hierarchy in complement 
activation, where antibodies that bind towards the apex of F in either the pre- or postfusion conformation 
are able to activate complement whereas other antibodies are not. Additionally, among antibodies that 
were able to activate complement, we observed preferential targeting of a subset of particles with globular 
morphology, in contrast to the more prevalent viral filaments. We found that enhanced complement 20 
activation on these particles arises from changes in surface curvature that occur when the viral matrix 
detaches from the surrounding membrane. This transformation occurs naturally over time under mild 
conditions, and correlates with the accumulation of postfusion F on the viral surface. Collectively, these 
results identify antigenic and biophysical characteristics of virus particles that contribute to the formation 
of immune complexes, and suggest models for how these factors may shape disease severity and 25 
adaptive immune responses to RSV. 

Introduction 

The complement system is a network of proteins that play a vital role in the innate and adaptive immune 
responses to pathogens including viruses1–3, bacteria4,5, and parasites6–8. Activation of the complement 
system proceeds through three principal routes: the classical, lectin, and alternative pathways (reviewed 30 
in ref. 9). These pathways differ in their mechanisms of activation: by opsonizing antibodies (classical 
pathway), by pathogen-specific carbohydrates (lectin pathway), or through continual low levels of 
attachment to surfaces (alternative pathway). Following activation, each pathway converges on C3, the 
central component of the complement cascade. C3 that has been cleaved by proteases or that has 
spontaneously hydrolyzed can covalently attach to activating surfaces via a reactive thioester. C3 35 
attachment to surfaces is self-amplifying, producing new C3 convertases that further drive opsonization. 
C3 attachment also contributes to the terminal arm of the complement cascade, eventually leading to the 
assembly of a membrane attack complex that can neutralize membrane-bound targets through the 
formation of lytic pores. 

In addition to its role in the neutralization of pathogens and infected cells, C3 also plays a central role in 40 
immune signaling. Activation of complement results in the cleavage of C3 into two fragments, C3a and 
C3b. C3b attaches to pathogen surfaces, where its multiple degradation products interact with a variety 
of immune receptors. These interactions contribute to antigen transport to and within lymphoid 
organs10,11; antigen presentation by follicular dendritic cells12; activation of B cells13,14; T cell priming2; and 
the clearance of immune complexes by phagocytic cells15 or erythrocytes16. Additionally, C3a that is 45 
produced during complement activation is a potent anaphylatoxin, increasing inflammation and recruiting 
immune cells to sites of infection17,18. The diversity of interactions between immune cells and C3 
highlights its central protective role bridging innate and adaptive immunity, as well as the potential 
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dangers associated with misregulation of complement19,20.  Although the disparate contributions 
complement makes to health and disease are well-established, the mechanisms by which different 50 
human viruses activate or evade complement are less well understood. Understanding the factors that 
contribute to this process could help aid in the development of more effective vaccines and improve 
understanding of disease pathogenesis. 

Here, we set out to investigate complement activation by the human pathogen respiratory syncytial virus 
(RSV). Activation of complement during RSV infection has been linked to both protection21,22 and 55 
pathogenesis17,23, but the mechanisms that drive complement activation by RSV remain unclear. RSV is 
an enveloped, negative-sense single-stranded RNA virus of the family Pneumoviridae that causes severe 
infection among infants, the immunocompromised, and the elderly. The RSV genome encodes three 
membrane proteins – the fusion protein (F), the attachment glycoprotein (G), and the short hydrophobic 
protein (SH) - which are expressed on the surface of infected cells and packaged to varying degrees into 60 
shed virus particles. Among these surface proteins, F and G serve as the primary targets of the adaptive 
immune response, as well as the leading candidates for vaccine development and prophylaxis24–27. The 
fusion protein, F, mediates the merger between viral and cellular membranes during RSV entry28, and 
has recently been reported to induce outside-in signaling via IGF-1R to facilitate this process29. The 
glycoprotein, G, mediates attachment through the chemokine receptor CX3CR130–32 and, when 65 
expressed in soluble form, helps antagonize immune responses22. While antibodies against F can provide 
potent protection both in vitro and in vivo, the conformational rearrangements this protein undergoes 
have historically presented challenges in vaccine design33. Although antibodies against the prefusion 
conformation of F (pre-F) are frequently capable of blocking viral entry, antibodies that bind to the 
postfusion conformation of F (post-F) often fail to do so34. Numerous recent breakthroughs in protein 70 
design are helping to overcome this challenge through the development of stabilized pre-F antigens as 
vaccine candidates35–37.  However, in the context of natural infection, both pre- and post-F conformations 
occur, and high antibody titers against post-F have been associated with enhanced disease severity and 
increased activation of complement in the lungs23,38. 

Understanding how antibodies and RSV antigens contribute to complement activation could provide new 75 
insights into vaccine development and mechanisms of RSV pathogenesis. To investigate how RSV-
specific antibodies contribute to activation of complement, we developed a fluorescence imaging-based 
approach to simultaneously quantify antibody binding, the abundance of viral antigens, and the deposition 
of complement proteins on RSV at the single-virus level. These experiments identify an antigenic 
hierarchy for complement activation that is dictated by accessibility of the antibody Fc for binding by C1, 80 
the initiator of the classical pathway. We also identify a role for the complement defense protein CD55 
(DAF), which is packaged into virus particles and increases complement activation thresholds and 
decreases C3 deposition. Finally, we identify biophysical features of individual RSV particles within 
heterogeneous populations that enhance their tendency to activate complement. In particular, we find 
that the detachment of the RSV matrix from the viral envelope – a transition that can be induced by 85 
physical perturbations but also occurs under normal physiological conditions in vitro – significantly 
enhances complement activation by a range of antibodies targeting either pre-F, post-F, or both 
conformations of F. Collectively, these results identify a constellation of mechanisms that contribute to 
complement activation and immune complex formation by RSV, and inform models for how complement 
may shape disease severity and the adaptive immune response to infection.  90 

Results 

Complement activation by F-specific antibodies varies by antigenic site.  To identify determinants 
of complement activation by RSV, we developed a fluorescence assay to quantify antibody binding and 
opsonization with complement C3 across populations of individual virus particles. Following our previous 
work using influenza A virus39, we engineered a strain of RSV A that was amenable to fluorescence 95 
imaging of infected cells and shed virus particles (Supporting information, Figure S1A). To track viral 
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infection, we inserted a fluorescent reporter (mTagBFP2) downstream of the NS1 stop codon but 
upstream of the gene-end sequence using an internal ribosome entry site. Separately, we inserted a 
ybbR-tag at the C-terminus of G and a pentaglycine tag immediately following the signal sequence in F. 
Sfp synthase40 can be used to conjugate CoA-based fluorescent probes to the tag on G, while the tag on 100 
F becomes exposed following cleavage of the signal sequence, creating a suitable substrate for the 
enzyme Sortase A (SrtA) to conjugate small peptide-based fluorophores41. These modifications allow us 
to visualize RSV particles and measure densities of antigen (i.e. F or G) on the viral surface independent 
of conformational changes in F (i.e. prefusion vs. postfusion) and while preserving antigenic sites. Viruses 
labeled in this way retain levels of infectivity matching unlabeled controls (Figure S1B), demonstrating 105 
that the attachment of fluorophores is non-disruptive. 

