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 2 

ABSTRACT 25 

High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral 26 

populations during infection. Errors made during replication that are not strongly deleterious to 27 

the virus can lead to the generation of minority variants. Here we analyzed minority variants within 28 

the SARS-CoV-2 data in 12 samples from the early outbreak in New York City, using replicate 29 

sequencing for reliable identification. While most minority variants were unique to a single sample, 30 

we found several instances of shared variants. We provide evidence that some higher-frequency 31 

minority variants may be transmitted between patients or across short transmission chains, while 32 

other lower-frequency, more widely shared variants arise independently. Further, our data 33 

indicate that even with a small transmission bottleneck, the heterogeneity of intra-host viral 34 

populations is enhanced by minority variants present in transmission samples. Our data suggest 35 

that analysis of shared minority variants could help identify regions of the SARS-CoV-2 genome 36 

that are under increased selective pressure, as well as inform transmission chains and give insight 37 

into variant strain emergence. 38 
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 3 

IMPORTANCE 51 

When viruses replicate inside a host, the virus replication machinery makes mistakes. Over time, 52 

these mistakes create mutations that result in a diverse population of viruses inside the host. 53 

Mutations that are neither lethal to the virus, nor strongly beneficial, can lead to minority variants. 54 

In this study, we analyzed the minority variants in SARS-CoV-2 patient samples from New York 55 

City during the early outbreak. We found common minority variants between samples that were 56 

closely related and showed that these minority variants may be transmitted from one patient to 57 

another. We show that in general, transmission events between individuals likely contain 58 

genetically diverse viral particles, and we find signatures of selection governing intra-host 59 

evolution. We conclude that the analysis of shared minority variants can help to identify 60 

transmission events and give insight into emergence of new viral variants. 61 
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 74 

INTRODUCTION 75 

The circulation of a novel coronavirus was reported in late 2019 out of Wuhan Province, 76 

China (1-3). Originally named nCoV-2019, the virus was officially named SARS-CoV-2 in early 77 

February 2020 (4). The World Health Organization declared SARS-CoV-2 a global pandemic in 78 

March 2020 and as of April 14, 2021, the virus had infected close to 142 million people and caused 79 

more than 3 million deaths worldwide (5). 80 

Sequencing of SARS-CoV-2 from infected patients has contributed to our knowledge of 81 

the viral origin, the biology of infection, and viral transmission events as well as given insight into 82 

the spread of the virus across the world. Despite efforts to prevent introductions of the virus to the 83 

United States from areas of the world with active outbreaks, the first positive case of SARS-CoV-84 

2 was reported on January 19, 2020 from Washington state (6). Since this first reported 85 

introduction, new outbreaks have occurred in all major US cities and areas (7). Sequencing of 86 

virus from infected patients in these cities has helped to determine both the number and origin of 87 

these introduction events (8, 9). Viral sequencing has also identified key amino acid changes that 88 

differentiate clades of the virus in circulation (10). Identification of these clades and the associated 89 

viral consensus changes aids in tracking spread of the virus. However, little has been done to 90 

examine potential early detection of emerging variants before they become fixed in the population. 91 

Due to the error-prone nature of viral polymerases, as well as the speed of viral replication, 92 

errors are introduced into viral genomes during replication (11). These errors can range from 93 

lethal (killing the virus) to beneficial, enhancing the viral lifecycle. Coronavirus polymerases are 94 

unique among RNA viruses in that they possess a level of proofreading capability (12, 13). This 95 

function results in a mutation rate that is significantly lower than other RNA viruses such as 96 

rhinovirus or influenza A virus (14-16). Nonetheless, mutations are still introduced during viral 97 

replication. Mutations can lead to changes in the consensus sequence; these specific sets of 98 
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mutations separate the circulating virus population into clades. Mutations in the virus genomes 99 

that are not the majority within an infected host (present at lower than 50% frequency) represent 100 

minority variants. Identification of these minority variants within the sequencing data can highlight 101 

regions of the genome under positive selection or regions with increased mutational tolerance, 102 

detect subtle virus population shifts within the infected host, and identify mutations before 103 

consensus changes occur (17). These variants can also shed light on tropism, and shared 104 

minority variants between samples can show patterns of viral evolution (18). The presence of 105 

these variants may have long term implications for vaccine, monoclonal antibody, and drug 106 

development.  107 

Confident prediction of minority variants requires significant sequence read coverage and 108 

the frequency at which identified variants are considered valid is debated. Numerous software 109 

packages exist to identify single nucleotide variants (SNVs) within sequence data, but both the 110 

approaches and results can differ significantly.  111 

With the goal of identifying and understanding the scope of minority variants during SARS-112 