Using this system, we sought to characterize activation of the classical pathway by RSV particles. We 
enzymatically labeled F on the surface of RSV particles collected from A549 cells and immobilized these 
viruses onto pegylated coverslips functionalized with the anti-G antibody 3D325. This allowed us to 
quantify opsonization following incubation of fluorescent viruses with normal human serum supplemented 110 
with defined fluorescent mAbs and labeled C3 (Figure 1A). Initial tests using normal human serum 
resulted in robust C3 deposition in the absence of supplemental mAbs (Figure S1C, left column). 
Incubating virus with this serum for 30 minutes at 4oC also inhibited binding of a high-affinity pre-F-specific 
mAb (5C4) ~2-fold and a post-F-specific mAb (ADI-14359) by ~10-fold, suggesting the presence of 
competing polyclonal IgG/IgM within the serum (Figure S1D). In contrast, IgG/IgM-depleted normal 115 
human serum showed little C3 deposition in the absence of supplemental mAbs, but robust opsonization 
with C3 when F-specific mAbs were added (Figure S1C, right column). IgG/IgM-depleted serum therefore 
provides a means of determining the ability of individual mAbs to activate complement, allowing us to 
identify antibody features that are predictive of potency. 

We expressed and purified a panel of human IgG1 mAbs targeting each of the known antigenic sites of 120 
RSV F26 (Figure 1B). Each mAb was modified to contain a ybbR-tag40 at the C-terminus of the heavy 
chain, to permit quantitative site-specific labeling and the ability to measure the amounts of antibody 
bound to individual virus particles. By using mAbs at concentrations that saturate binding, we were able 
to decouple binding affinity from the intrinsic capacity of a given mAb to activate complement once bound. 
Under conditions that saturate binding, these mAbs vary markedly in their ability to activate complement. 125 
Among the pre-F-binding mAbs tested, 5C424 (site 0), CR950142 (site V), and Motavizumab43 (site II) 
showed the greatest potency.  In contrast, ADI-1942534 (site III) and 101F44 (site IV) showed only 
background levels of C3 deposition (Figure 1C & D).  Thus, although each pre-F-binding mAb achieved 
similar levels of binding to RSV F (Figure 1D, lower plot), only three out of five activated complement 
above background levels. 130 

Several F-specific antibodies bind to the postfusion conformation of F, either exclusively or in addition to 
the prefusion conformation. This includes several antibodies in our panel: 101F and Motavizumab (which 
bind to both pre- and post-F) as well as ADI-14359 and ADI-14353 (which bind specifically to post-F)34. 
To compare C3 deposition driven by these antibodies upon binding to post-F, we first incubated viruses 
bound to coverslips for 24h in buffer with low ionic strength (300mM mannitol, 10mM HEPES pH 7.2), 135 
based on the previous finding that pre-F spontaneously triggers to post-F in buffers with low salt 
concentrations45,46. This treatment increased binding of the post-F specific antibodies ADI-14359 and 
ADI-14353 approximately 300-fold without obvious changes in the morphology of virus particles (Figure 
1E). Conversion of RSV particles to a predominantly post-F form increased C3 deposition from post-F 
specific mAbs ADI-14359 and ADI-14353 to levels comparable to or greater than the most potent pre-F 140 
specific antibodies in the context of pre-F antigens (Figure 1F & G).  For the conformation-independent 
mAbs 101F and Motavizumab, C3 deposition following pre-to-post-F conversion followed different trends, 
increasing approximately six-fold for 101F but decreased by a similar ratio for Motavizumab, despite 
similar levels of antibody binding (Figure 1F & G).  
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The classical pathway is activated when the C1 initiation complex binds to IgM or IgG that has assembled 145 
on activating surfaces. While activation via IgG requires the assembly of a hexameric complex of antibody 
Fc regions47–49, IgM is pre-assembled as an activating platform, with C1 binding sites exposed only upon 
engagement with surface antigen50. As a comparison with our IgG antibodies, we tested activation of the 
classical pathway by recombinant IgM with VH and VL domains from 5C4. As expected, this high-affinity 
IgM was considerably more potent than its IgG1 counterpart, leading to >100-fold more C3 deposition 150 
per bound heavy chain than the corresponding IgG1 mAb (Figure 1H). Given the importance of 
establishing a platform for C1 binding in activation of the classical pathway, we sought to identify how the 
IgG antibodies in our panel may differ in this regard. 

A consistent trend among the IgG1 antibodies that most efficiently activate complement deposition is the 
angle with which they bind to either pre- or post-F. 101F and Motavizumab, antibodies that bind to both 155 
conformations but with alternating Fc orientations, illustrate this effect. For both antibodies, C3 deposition 
increases approximately six-fold when the Fc is oriented away from the viral membrane as opposed to 
towards it. Projection of the Fc region further above the viral membrane is common to all of the activating 
antibodies we tested (Figure S2A), and potentially increases accessibility for binding by C1. Moreover, 
positioning the Fc regions on a plane above the surrounding canopy of F could also facilitate Fc hexamer 160 
formation47 by avoiding steric hindrance from neighboring proteins in the viral membrane. Consistent with 
this model, we observe more binding by C1 (as detected by an anti-C1q antibody) to mAbs that bind to 
pre-F with their Fcs projected outward (CR9501, 5C4, Motavizumab) compared to those where the Fc 
lies within or below the plane of F trimers in the viral membrane (ADI-19425, 101F) (Figure S2B & C). Of 
note, we still observe C1 binding for mAbs that do not drive C3 deposition (e.g. ADI-19425), suggesting 165 
that attachment of C1 to these mAbs may be less likely to produce an active C1 complex. This could 
occur if a high density of antibodies permitted C1 to attach, but assembly of the activating hexamer were 
occluded by F, G, or other proteins present at high densities on the viral surface. 

CD55 is packaged into RSV particles and modulates sensitivity to complement deposition. 
Complement defense proteins anchored in the membranes of host cells can be packaged into enveloped 170 
viruses during assembly51–53, where they may function to restrict different stages of the complement 
cascade. To determine if host complement defense proteins restrict opsonization of RSV particles with 
C3, we focused on the roles of CD46 and CD55. Both proteins are abundantly expressed on A549 cells 
and function to limit the amplification step of the complement cascade by restricting the formation or 
stability of new C3 convertases54.  Using fluorescent Fab fragments or antibodies against CD46 and 175 
CD55, we were able to detect both on the surface of RSV particles collected from A549 cells. We 
proceeded to construct two polyclonal A549 knockout cell lines where one gene or the other was deleted 
via CRISPR/Cas9. Following knockout and cell sorting, we were no longer able to detect the targeted 
proteins in cells or shed viruses, verifying the specificity of the antibodies and confirming successful 
knockout (Figure 2A&B). Using these cells lines, we proceeded to compare C3 deposition in the presence 180 
or absence of CD55 or CD46. Virus released from CD55 KO cells showed increased sensitivity to C3 
deposition across antibodies specific to site 0, II, and V, with percentages of opsonized particles 
increasing ~2-3 fold relative to virus produced by wildtype cells (Figure 2C). Conversely, virus released 
from CD46 KO cells did not show significant differences in C3 deposition relative to wildtype cells using 
the site-V-specific mAb CR9501 (Figure 2D). Comparing activation by CR9501 across a range of 185 
antibody dilutions suggests that deletion of CD55 increases opsonization to an extent comparable to a 
4-fold increase in antibody concentration (Figure 2E&F). While additional complement defense proteins 
may play critical roles in other aspects of RSV infection, these results show that CD55 plays an outsized 
role in modulating sensitivity to opsonization with C3. 

Globular particles containing postfusion F serve as dominant targets of complement activation 190 
by both pre-F and post-F specific antibodies.  Although the efficiency of opsonization with C3 varies 
depending on the activating antibody and on the presence or absence of host complement defense 
proteins, we observed a consistent pattern across experimental conditions, where particles opsonized 
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with C3 had more globular morphology than those with low or undetectable levels of C3, which tended to 
be more filamentous (Figure 3A & B). To investigate this further, we characterized particle morphology 195 
and F conformation by simultaneously labeling RSV particles with the prefusion-specific antibody 5C4 
and the postfusion-specific antibody ADI-14359. This revealed that filamentous particles contained 
almost exclusively pre-F while globular particles were frequently enriched in post-F (Figure 3C), 
consistent with prior characterization using electron microscopy55. Comparing newly-released virus with 
virus incubated in cell culture media at 37oC for 24 hours revealed that the proportion of post-F-containing 200 
particles increased following the 24h incubation, while the proportion of filamentous particles (defined as 
those >1um in size with an aspect ratio >2) decreased (Figure 3D-F). Direct labeling of RSV-infected 
cells with 5C4 and ADI-14359 revealed mixtures of pre- and post-F particles on the surfaces of both 
infected A549 cells as well as on neighboring uninfected cells, confirming that the occurrence of both 
particle types is not limited to circumstances where the virus is being collected or handled (Figure S3). 205 
Collectively, these results suggest that RSV particles transform spontaneously over time under mild 
conditions into a globular state enriched in post-F. 

The bias in C3 opsonization towards globular particles could reflect a higher intrinsic sensitivity to 
complement activation in these particles as compared to viral filaments, or it could indicate that particle 
morphology is altered upon deposition of C3 or other complement proteins. To distinguish between these 210 
two possibilities, we compared C3 deposition on newly-shed virus (collected over a 2-hour window) to 
“aged” virus (incubated at 37oC an additional 22 hours following release from cells). If globular 
morphology predisposes particles to C3 deposition, we would expect to see more C3 deposition in the 
particles aged an additional 22 hours. Consistent with this prediction, we observed that virus collected at 
2h (retaining a high proportion of filaments) was less sensitive to opsonization than virus aged an 215 
additional 22h at 37oC (retaining a lower proportion of filaments) (Figure 4A & B), suggesting that particles 
with globular morphology and/or higher levels of post-F have lower thresholds for complement activation. 
This trend is conserved even for the pre-F-specific mAb CR9501, an unexpected result given that 
samples incubated at 37oC show ~20% loss in pre-F as it converts to post-F (Figure 3F, Figure 4B).  

To further confirm that differences in particle morphology precede differences in opsonization, we 220 
performed time-resolved experiments to determine the kinetics of complement deposition. For these 
experiments, we used CR9501 mAb as the activating antibody and tracked deposition of C4 on virus 
particles rather than C3. The lower concentrations of C4 in serum as compared to C3 allowed us to 
visualize deposition on particles without the high background signal from protein in solution that arises 
when using C3. Additionally, deposition of C4b is immediately downstream of activation of the C1 225 
complex in the classical pathway, providing rapid detection of complement activation. Consistent with 
endpoint measurements of C3 deposition, C4 accumulates first on globular particles, appearing within 
~10-15 minutes of incubation with complement components (Figure 4C). Analysis of C4 deposition across 
n = 742 globular and n = 607 filamentous particles revealed substantial differences in patterns of 
opsonization; ~50% of globular particles showed detectable accumulation of C4 within 30 minutes, 230 
compared to <10% of filamentous particles (Figure 4D-F). Moreover, opsonization with C4 proceeds with 
different kinetics, occurring ~5-fold faster in globular particles than in filamentous ones (Figure 4E&F). 
These results demonstrate that sensitivity to antibody-dependent complement deposition correlates with 
RSV particle morphology. 

Detachment of the viral matrix increases complement activation by decreasing membrane 235 
curvature. The globular RSV particles we observe resemble prior observations from electron 
microscopy, where the matrix protein appears to have dissociated from the membrane, resulting in more 
rounded morphology and less ordered distributions of surface proteins as compared to viral filaments 
budding from infected cells55,56. Although this effect has been attributed to damage during sample 
preparation, we reasoned that aging may result in the same morphological transformation, and that a 240 
similar effect could be achieved in a controlled fashion through osmotic swelling. Treatment of RSV 
particles with a low osmolarity buffer (10mM HEPES pH 7.2, 2mM CaCl2) transformed viral filaments into 
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spherical particles over the course of ~1 min, with no loss of infectivity (Figure 5A, Figure S4A). To 
corroborate that this morphological transformation coincides with detachment of the viral matrix, we 
performed photobleaching experiments on RSV particles with enzymatically labeled F. In the absence of 245 
an intact matrix layer, we reasoned that F (which may interact with the matrix protein via its cytoplasmic 
tail57,58) could freely diffuse laterally within the plane of the viral membrane and should therefore show 
increased recovery after partial photobleaching (Figure S4 B&C). Consistent with this prediction, we 
observed significantly more recovery in bleached F on post-F enriched globular viruses and on 
osmotically-swollen viruses compared to viral filaments. The increased recovery on osmotically swollen 250 
viruses could be reversed by treatment with 0.5% PFA while preserving the particles’ spherical geometry 
(Figure S4C). These results suggest that the morphological transformation we observe as RSV particles 
age or are subjected to physical perturbations is driven by the detachment of the matrix from the viral 
membrane.  

We next sought to determine the effects of this controlled transformation on complement activation. We 255 
found that osmotic swelling led to increased C1 binding in the presence of F-specific mAbs (CR9501, 
5C4, ADI-19425), but not in their absence (Figure 5B, left), indicating that the effect is not a non-specific 
consequence of swelling. Furthermore, increased C1 binding did not result from increased mAb binding, 
which remains constant or decreases slightly upon swelling (Figure 5B, right). Similar to the effects of 
aging on virus particles (Figure 4), C3 opsonization also increases upon osmotic swelling, an effect that 260 
is conserved across mAbs targeting a range of antigenic sites on pre-F and/or post-F (Figure 5C). 
Recombinant IgM antibody with VH and VL domains from 5C4 shows a similar effect, with C3 deposition 
increasing by ~50% following osmotic swelling across a range of IgM dilutions (Figure 5D). Collectively, 
these results demonstrate that detachment of the viral matrix increases sensitivity to complement 
activation by both IgG and IgM antibodies, and that increased sensitivity is likely due in part to increased 265 
attachment of C1 to the viral surface. 