CoV-2 infection, we used a small cohort of 12 samples from 11 individuals that were infected with 113 

SARS-CoV-2 early in the pandemic during the New York City outbreak.  We first used simulated 114 

SARS-CoV-2 data to test the ability of different variant-calling software packages to accurately 115 

identify minority variants in SARS-CoV-2 sequence data. We then used these methods to analyze 116 

the minority variants present in our cohort. We found a number of variants in common between 117 

closely related samples that suggest the possibility of variant sharing through short transmission 118 

chains. Analyzing the frequency distributions within hosts suggests that even with a small 119 

transmission bottleneck, transmitted populations are likely heterogeneous. Furthermore, we find 120 

signatures of selection even within the high-frequency variants relevant for transmission. This 121 

highlights the importance of accurately identifying minority variants in SARS-CoV-2 sequence 122 

data as a tool for uncovering areas of selection within the genome and for tracking spread and 123 

emergence of novel variants. 124 
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 125 

RESULTS 126 

Strict cutoffs are necessary for accurate identification of minority variants in SARS-CoV-2 127 

sequence data 128 

Accurate identification of minority variants, even with stringent coverage and frequency 129 

thresholds, is complicated by the fact that both PCR amplification of the genome and sequencing 130 

can introduce errors. Minority variants can be difficult to separate from these errors. Many 131 

methods exist for identifying minority variants within deep sequence data, however, they vary in 132 

both their bioinformatic and statistical approaches. With this in mind, we tested the ability of five 133 

popular variant-calling software packages (iVar, VarScan, HaplotypeCaller, Mutect2, and 134 

freebayes) and one in-house pipeline (timo) to accurately identify minority variants at both set and 135 

random allele frequencies and across a range of down-sampled coverages (19-24). We used the 136 

NEAT software package to simulate SNVs in the SARS-CoV-2 data, incorporating variants 137 

through both a mutation model based on publicly available SARS-CoV-2 sequence data, as well 138 

as a sequencing error model based on reads specific to the sequencing platform used. We initially 139 

simulated data at a coverage of 100,000x and accounted for variable read depths through random 140 

down-sampling (25). We then aligned reads and called variants using the six tools. At 141 

approximately 200X coverage, iVar and mutect2 were accurate, but too conservative in their calls, 142 

sacrificing recall for precision. All tools outperformed freebayes in calling true positives, which 143 

identified the most variants, but this included a high number of false positives. VarScan, 144 

HaplotypeCaller and timo all performed well, though VarScan had slightly lower precision than 145 

the other two tools (Fig. 1A-B). Looking at performance across coverages at a set allele frequency 146 

of 0.02, we determined that both HaplotypeCaller and our in-house caller, timo, performed well 147 

for capturing low frequency alleles at relatively low read depths (>0.02, 200X) (Fig. 1C-D). Using 148 

simulated data with SNVs at random allele frequencies, we found that at approximately 200X, 149 

timo accurately identified all variants above a frequency cutoff of 2% without calling any false 150 
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positives (Fig. 1E). Based on our testing, we chose to use timo with a coverage cutoff of 200x 151 

and an allele frequency of 0.02 for the most accurate identification of minority variants within our 152 

clinical samples. 153 

 154 

Most identified minority variants are unique to a single sample 155 

To investigate the minority variants in real SARS-CoV-2 data, we used a small cohort of 156 

12 samples from the early outbreak in New York City collected and processed at NYU Langone 157 

Health and NYU Grossman School of Medicine. Nasopharyngeal swabs (NS) were collected 158 

between March 6, 2020 to April 9, 2020 from 11 individuals between the ages of two weeks and 159 

60 years (five females, six males; one individual had samples collected at two time points). 160 

Specimen collection occurred on various days post onset of illness (DPO). The samples 161 

represented a variety of viral loads, ranging from 10,400 viral RNA copies/ml to 416,800 copies/ml 162 

(Supplementary Table 1). We achieved more than 88% coverage of the genome at 5X for all 12 163 

of the NS samples. 164 

To determine the major clades represented within our samples, we mapped them against 165 

a global tree using 10,932 global isolates. We characterized the main genetic clades by identifying 166 

non-synonymous amino acid mutations that originate in prevalent viral population subtrees and 167 

used the Wuhan/Hu-1/2019 strain to root the tree. The New York isolates mapped to two major 168 

clades. Ten of the sequences belonged to clade 20C, defined by mutations S:D614G, 169 