The morphological transformation in RSV particles is accompanied by two notable biophysical changes: 
increased mobility of F in the membrane and decreased membrane curvature. While either could 
potentially contribute to enhanced complement activation, we observed a similar fold-increase in C3 
deposition on both fixed (0.5% PFA) and unfixed viruses in the spherical state vs. the filamentous state 270 
(Figure S4D), suggesting the antigen mobility alone does not account for preferential opsonization of 
globular RSV particles. We therefore sought to determine if membrane curvature could be a determining 
factor. Curvature has previously been implicated in complement activation on antigen/antibody-coated 
beads and peptidoglycan nanoparticles59–61. However, these studies have reached different conclusions 
regarding the effects of curvature, and it remains unclear how these results would generalize to 275 
enveloped viruses, where antigens are oriented and may be spaced semi-regularly62–64.  

The transformation from filament to sphere results in decreased membrane curvature to an extent that 
varies depending on the size of the initial filament. While the change in curvature is negligible for particles 
whose length and diameter are similar (~100nm), curvature will decrease ~2-fold for a particle 1μm in 
length, and ~5-fold for particles 10μm in length (Figure S5A & B). If complement activation by IgG is 280 
sensitive to curvature, the effects of osmotic swelling on C3 deposition should therefore vary depending 
on the initial size of the particle. To test this prediction, we compared C3:F ratios between osmotically-
swollen (spherical) particles and non-treated (filamentous) particles from the same initial population of 
RSV. While C3:F ratios are similar for smaller viruses regardless of swelling, C3:F is increased by up to 
nine-fold upon swelling in larger viruses, indicating a preference for lower curvature in IgG1 activation of 285 
complement (Figure S5C). Thus, large viruses are poised to evade complement activation when they 
emerge from cells as highly-curved filaments, but become substantially more susceptible as they age or 
their morphology is physically disrupted.  

 

 290 
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Discussion 

Activation of complement during RSV infection has been linked to both protective and pathogenic effects, 
but the mechanisms that drive complement activation by RSV remain unclear. We find that a number of 
factors contribute to activation of the classical pathway by shed RSV particles, including characteristics 
of the targeting antibody, the packaging of complement defense proteins into the viral membrane, and 295 
biophysical characteristics of RSV particles. Among these factors, the dominant contribution comes from 
the activating antibody. We find an antigenic hierarchy in the ability of different mAbs to activate 
complement: although all of the IgG1 antibodies we have tested contain the same Fc and are capable of 
binding to pre- or post-F at similar antibody:F ratios, only a subset are able to activate complement with 
appreciable efficiency under the conditions of our experiments. A common feature of these activating 300 
antibodies is that they are all predicted to project their Fc above the surrounding canopy of F (>15nm 
above the viral membrane), leading to more efficient binding by C1 (Figure 1, Figure S2). The typical 
distance between adjacent F trimers in the RSV membrane appears to be ~10-20nm56, a value that is 
roughly consistent with other filamentous viruses62,64,65. Since this spacing is too small to accommodate 
an activating IgG or IgM platform between F trimers and since F appears to be largely stationary within 305 
the membrane of viral filaments (Figure S4B & C), it may be critical to position antibody Fcs in this way 
so as to avoid steric clashes with adjacent F trimers. A consequence of this scenario is that activation of 
complement would occur at comparatively large distances from the membrane. While this could 
potentially limit the proper assembly of a membrane attack complex (where proximity to the membrane 
may be beneficial66), it may be inconsequential to other aspects of activation including the production of 310 
C3a, which has been implicated in RSV disease severity17.  

Perhaps the most unexpected result presented here is the observation that treatments which increase 
the proportion of post-F in the viral membrane can enhance complement activation by both pre-F and 
post-F specific antibodies (Figures 4 & 5). Given the importance of C3 opsonization in antigen 
presentation and B cell activation14, we speculate that this may contribute to bias in adaptive immune 315 
responses to infection. Previous work has established that infants mount an adaptive immune response 
focused largely on prefusion F, and that this response shifts over time to recognize post-F as the infants 
age34.  Antibodies that bind to pre-F may activate complement disproportionately on post-F containing 
particles, lowering thresholds for the activation of B cells that engage with these particles. Such an effect 
could be further enhanced by epitope masking by the pre-F antibodies, which would further reduce the 320 
availability of pre-F epitopes for B cell engagement. Although this model is speculative, our results 
suggest that further investigation of whether or how bias in complement activation contributes to 
establishing immunodominance hierarchies may be warranted. 

Antibody responses specific to postfusion F have been linked to increased disease severity associated 
with enhanced complement activation23,38. Post-F antibodies are poorly neutralizing and thus ineffective 325 
at controlling infection, potentially leading to increased viral load. In addition, our results suggest that the 
high intrinsic capacity of post-F containing particles to activate complement may further enhance the 
damage caused by post-F specific antibodies. Mechanistically, the increased tendency of post-F enriched 
particles to activate complement appears to originate from the detachment of the viral matrix, which in 
turn decreases the mean curvature of the viral surface. Although more work is needed to understand the 330 
factors that contribute to matrix detachment and the extent to which this occurs during in vivo infection, 
our observations that these particles accumulate over time under normal cell culture conditions suggest 
that their presence in vivo is feasible, where the physical and chemical environment would be 
considerably harsher and more complex. Other enveloped viruses, including phylogenetic neighbors of 
RSV from Paramyxoviridae such as measles virus and Newcastle disease virus, have been shown to 335 
exhibit a similar pleomorphism arising from matrix disassembly64,67,68. More generally, our results suggest 
that any factor that alters virus morphology – whether genetic or non-genetic - could have biophysical 
effects on immune signaling. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.06.442421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442421


8 
 

The methodology presented here - combining site-specific labeling and fluorescence characterization to 
dissect mechanisms of complement activation by RSV - provides a model that could be generalized to 340 
other pathogens. Although investigating complement activation in vitro limits our ability to asses direct 
immunological consequences of activation, it provides the ability to isolate the contributions that different 
antibodies and distinct particle subsets make towards complement activation. This may be particularly 
useful for viruses that vary widely in the biophysical characteristics of released progeny, including RSV, 
HMPV, influenza, and Ebola. Extending this methodology to investigate other viruses and their 345 
interactions with immune receptors could help determine if particle heterogeneity contributes to disparate 
outcomes during immune signaling in other contexts as well.    

Methods 

Creating recombinant RSV for site-specific labeling. We introduced modifications into the RSV 
genome following the approach of Hotard et al.69.  Briefly, we electroporated a BAC containing the 350 
antigenomic cDNA of a chimeric RSV strain A2 with the F protein from Line 19 (obtained through BEI 
Resources) into the E coli strain SW10270. To avoid virus attenuation and fluorescence spectral overlap 
caused by the mKate2 reporter in front of NS1 in the initial construct, we replaced it with an mTagBFP2 
reporter, expressed from an IRES following NS1. From this modified BAC, we proceeded to use a galK 
cassette with a 5’ homology arm targeting the C-terminal region of G and a 3’ homology arm targeting 355 
the N-terminal region of F to insert tags on G and F simultaneously following an initial round of selection 
on galactose plates.  We verified successfully modified BACs by sequencing a PCR-amplified region 
around the modified site, and we purified the BACs from 250ml cultures using a Nucleobond BAC100 kit. 
The genomic sequence for the final virus is given in Supporting information. 

To rescue recombinant viruses, we transfected 6-well plates of BHK-21 cells with BAC (0.8μg), helper 360 
plasmids (codon-optimized L, N, P, and M2-1 at 0.2, 0.4, 0.4, and 0.4μg, respectively), and a vector 
containing the T7 RNA polymerase (0.2μg) using Lipofectamine 2000. Helper plasmids were obtained 
from BEI Resources.  Following transfection, cells cultured in virus growth media (OptiMEM with 2% FBS 
and antibiotic-antimycotic) were passaged every 2-3 days at a 1:3 ratio and monitored for signs of 
infection.  To collect virus stocks, we removed media from T75 flasks of infected cells and replaced it with 365 
2ml of PBS supplemented with 2mM EDTA. Cells that detached from the flask were collected, flash-
frozen in liquid nitrogen, and pelleted to remove cell debris following a rapid thaw at 37oC.  The virus-
containing supernatant was then aliquoted and stored at -80oC until needed for experiments.  Detailed 
characterization of the replication of this recombinant strain will be published elsewhere. Viral titers used 
for MOI calculations were determined by quantifying mTagBFP2-expressing A549 cells infected in 96-370 
well plates as a function of the input volume of virus. 

Preparing viruses.  We used viral stocks snap-frozen and stored at -80oC to infect ~90% confluent A549 
cells in 8-chambered coverglass or 96-well plates at MOI ~1. To enhance the efficiency of infection, virus 
diluted into virus growth media (final volume of 100ul) was centrifuged onto cells at 1200xg for 10 minutes 
and returned to the incubator for an additional 50 minutes before washing off the virus-containing media 375 
and replacing with fresh virus growth media. Samples used for independent biological replicates were 
conducted using viruses from independent infections. 

Enzymes and probes for site-specific labeling were generated as previously described39,71.  At 48-60 
hours post infection, F on the surface of infected cells was labeled in situ using 50μM Sortase A and 
100μM fluorescent CLPMTGG substrate. With the exception of photobleaching experiments (where 380 
sulfo-Cy3 was used), sulfo-Cy5 maleimide (Lumiprobe, 13380) was conjugated to the N-terminal cysteine 
of the SrtA peptide to label F. Labeling reactions were prepared in virus growth media supplemented with 
5mM CaCl2. For experiments with labeled G, the labeling reaction also included 5μM Sfp, 10μM CoA-
probe, and 5mM MgCl2. After labeling cell surface viral proteins for two hours at room temperature, the 
labeling reaction was washed four times with fresh media and the cells were returned to the incubator for 385 
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an additional two hours to allow labeled viruses to detach. Viruses prepared in this way exhibited 
predominantly filamentous morphology (~70%) and fewer than 5% contained detectable post-F. 

Coverslip functionalization and virus immobilization.  Coverslips for virus immobilization and imaging 
were prepared following a pegylation protocol modified from Piehler et al.72. Briefly, glass coverslips were 
cleaned with sonication using a 50% ethanol / 50% 3M NaOH solution for 30 minutes, followed by two 390 
rinses in 1L beakers of milliQ water. Coverslips were then cleaned using piranha solution (60% sulfuric 
acid, 40% H2O2) and sonication for 45 minutes, rinsed, dried, and functionalized with (3-
glycidyloxypropyl)trimethoxysilane (GOPTS) for 1h at 75oC. Excess GOPTS was rinsed from coverslips 
using anhydrous acetone, and a mixture of biotin-PEG-amine / methoxy-PEG-amine (Rapp Polymere) 
was prepared in anhydrous acetone at a ratio of 10 mol% biotinylated PEG. The PEG solution was 395 
coupled to coverslips overnight at 75oC, rinsed twice in 1L beakers of milliQ water, and stored in milliQ 
water at 4oC until use. 

For virus immobilization, pegylated coverslips were rinsed in ethanol, dried, and sealed with custom 
chambers made of polydimethylsiloxane with wells shaped using a 4mm biopsy punch. Wells were filled 
with PBS and incubated successively with streptavidin (5ug/ml in PBS) and anti-G antibody 3D327 with a 400 
biotin site-specifically conjugated to the C-terminus of the heavy chain (see Antibody cloning, expression, 
purification, and labeling). After washing wells ten times with PBS to remove excess antibody, coverslips 
were stored at 4oC in a humidified enclosure for <2 days, until ready for use. 

Antibody cloning, expression, purification, and labeling. Antibody sequences used in this work are 
listed in Supporting information. VH and VL sequences were cloned into a human IgG1 backbone with a 405 
C-terminal ybbR tag using Gibson assembly. Verified clones were used to transfect T75 flasks of 
HEK293s at ~85% confluency.  At ~12h post transfection, cells were washed twice with PBS to remove 
any residual IgG from the serum-containing culture media and grown for an addition 6 days in serum-
free OptiMEM. Media containing secreted mAbs was collected and centrifuged at 1000xg to remove 
detached cells before purification with Protein G resin. Fab fragments (ADI-14359) and 5C4 IgM were 410 
expressed and purified analogously, with the exception that a C-terminal His(6)-tag on the heavy chains 
were used for affinity purification by Ni-NTA agarose in place of Protein G resin. 

Eluted antibodies were quantified, diluted into a new buffer for enzymatic labeling (150mM NaCl, 25mM 
HEPES, 5mM MgCl2), and concentrated using centrifugal concentrators (VIVAspin 100K). Antibodies 
concentrated to ~1mg/ml were then labeled overnight on ice using Sfp synthase and CoA-conjugated 415 
dyes, prepared as previously described39. Following removal of excess dye using PD-10 desalting 
columns, labeling efficiencies were determined spectrophotometrically to be >90% for all antibodies 
based on the number of heavy chains. For virus immobilization, we cloned and purified the anti-G 
antibody 3D327,73 using the same protocol, but substituting CoA-biotin for the fluorescent dyes. 