ORF1b:P314L, ORF3a:Q57H, and ORF1a:T265I, while two sequences, from the two samples 170 

from the same patient (NYU-VC-009), mapped to clade 20B, defined by the mutations S:D614G, 171 

ORF1b:P314L, N:R203K, N:G204R, and ORF14:G50N (Fig. 2A-B). These two clades were 172 

circulating in New York City during the time period when the samples were collected. The first 173 

clade was the dominant clade in March and April, constituting 80-90% of the viral population. The 174 

second clade was circulating at a frequency of 5-10% at that time, showing that our data samples 175 
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are a good representation of the genetic diversity of the virus during the time period when they 176 

were collected. 177 

We analyzed the full set of mutations in our isolates and identified 20 unique consensus 178 

changes across the 12 samples, including changes in six of the 10 coding regions, in the 5’ UTR 179 

and in one intergenic region. Samples had between five and 10 consensus changes, an average 180 

of approximately eight per sample as compared to the Wuhan/Hu-1 reference strain. As expected, 181 

due to the length of the gene, ORF1a contained the most changes with seven unique changes. 182 

There were three consensus changes found in all 12 samples, including 5’UTR:C241U, 183 

ORF1a:C3037U, and S:A23403G (Fig. 2C). The S:A23403G (aa S:D614G) mutation is a defining 184 

mutation associated with European derived strains of the virus and found to be associated with 185 

increased transmission (26, 27). Of the 20 unique consensus changes, 13 of them represented 186 

non-synonymous changes while seven were synonymous or in non-coding regions. The non-187 

synonymous changes were also found more frequently in multiple samples, representing 62 of 188 

the 95 total changes in the data. Of these 95 total changes, the overwhelming majority were 189 

transitions with very few transversions. C to U transitions were the most frequent, followed by G 190 

to A and A to G changes (Fig. 2D). As expected, none of the identified consensus changes were 191 

unique to our samples and can be found in many publicly available sequences within the USA 192 

East Coast clade. 193 

To identify high confidence minority variants within this data set, we sequenced each 194 

sample in duplicate, when starting material allowed (nine of 12 samples). We used a low 195 

frequency threshold (0.005) to perform an initial filtering of the minority variants called by timo and 196 

compared the minority variants across the replicate sequences. The large majority of minority 197 

variants were not reproducible, indicating that they may have been introduced during the 198 

amplification or sequencing processes (Fig. 3A). Importantly, we did not find an obvious 199 

correlation between viral load and the number of reproducible minority variants in this sample set 200 

(r2 = 0.271) (Fig. 3B-C). Based on these observations, we filtered our list of variants for only those 201 
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that existed in both replicates in locations with coverage greater than 200X and an average allele 202 

frequency above 0.02. For samples that were only sequenced once due to limited specimen 203 

availability, we filtered the minority variants to include only those that were present above our 204 

cutoffs and existed in another sample. We used this final list of high confidence minority variants 205 

for our analyses.  206 

 Using these cutoffs, we identified 54 minority variants across the 12 NS samples, 29 of 207 

which were unique to the samples in which they were detected. High confidence minority variants 208 

were detected in eight of the 10 gene coding regions, as well as in the 5’ UTR. The highest number 209 

of variants were in ORF1a (Fig. 4A). As with the identified consensus changes, there were more 210 

transitions than transversions with C to U transitions accounting for the overwhelming majority of 211 

the changes (Fig. 4B). In contrast to the consensus changes, the number of variants was more 212 

variable between samples, ranging from as few as one to as many as 13 in one sample (Fig. 4C). 213 

Of the 38 different variants identified across the samples, approximately 20% were found in more 214 

than one sample. Close to 50% of the shared variants were present in pairs of samples while the 215 

others were shared between 3-5 samples. Samples 022 and 023 shared the highest number of 216 

variants (Fig. 4C). Thirty-five of the minority variants led to nonsynonymous changes, compared 217 

to 12 synonymous changes; both synonymous and nonsynonymous changes were represented 218 

within the shared variants (Fig. 4D). There was only one instance of a minority variant that was 219 

present at the same location as a consensus change within our data, in ORF1a at amino acid 220 

position 1429 (Fig. 4E).  Ultimately, we found that most minority variants were unique to a single 221 

sample, reinforcing the randomness of errors made by the viral RdRp which result in minority 222 

variants.  223 

 224 

Transmission of minor variants between hosts. 225 
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There were many instances of minority variants that were common to two or more patients 226 

within our sample set (Fig. 4C). In order to better understand the set of shared variants, we 227 

expanded our set of variants to include those present in both replicates with an allele frequency 228 

greater than 0.005 and coverage greater than 200X (Fig. 5A). One pair of samples, NYU-VC-022 229 

and NYU-VC-023 was of particular interest for these analyses given their proximity on the 230 

consensus tree, and the fact that they shared the most minority variants between them (Fig. 4C, 231 