C3/C4 deposition assay. C3 deposition assays were performed using IgG/IgM-depleted Normal Human 420 
Serum (NHS; Pelfreeze 34014).  Fluorescent C3 and C4 were produced by labeling purified C3 or C4 
(Complement Technologies, A113 and A105) using AF-488 dye functionalized with N-
hydroxysuccinimide ester (Lumiprobe 11820). Labeling reactions were calibrated to prevent over-labeling 
of proteins and resulted in ~0.6-1.0 dye molecules / protein, as determined via spectrophotometry. 
Complement reactions to monitor C3 deposition were prepared using complement buffer (150mM NaCl, 425 
25mM HEPES, 0.5mM MgCl2, 0.15mM CaCl2) supplemented with 10mg/ml BSA, 5% IgG/IgM-depleted 
NHS, 50μg/ml 488-C3, and 10-20μg/ml fluorescent mAb (to assure rapid saturation of binding).  
Assuming a C3 concentration of 1mg/ml in NHS, approximately 30-50% of C3 in the experiment will carry 
a fluorophore. Prior to starting the reaction, all samples were washed thoroughly with complement buffer. 
Complement reactions were prepared on ice and added to virus samples before incubation at 37oC / 5% 430 
CO2 / 100% humidity for one hour. Following incubation, samples were washed three times with PBS to 
terminate the reaction and imaged immediately. A similar procedure was followed for timelapse 
experiments using C4, except NHS was used at a final concentration of 2.5% and 488-labeled C4 was 
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supplemented at 10μg/ml. To synchronize recording with the start of the reaction, samples containing 
immobilized RSV were mounted in an incubated enclosure on the microscope prior to adding the 435 
complement components. 

C1 binding assay. C1 binding assays were performed using purified C1 (Complement Technologies 
A098) in the absence of other serum proteins and the presence of defined mAbs. C1 was diluted into 
complement buffer to a final concentration of 10μg/ml. The reaction also contained 10mg/ml BSA and 
saturating concentrations of defined mAbs (10-20μg/ml, as in C3 deposition assays). This mixture was 440 
incubated with enzymatically labeled RSV particles for 90 minutes at 4oC, washed three times in 
complement buffer, and labeled with an Alexa Fluor 488-conjugated anti-C1qA antibody (1A4; Santa 
Cruz sc-53544 AF488) at a 1:500 dilution in complement buffer for 30 minutes at room temperature 
before imaging. 

Fluorescence microscopy and image analysis.  Following incubation with antibodies and complement 445 
components, we imaged opsonized RSV particles using a 60X 1.40 NA objective on a Nikon T2i 
microscope body equipped with a Yokogawa CSU-X spinning disk and ORCA-Flash4.0 V3 camera.  For 
each sample condition per biological replicate, we collected images of ~15 randomized fields of view, 
each containing ~500-1000 RSV particles. The resulting image datasets were analyzed and plotted using 
custom Matlab scripts. Images were segmented using the F channel to identify pixels associated with 450 
each virus in the image. Following background subtraction, fluorescence intensities were integrated 
across all channels to obtain an integrated intensity for F, mAb, and C3/C4/C1 for each segmented 
particle. Integrated intensities were then plotted directly to determine population distributions (e.g. Figure 
1C), or simplified further by determining the percentage of positive particles (e.g. Figure 1D). 

Virus photobleaching. Viruses labeled with Sulfo-Cy3 CLPMTGG via SrtA were immobilized on 455 
coverslips using antibodies against G (3D3) and imaged on an Olympus FluoView FV1200 laser scanning 
confocal microscope using a 60X 1.35 NA objective. A circular region ~1μm in diameter that overlapped 
with a portion of the virus particle was selected and bleached using a 561nm laser, and fluorescence 
recovery was monitored by imaging at 5s intervals for one minute, including one image pre-bleach and 
one image immediately post-bleach. To identify globular particles enriched in post-F, a 488-labeled Fab 460 
fragment with VH and VL domains from ADI-14359 was added as a marker. Use of a Fab fragment for 
these experiments prevented antibody-mediated crosslinking of F that could alter fluorescence recovery. 
Time series of bleaching and recovery were used determine differences in F mobility. The percentage 
recovery was determined by generating an image mask from the difference between the first frame post-
bleach and the last frame pre-bleach, to identify the bleached pixels. Intensities within the masked region 465 
were then integrated to quantify signal before bleaching, immediately after bleaching, and after a 20s 
recovery.   

Infectivity comparisons. Comparisons of virus infectivity following various treatments (Figure S1B, 
Figure S4A) used expression of the mTagBFP2 reporter to quantify infected cells. For comparisons of 
infectivity with or without fluorophores conjugated to F, viruses were labeled at 60hpi as described under 470 
Collecting and labeling viruses. Control samples were incubated at room temperature in parallel with 
labeled samples, and washed in the same way, to assure that collected viruses in all cases were shed 
exclusively over a two-hour period. 5μl of these samples were used to infect confluent A549 cells in 96-
well plates, as described in Preparing viruses. Infection was quantified by counting BFP-positive cells 
across ~10 fields of view at 10x magnification at 12hpi. Virus quantified in this way reflects only the 475 
particles shed from cells in a 2h period, and does not reflect the potentially substantial fraction of virus 
that remain cell-associated, or that were removed during wash steps. 

For comparisons of untreated and osmotically-swollen viruses, 96-well plates containing infected A549 
cells at 60hpi were washed with fresh media to remove older virus and returned to the incubator for 2h 
to allow new virus to shed. Collected samples were then split into experimental and control groups. For 480 
control groups, 5μl of shed virus was diluted into 95ul of 1x MEM with sodium bicarbonate and 7.5mM 
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HEPES. For experimental groups, 5μl of shed virus was diluted into 75μl of 10mM HEPES (the low 
osmolarity buffer used for osmotic swelling), incubated for ~1 minute, and added to 10μl of 10x sodium 
bicarbonate and 10x MEM, so that the final composition of control and experimental groups is matching.  
Samples were then used to infect confluent A549 cells in 96-well plates seeded the previous day. 485 
Infection was quantified by counting BFP-positive cells across ~10 fields of view at 10x magnification at 
12hpi.  

Creating polyclonal A549 CD55 and CD46 knock-out lines. A549 knockout cells were generated 
through transduction with lentivirus generated from the lentiCRISPR v2 packaging plasmid74. Three 
sgRNA sequences were selected using CRISPR KO and the design rules described by Doench et al.75. 490 
These were tested in small scale via transient transfection in HEK293s and the sgRNAs that yielded the 
highest efficiency (determined via immunofluorescence) were selected for lentivirus preparation and 
infection into A549s. The spacer sequences used for CD55 and CD46 sgRNAs are 5’-
GCACCACCACAAATTGACAA-3’ (for CD55) and 5’-GTTTGTGATCGGAATCATACA-3’ (for CD46; 
underline indicates a nucleotide added for efficient transcription initiation). Polyclonal knockout cells were 495 
further enriched at the Washington University Flow Cytometry core, using a FACS Aria II to isolate cells 
negative for surface staining with fluorescent antibodies against CD46 (clone TRA-2-10) or CD55 (clone 
JS11). 

Modeling virus curvature. RSV particles are modeled in two simplified morphological states: 
filamentous particles - consisting of a cylindrical region of length L and radius af and two hemispherical 500 
caps - and globular particles, which we approximate as a sphere of radius as. During the transition from 
a filament to a sphere, the surface area of the virus remains constant; this is constrained by the number 
of lipids packaged during assembly and the inability of lipid membranes to withstand area strains above 
~5%76. Conversely, the volume of the virus may change due to a flux of water into or out of the particle. 
The relationships in Figure S5A were obtained by applying a constant area constraint and equating the 505 
two surface areas (filament and sphere) and solving for the mean curvature in both cases. 
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 690 
Figure 1: Complement activation and C3 deposition vary across antigenic sites of RSV F.  

(A) A fluorescence-based approach to measuring opsonization of RSV particles with mAbs and C3. RSV particles 
with site-specifically labeled F are immobilized on coverslips and incubated with normal human serum (IgG/IgM-
depleted), specific mAbs, and fluorescent C3 prior to imaging. Right: RSV particles opsonized with mAb (CR9501 
IgG1 in the image shown) and C3.  695 

(B) Antibodies used in this study and their antigenic sites.  A ‘*’ denote mAbs specific to prefusion F while a ‘†’ 
denotes mAbs specific to postfusion F.  

(C) Distributions of integrated antibody and C3 intensities on opsonized virus particles with predominantly prefusion 
F. Gray points indicate data for individual virus particles. Dashed regions indicate criteria for C3-postiive particles. 
Data is combined from three biological replicates.  700 

(D) Top: Data from C, plotted as percentage of C3-positive RSV particles, defined by integrated intensities >104. 
Points show results from three biological replicates with the mean across the replicates shown as a line. Antibodies 
considered activators of the classical pathway (>10% C3-positive particles) are shown in magenta. Bottom: Plot of 
average mAb:F intensity per RSV particle across the same antibodies and replicates as in the plots above.   

(E) Conversion of pre-F to post-F on RSV filaments via ~24h incubation in buffer with low ionic strength but balanced 705 
osmolarity. Post-F is detected using the site I-directed mAb ADI-14359. Images are displayed at matching contrast 
levels.  
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(F) and (G): Results corresponding to C and D but for RSV particles containing predominantly post-F.  

(H) Comparison of C3 deposition by IgM and IgG1 antibodies. Top: schematic of antibodies based on 5C4. The 
antibodies contain matching light chains and VH domains coupled to the human heavy chain μ (for IgM), or a human 710 
IgG1 Fc. IgM is additionally co-expressed with a J chain plasmid. All heavy chains contain a c-terminal ybbR tag 
for site-specific conjugation of a fluorophore for quantification of bound antibody. Bottom: contour plots showing 
distributions of C3 and IgM/IgG1 heavy chains per RSV particle, based on fluorescence intensities. The IgM 
distribution is determined from 317594 RSV particles; the IgG distribution is determined from 126372 RSV particles. 
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 715 

Figure 2: CD55 is packaged into RSV particles and increases thresholds for C3 opsonization.  

(A) Images of RSV particles with enzymatically-labeled F and CD55 or CD46 labeled via fluorescent antibodies. 
Panels show representative images of virus released from wildtype (wt) A549 cells and CD55 or CD46 knockout 
cells, displayed at matching contrast levels. Scale bar = 5μm. 

(B) Histograms showing distributions of antibody intensities per RSV particle for wildtype and knockout cell lines.  720 

(C) Comparison of C3 deposition for three different F-specific antibodies and a negative control on viruses raised 
in wildtype cells (open circles) or CD55 knockout cells (closed circles). Connecting lines show data from paired 
biological replicates; black lines show mean values. P-values are determined using a paired-sample t-test.  

(D) Similar plot as in C, but for data obtained from CD46 knockout cells.  

(E) Distributions of antibody and C3 intensities for serial dilutions of CR9501 IgG1. Panels in the top row show 725 
results for viruses from CD55 KO cells, while panels from the bottom row show results for viruses from wildtype 
cells. The region indicated by the dashed line represents the threshold for C3-positive particles.  Percentages in the 
upper left corners indicate the percentage of C3-postiive particles. Data is combined from three biological replicates.  

(F) Data from E plotted as percentage C3-positive particles per condition. * indicates p<0.05 calculated using a two-
sample t-test.  730 
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Figure 3: RSV particles are morphologically and antigenically heterogeneous.  

(A) RSV particles opsonized with antibody (CR9501 IgG1) and C3. White arrows in merged panel indicate globular 
particles with high levels of C3.  

(B) Comparison of particle aspect ratios across RSV particles that do (green boxes) or do not (gray boxes) show 735 
opsonization with C3. Boxes indicate 25th-75th percentiles and points show median values for three biological 
replicates. Analysis is limited to particles with an area larger than 100 pixels, where morphology can be determined 
from diffraction-limited images. P-values are determined based on median values using a paired sample t-test.  

(C) Three-color labeling strategy to detect total F (via enzymatic labeling with SrtA), post-F (via the post-F specific 
mAb ADI-14359) and pre-F (via the pre-F specific mAb 5C4). Fluorescence images show RSV particles labeled to 740 
indicate pre-F, post-F, and total F on the virion surface.  

(D) Experimental approach to determine effects of aging on RSV particles.  

(E) Distributions of pre-F and post-F intensities for virus aged 2h at 37oC (left) or 24hr at 37oC (right). Data is 
combined from three biological replicates. Region inside the dashed lines define criteria for post-F positive particles.  

(F) Percentage of post-F positive particles (left) and filamentous particles (right) after 2h and 24h aging. Post-F-745 
positive particles are defined by those within the dashed lines in E. Filamentous particles are defined as those with 
length >1μm and aspect ratio (L/W) > 2. Gray lines show results from paired biological replicates; black lines show 
average values. P-values are determined using a paired sample t-test.  
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Figure 4: Globular particles are preferentially and rapidly opsonized with C3 and C4.  750 

(A) Distributions of C3 and mAb intensities per RSV particle in the absence of mAb (‘-IgG’) or in the presence of 
ADI-14359 or CR9501. The top row shows results for particles aged for a total duration of 2h at 37oC (i.e. during 
budding from A549 cells); the bottom row shows particles aged for a total duration of 24h at 37oC following collection 
at 2h. Particles within the dashed rectangles indicate those that are C3-positive, and the percentage of these 
particles is indicated in the upper left. Distributions are combined from three biological replicates.  755 

(B) Left: percentage of C3-positive particles following aging at 37oC for 2h (open circles) or 24h (filled circles). Black 
markers give average values for three biological replicates; individual replicates are shown in gray. Right: mean 
mAb/F intensities per particle for the same datasets plotted to the left. P-values determined using a paired-sample 
t-test. 

(C) Time series of C4 accumulation on RSV particles.  White arrows indicate first detectable accumulation of C4.  760 

(D) C4 accumulation on RSV particles over time, categorized by particle morphology. Data to the left shows C4 
accumulation on 742 globular particles; data on the right show C4 accumulation for 607 filamentous particles.  In 
both plots, rows show C4 data for individual particles from 0 to 30 minutes, sorted from top to bottom according to 
final C4 accumulation.  

(E) Data from D, plotted by grouping particles within percentile intervals from 0-10%, 10-20% etc. and averaging 765 
C4 accumulation in each group.  