5A). These variant statistics differed strongly from the remainder of the samples, signaling a 232 

possible transmission event, either between these samples or across a short intermediate 233 

transmission chain. To investigate this possibility, we recorded the cumulative distribution of 234 

Hamming distances between samples, d, as recorded on the consensus tree, for all minority 235 

variants shared between exactly two hosts (doublets). We then compared this distribution with a 236 

null distribution, obtained from random pairs of variants across all of the samples. We found that 237 

the majority of the doublet variants, but not those in the random pairs, were found in samples 238 

where d = 0, suggesting that these pairs of variants are likely the result of transmission, rather 239 

than of independent de novo mutations (Fig. 5B). To show that these variants were enriched 240 

specifically in samples NYU-VC-022 and NYU-VC-023, we determined the fraction of doublet 241 

variants compared to the sum of both the unique variants (singlets) and the doublets for all 242 

samples with replicate sequencing (this includes sample 022, but not 023). NYU-VC-022 had a 243 

strongly enhanced fraction of doublet variants compared with the rest of the samples in the data 244 

set (Fig. 5C).  Together, these statistics suggest a short transmission chain involving NYU-VC-245 

022 and NYU-VC-023 and indicate that transmission events contain a genetically diverse mix of 246 

virus particles. 247 

 248 

Nonsynonymous mutations are under negative intra-host selection 249 
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Upon entry into a new host, the viral population grows initially in an exponential way. As 250 

such, the frequency of a mutation within the population is related to its origination time: a few early 251 

mutations of larger frequency are followed by many later mutations of small frequency. This 252 

feature, which is well-known in the context of Luria-Delbrück fluctuation assays, can be made 253 

quantitative: a mutation originating at time 𝑡 after the start of growth has an initial frequency 𝑥 =254 

exp	(−𝜆𝑡), where 𝜆 is the growth rate of the viral population. If the mutation is nearly neutral, this 255 

frequency will stay approximately constant during the subsequent growth process. These 256 

dynamics generate a mutation frequency spectrum described by the Luria-Delbrück distribution 257 

(28), which is characterized by a cumulative distribution function of the form Φ(𝑥) = 	 !
"!
	. This 258 

distribution gives the expected number of minority variants with frequency > 𝑥; the decay 259 

exponent distinguishes neutral variants (𝛼 = 1) and negatively selected variants (𝛼 > 1). We used 260 

this distribution to analyze variants with allele frequencies between 0.02 and 0.5. Mutations with 261 

these frequencies are expected to arise predominantly in the first intra-cellular replication cycle, 262 

which is firmly in the exponential growth phase. We analyzed the empirical cumulative frequency 263 

distributions for synonymous and nonsynonymous minority variants, averaged over the samples 264 

with replicate sequencing. The distribution of synonymous variants is consistent with the neutral 265 

Luria-Delbrück form (𝛼 = 1). However, non-synonymous variants showed a somewhat faster 266 

decay (𝛼 ≈ 1.4), indicating weak negative selection reducing the fraction of high-frequency 267 

variants (Fig. 6A). We note that, given the limited frequency range of reliable mutant calling, 268 

substantial statistical errors of the inferred decay exponents are to be expected. Negative 269 

selection on non-synonymous variants demonstrates that random mutations will often result in a 270 

loss of fitness. 271 

 272 

Transmission droplets are likely heterogeneous 273 
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 To expand upon the hypothesis that minority variants could be shared between samples 274 

by transmission, we used only reproducible variants (those observed in both sequencing 275 

replicates) present at an allele frequency above 0.005 and coverage above 200X (Fig 3A, 5A) 276 

and computed the probability that the transmitted viral population is heterogeneous in sequence. 277 

To do this, we evaluated the cumulative mutant weight 𝑌(𝑥),	which is defined as the sum of the 278 

expected frequencies of mutant clades with frequency > 𝑥 that arise on the host-specific ancestral 279 

(wild-type) background. By construction, this weight discounts all double mutants that arise on 280 

the background of an earlier mutant. In Fig. 6B, we show the empirical mutant weight functions 281 

for synonymous, nonsynonymous, and all mutations, which are computed from the frequency 282 

counts using a random-genealogy assumption and averaged over all samples with replicate 283 

sequencing (Methods). From this, we infer a substantial weight of all minor variants even if we 284 

restrict the frequency range to above the cutoff for variant calling,	𝑌(𝑥#) = 0.30 for 285 

𝑥# = 0.5	 × 	10$%. The complement of this weight is an upper bound for the frequency of the 286 

ancestral genotype in the evolved viral population, 𝑋&' < 1 − 	𝑌(𝑥#) = 0.70. Similarly, the weight 287 

of non-synonymous mutations, 𝑌((𝑥#) = 0.18, determines an upper bound for the frequency of 288 

the ancestral amino acid sequence in the evolved viral population, 𝑋) < 1 −	𝑌((𝑥#) = 0.82. These 289 

ancestral frequencies, in turn, determine the probabilities that a transmission event of 𝑛	virions is 290 

monomorphic in the wild type nucleotide sequence, 𝑝(𝑛) = 	𝑋&'( ,	or in amino acid sequence, 291 

𝑝)(𝑛) = 	𝑋)(. From the inferred weights, we can conclude that even transmission events of 292 

moderate virion count (𝑛 ∼ 10)	are likely to be polymorphic in nucleotide sequence (𝑝(10) < 0.03) 293 

and in amino acid sequence (𝑝)(10) < 0.14) (Fig. 6B). These analyses show that most 294 

transmission droplets of this size would transport minor variants between hosts.   295 
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DISCUSSION 296 

It has long been understood that intra-host viral populations are heterogeneous in nature 297 

(29-32). We were particularly interested in the level of viral diversity early during the SARS-CoV-298 

2 pandemic and whether or not minority variant analysis could be used to inform transmission 299 

events. Here we performed an in-depth analysis of minority variants within a small set of SARS-300 

CoV-2 samples from the early virus outbreak in New York City. Confident identification of minority 301 

variants is complicated by errors introduced during amplification and sequencing and therefore 302 

we first determined the best approach for stringent calling of minority variants. We tested six 303 

minority variant callers using simulated SARS-CoV-2 deep sequence data and our results 304 

highlight the need for stringent coverage and allele frequency cutoffs in minority variant analyses. 305 

Using our determined cutoffs, we found a number of shared minority variants between samples 306 

and provide evidence that some variants may be passed during transmission events. Together, 307 

our results lay the groundwork for future studies of minority variants in SARS-CoV-2 infections.  308 

Viral replication is inherently error-prone, and these replication errors result in a diverse 309 

population of viruses within a single host (29, 33, 34). Viral sequencing easily allows for the 310 

determination of the consensus sequence of the majority population within a host. However, 311 

capturing and accurately identifying the other viral mutations that do not constitute the majority is 312 

more difficult. The variant callers that we tested take diverse approaches, such as haplotype-313 

based methods (freebayes and haplotype caller), or alignment to the reference (VarScan, iVar 314 

and timo). We found that in each category there were tools that performed well and tools that 315 

performed more poorly. Freebayes was the least precise and called the highest number of false 316 

positives. The false positive rate of both iVar and mutect2 was 0, however these callers were 317 

relatively conservative, missing a number of true positives. Many studies use iVar for variant 318 

calling in viral genomes and our data suggest that this may result in true variants being 319 

overlooked. Haplotype caller, timo, and VarScan all performed nearly perfectly, missing only 320 

variants that existed at very low frequencies (< 0.01) or at low coverage (< 100X). It is clear from 321 
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these data that variant callers and cutoffs should be carefully selected in order to increase 322 

confidence in the identified variants in studies such as this one. However, even with the best 323 

variant calling software, preparation and processing steps necessary for sequencing viral 324 

genomes generate layers of error that can make low frequency minority variants virtually 325 

indistinguishable from processing errors. In replicate sequencing, with a relatively low frequency 326 

cutoff of 0.005, we found that consistently less than 10% of identified minority variants were 327 

reproducible, regardless of viral load. Our data suggest that these process errors greatly interfere 328 

with confident minority variant prediction and replicate sequencing as well as very stringent cutoffs 329 

are thus essential for the identification of variants.  330 

The majority of changes we identified in our data, both at the consensus level and in minority 331 

variants, were C to U transitions, consistent with published reports (35-38). However, we found 332 

few unique consensus changes (only six of the 20 identified mutations) while the majority of 333 

minority variants were unique to a single sample (44 of the 54 minority variants). Similarly, the 334 

number of consensus changes across samples was relatively consistent, but the number of 335 

minority variants differed more significantly. We found no correlation between the number of 336 

minority variants and the viral load within our data set, despite studies that suggest that low viral 337 

load increases false positive minority variants, likely due to replicated sequencing of our samples 338 