(F) Sample images of globular (top images) and filamentous (bottom images) RSV particles. Displayed images are 
sampled at 4 minute intervals beginning from 2 minutes after the addition of serum and complement components 
(scale bar = 1μm).  
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Figure 5: Membrane detachment from the viral matrix increases complement activation.  

(A) Process for detaching the RSV matrix from the viral membrane using osmotic swelling. Fluorescence images 
show details of the transformation, with t = 0s approximately corresponding to the addition of low osmolarity buffer. 

(B) Left: C1q binding per RSV particle, with (filled circles) and without (open circles) osmotic swelling. Black markers 
indicate averages across four biological replicates. Individual replicates are shown in gray, with connecting lines 775 
indicating paired replicates. C1q intensity is measured using a C1qA-specific antibody conjugated to Alexa Fluor 
488. Right: average mAb intensity per particle for the same experiments plotted to the left. P-values determined 
using a paired-sample t-test.  

(C) Percent C3-positive RSV particles with (filled circles) and without (open circles) osmotic swelling. Plots to the 
left are for predominantly pre-F particles; plots to the right are for predominantly post-F particles. Black markers 780 
indicate averages of three biological replicates (color-coded according to the mAb’s antigenic site). P-values 
determined using a paired-sample t-test.  

(D) Percent C3-positive RSV particles with (filled circles) and without (open circles) osmotic swelling across different 
dilutions of 5C4 IgM. P-values determined using a paired-sample t-test.  
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Figure S1: A fluorescence imaging-based approach to studying complement activation by RSV.  

(A) Top: Schematic of the RSV genome highlighting specific modifications: mTagBFP2 reporter expressed from an 
IRES following NS1, and tags for site-specific labeling on G (C-terminal ybbR tag) and F (N-terminal SrtA tag). 
Bottom left: images of RSV particles with labeled G and F. Bottom right: structures of pre- and postfusion F 
highlighting the location of the N-terminal tag, which remains accessible for labeling on both structures.  790 

(B) Comparison of RSV infectivity with and without fluorescent modifications to F. Infected cells were quantified at 
12hpi by counting cells expressing the BFP reporter (representative images in lower panels; scale bar = 100μm). 
RSV particles quantified were those shed into the culture media during a 2h incubation and does not include cell-
associated virus. Points show results from individual replicates; lines show mean values. P-value determined by a 
two-sample t-test.  795 

(C) Comparison of C3 deposition in complete normal human serum (5%) and IgG/IgM-depleted serum (5%), with 
and without supplemental mAbs. Images are displayed at matching contrast across each channel. 

(D) Antibody competition between fluorescent mAbs and polyclonal antibodies from normal human serum without 
IgG/IgM depletion. Results are shown as distributions of integrated mAb intensity normalized to integrated F 
intensity per RSV particle. Top: comparison of binding by pre-F-specific mAb 5C4. Bottom: comparison of binding 800 
by post-F-specific mAb ADI-14359 for viruses converted to post-F form by incubation with low ionic strength buffer 
(see also Figure 1B & E).  
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Figure S2: Complement activation and C1q binding varies with Fc position.  

(A) Modeling Fc positions for F-specific mAbs.  Structures for RSV F (or portions thereof) with bound antibodies 805 
(PDB IDs 6OE4, 5W23, 4ZYP, 3IXT, 6APD, 6APB, and 3O45) were aligned with human IgG1 (PDB ID 1HZH) to 
determine representative locations accessible to antibody Fc regions (indicated by dashed outline). Distances from 
the viral membrane range from ~1nm (101F) to ~18nm (CR9501, ADI-14359).  

(B) C1q binding to predominantly pre-F RSV particles opsonized with different antibodies. The top plot shows the 
percentage of C1q+ particles, defined as those with a total intensity of anti-C1qA antibody >103. The bottom plot 810 
shows the intensity of anti-F mAb for each condition. Individual points represent values for three biological 
replicates. Antibodies determined to activate complement from pre-F antigens (Figure 1) are shown in magenta.  

(C) Distributions of anti-F mAb intensities (horizontal axis) and anti-C1qA antibody intensities (vertical axis) for 
different anti-F mAbs bound to pre-F particles. Particles within the dashed rectangles indicate those that are C1q-
positive, and the percentage of these particles is indicated in the upper left. Distributions are combined from the 815 
same three biological replicates represented in B.  
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Figure S3: Pre-F and post-F containing RSV particles occur naturally in cell culture.  

Images of live RSV-infected A549 cells at 48hpi showing mTagBFP2 reporter (indicating infected cells) along with 
pre- and postfusion F, labeled using 5C4 (Alexa Fluor 488) and ADI-14359 (Alexa Fluor 555) mAbs added directly 820 
to culture medium. Images are displayed as maximum intensity projections from a three-dimensional confocal stack. 
Post-F enriched particles with globular morphology are present on the surface of both RSV-infected and neighboring 
uninfected cells.  
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Figure S4: Osmotic swelling detaches the RSV matrix from the viral membrane with no loss of infectivity.  825 

(A) Comparison of infectivity (quantified as single-round infectious units per ml) of virus shed from A549 cells during 
a two-hour period starting at 60hpi. RSV samples were divided into control (untreated) and experimental groups 
(osmotic shock), and used to infect confluent monolayers of A549 cells.  Infected cells were quantified at 12hpi by 
counting cells expressing the BFP reporter. The experiment does not account for RSV particles that remain cell-
associated.  830 

(B) Images of photobleached / recovered RSV filaments (top) and spheres (bottom), where spheres are obtained 
through osmotic swelling. Magenta images show virus particles immediately after bleaching; green images show 
viruses after 20 seconds of recovery.  

(C) Quantification of fluorescence recovery of different RSV particle subsets. Points represent individual viruses 
and black lines represent median values. P-values are determined using a two-sample KS test. 835 

(D) C3 deposition on RSV particles with (filled circles) and without (open circles) osmotic swelling. Gray lines 
connecting points indicate paired biological replicates. Fixation with 0.5% PFA was used to restrict antigen mobility, 
as shown in C. Inset: fold-change in percent C3-positive particles following osmotic swelling, with and without 
treatment with 0.5% PFA. 

840 
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Figure S5: C3 deposition on RSV particles increases with decreasing particle curvature.  

(A) Model of an idealized morphological transformation in RSV. Detachment of the viral matrix leads to the rounding 
of virus particles. Mean curvature can be predicted from particle geometry and the constraint that surface area is 
conserved during the shape transformation.  845 

(B) Left: plot of the relationships in A showing mean curvature versus particle surface area. Schematics of viral 
filaments / spheres are drawn approximately to scale in blue. Right: relationships from the left plot, displayed as the 
ratio of filament mean curvature to sphere mean curvature as a function of surface area.  

(C) Top: data for C3 deposition driven by four activating antibodies (CR9501, 5C4, and Motavizumab for pre-F and 
ADI-14359 for post-F) and a negative control with no antibody. Black points/bars show median / 25th-75th percentile 850 
data for viruses preserved in the filamentous state and magenta points/bars show data for osmotically swollen 
viruses. Bottom: same data as in the top plots, displayed as fold-increase in median C3/F for spherical vs. 
filamentous morphological states. 
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