(39).  339 

We also saw only one instance of a minority variant in the same genomic location as a 340 

consensus change in our data set — in ORF1a at aa position 1429. We initially expected to see 341 

this pattern more frequently as all mutations in the consensus tree must have been a minority in 342 

an intra-host viral population at some point. The fact that within our data, we see this pattern 343 

infrequently could suggest that selected mutations move from minority to majority very quickly 344 

and therefore capturing them as minority variants is less likely; or could suggest the opposite, that 345 

it takes a very long time for this change to occur and thus, capturing it within a small data set 346 

would be rare. This will be an interesting avenue to explore in future studies. 347 
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One frequently debated topic is the possibility that minority variants could be passed between 348 

individuals during a transmission event. This possibility depends on a number of factors including 349 

the frequency of the minority variant and the size of the transmission bottleneck. For SARS-CoV-350 

2, the size of the bottleneck has been reported to be as few as one to as many as one thousand 351 

(40-43). It is likely that transmission between individuals involves multiple transmission events 352 

over the course of an interaction, rather than just one. Multiple transmission events would 353 

increase the number of viral particles passed between individuals. Our analyses suggest that 354 

transmission events are unlikely to be homogeneous and that most virions in the host differ by 355 

acquired mutations from the founder genome that was transmitted. This notion is supported by 356 

studies that have shown evidence of mixed SARS-CoV-2 infections (18, 44). Moreover, we find 357 

that intra-host selection shapes the distribution of minor variants in the high-frequency regime, 358 

which includes the variants relevant for transmission. Our current analysis covers broad negative 359 

selection on non-synonymous mutations. Future, more densely sampled data may also permit the 360 

identification of positively selected minor variants. 361 

Further supporting transmission of minority variants, we identified several instances of shared 362 

minority variants within our sample set. Some variants were shared between two individuals, while 363 

other variants were widely shared between many individuals. Two of our samples, NYU-VC-022 364 

and NYU-VC-023, contained many more uniquely shared variants (doublets) than any other set 365 

of samples, and these samples were also the closest on the consensus tree. To rule out the 366 

possibility of contamination, we re-extracted, amplified and sequenced these samples many 367 

months after initial sequencing, and confirmed the presence of the high confidence variants. 368 

These data contribute to an argument for transmission of minority variants; however, these 369 

conclusions are limited by the sample size and by the lack of metadata supporting the potential 370 

for transmission and we would caution against using minority variants alone to determine 371 

transmission between individuals. Future studies with large data sets and more in-depth metadata 372 

from contact tracing would help to further these conclusions. We also found variants that are 373 
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shared between many samples in our data set. These variants are shared between samples that 374 

are dispersed across the consensus tree and therefore are unlikely to be shared through 375 

transmission events. Instead, these variants are likely the product of de novo mutations, perhaps 376 

in regions of the genome that have an increased tolerance for mutation. In our analyses, we did 377 

not find a significant relationship between sites with widely shared minority variants and frequently 378 

mutated positions on the tree, though a large sample set would be necessary to explore this 379 

further. This phenomenon has been previously suggested for widely shared variants in SARS-380 

CoV-2 infection, and the proposal of mutational hotspots within RNA virus genomes is also 381 

substantiated (36, 39, 45).  382 

Taken together, our findings establish a framework for the study of minority variants within 383 

SARS-CoV-2 sequence data and provide evidence for heterogeneous transmission of SARS-384 

CoV-2 that likely contributes to the sharing of minority variants. These findings have long term 385 

implications for vaccine and drug development and set groundwork for the exciting potential of 386 

detection of minority variants within the population before their emergence as consensus 387 

nucleotides. 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 
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MATERIALS AND METHODS 400 

RNA extraction and SARS-CoV-2 quantification 401 

Total RNA was extracted from 300µL of nasopharyngeal swab (NS) or plasma samples 402 

collected at the NYU Langone Health between March 6, 2020 and April 9, 2020 (Supplementary 403 

Table 1). Samples were collected and stored in viral transport media (BD, 220220) and RNA was 404 

extracted using the QIAamp® Viral RNA Mini Kit (Qiagen, 52904) according to the manufacturer’s 405 

instructions. Quantitative real-time PCR was performed according to the “CDC Real-Time RT-406 

PCR Panel for Detection 2019-Novel Coronavirus” protocol with three SARS-CoV-2 virus-specific 407 

primers/probe sets (N1, N2, N3, (Integrated DNA Technologies, cat. 10006606)) to test for the 408 

presence of SARS-CoV-2 (46). A standard curve was generated using the CDC Positive Template 409 

Control (PTC) RNA and was used to calculate viral copies/mL. In total, 12 NS samples were used 410 

for genomic analysis. 411 

 412 

Reverse transcription and generation of amplicons 413 

Amplification of the viral genome was performed using a modified version of the ARTIC 414 

consortium protocol for nCoV-2019 sequencing (https://artic.network/ncov-2019) and the 415 

methods described in Gonzalez-Reiche et al. (8). Briefly, RNA extracted from patient samples 416 

was reverse transcribed and subsequently amplified using the Superscript III one-step RT-PCR 417 

system with Platinum Taq DNA Polymerase (Thermo-Fisher, 12574018) using nested cycling 418 

conditions. Cycling conditions were as follows: 45°C for 60’ for RT, 94°C for 2’, followed by 12 419 

cycles of 94°C for 15 s, 55°C for 30 s and 68°C for 8 min; followed by 35 cycles of 94°C for 15s, 420 

55°C for 30 s and 68°C for 2 min 30 s; 68°C for 5’ and an 8°C hold. Each sample was processed 421 

with two separate pools of primers, pool A and pool B, resulting in alternating and overlapping 422 

amplicons that cover the SARS-CoV-2 genome (Table 2). Gel electrophoresis was used to 423 

confirm amplification of a 2 kb product. 424 
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Table 2: Oligonucleotides used for SARS-CoV-2 genome amplification 425 

 426 

Library Preparation and Sequencing platforms 427 

All libraries were prepared using the Nextera XT library preparation kit (Nextera), scaled 428 

down to 0.25x of the manufacturer’s instructions. Briefly, PCR products were normalized to 429 

0.2ng/uL. DNA was then fragmented, tagged, amplified and barcoded (Illumina Nextera DNA dual 430 

indexes), cleaned with a 0.9x bead cleanup and pooled at equal molarity. A 0.7x bead cleanup 431 

was performed on the final pool and libraries were sequenced on either the Illumina MiSeq or the 432 

Illumnia NextSeq using either the 2x150 bp or 2x300 bp paired end protocol. 433 

 434 

Generation of simulated data and testing of minority variant callers 435 

Primer Set A 
 Forward Primer (5'-3') Reverse Primer (5'-3') 

A1 CCAGGTAACAAACCAACCAACTTT GCCACTGCGAAGTCAACTGAACA 
A2 TGGAACTTACACCAGTTGTTCAGAC AGCATCTTGTAGAGCAGGTGGA 
A3 AAACCGTGTTTGTACTAATTATATGCCTT TCACGAGTGACACCACCATCAA 
A4 ACGGTCTTTGGCTTGATGACGT TTTGACCGTGATGCAGCCATGC 
A5 GCTAAATTCCTAAAAACTAATTGTTGTCGC GCGGACATACTTATCGGCAATTTTGTTA 
A6 TGTTGGTGATTATTTTGTGCTGACAT CGCTTAACAAAGCACTCGTGGA 
A7 ACCCAGGAGTCAAATGGAAATTGA CCTGAGGGAGATCACGCACTAA 
A8 ACCCATTGGTGCAGGTATATGC TGCAGTAGCGCGAACAAAATCT 
A9 TGTGGCTCAGCTACTTCATTGC GGCCCAGTTCCTAGGTAGTAGAAAT 

Primer Set B 
 Forward Primer (5'-3') Reverse Primer (5'-3') 

B1 CTGGAATATTGGTGAACA GCCGACAACATGAAGACAGTGT 
B2 GGTCCAACTTATTTGGATGGAGCTGAT AAAACACNTAAAGCAGCGGTTGA 
B3 GTCACAACATTGCTTTGATATGGAACG TGGGCCTCATAGCACATTGGTA 
B4 ATTGTGGGCTCAATGTGTCCAG AGCATAGACGAGGTCTGCCATT 
B5 CCTAAATGTGATAGAGCCATGCCT TGCGAGCAGAAGGGTAGTAGAG 
B6 CTGAGCGCACCTGTTGTCTATG TGAACCTGTTTGCGCATCTGTT 
B7 TTCGAAGACCCAGTCCCTACTT AGTGACACTTGCAGATGCTGGCT 
B8 GCTGTAGTTGTCTCAAGGGCTGTTGTT GCTCCCAATTTGTAATAAGAAAGC 
B9 ACTTGTCACGCCTAAACGAACA TAGGCAGCTCTCCCTAGCATTG 
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Reads were simulated using the NEAT v2.0 next generation read simulator (25). First, a 436 

mutation model was built using genMutModel.py (NEAT) providing the VCF obtained from 437 

https://bigd.big.ac.cn/ncov/variation/statistics?lang=en (downloaded April 2020) and the NCBI 438 

SARS-CoV-2 reference genome (NC_045512.2) as input. An error model was built using 439 

genSeqErrorModel.py (NEAT) providing paired end reads from a high coverage library within our 440 

data set. GC and fragment length models were built using computeGC.py and computeFraglen.py 441 

respectively (NEAT) using the NYU-VC-003 bam file as input and SARS-CoV-2 reference for 442 

computeGC.py. These four models were then provided to NEAT genReads.py along with the 443 

reference fasta and a mutation rate of 0.0045 (0.45%) to produce a “golden VCF” file containing 444 

~160 SNPs. Several copies of this golden VCF were made, each with the same variants but with 445 

differing allele frequencies: 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.25, 0.5 (one fixed AF per file), and 446 

one VCF was made with random allele frequencies where any given variant was 3x more likely 447 

to have an AF < 0.5 than > 0.5. Each VCF was then provided as input to NEAT genReads.py 448 

along with the reference, error model, fragment length model, GC model, and the following 449 

params: ploidy = 100, read length = 150, coverage = 100,000, and mutation rate = 0 in order to 450 

use only variants in the VCF to simulate paired end fastq libraries with SNPs from the original 451 

golden VCF file inserted at varying allele frequencies as encoded in the individual VCF files.  452 

Each set of simulated paired end fastq libraries was then down-sampled at the following 453 

fractions:  0.1 (~10000X), 0.01 (~1000X), 0.001 (~100X), 0.0001 (~10X), 0.00001 (~1X), 0.002 454 

~(200X), 0.003 (~300X), 0.005 (~500X) using seqtk v1.2-r94 (https://github.com/lh3/seqtk) and a 455 

different seed for each down-sampling process to create different fastq files with varying levels of 456 

coverage from the original data. 457 

Each pair of downsampled fastq files, along with the original, was quality and adapter 458 

trimmed using trimmomatic v0.36 with the following parameters: 459 

ILLUMINACLIP:adapters.fa:2:30:10:8:true LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 460 

MINLEN:20 (47). The trimmed reads were aligned to the Wuhan-Hu-1 SARS-CoV-2 reference 461 
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genome (NC_045512.2) using BWA mem v0.7.17 with the -K parameter set to 100000000 for 462 

reproducibility and -Y to use soft clipping for supplementary alignments (48). Duplicates were 463 

marked using GATK MarkDuplicatesSpark v4.1.7.0 (24).  464 

Variants were called using six separate methods:  465 

1. GATK Mutect2 v4.1.7.0 with default parameters. Variants were then filtered using 466 

GATK FilterMutectCalls v4.1.7.0 (19).  467 

2. Freebayes v1.1.0-54-g49413aa with ploidy set to 1 and a minimum allele frequency (-468 

F) set to 0.01 (note: freebayes default ploidy is 2, -F is 0.2) (20).  469 

3. Our in-house pipeline, timo, with the minor variant frequency cutoff (-c) option set to 470 

0.001, and the coverage cutoff (-C) option set to 1.  471 

4. VarScan v2.4.2 with –min-coverage set to 1 and –min-var-freq set to 0.01. The input 472 

for VarScan was piped from the output of samtools mpileup using the default 473 

parameters. VarScan generates a .snp file, which we parse into a VCF file (21). 474 

5. iVAR v1.2.3 using the default parameters and the minimum frequency (-t) option set 475 

to 0.001. The input to ivar is also piped from the output of mpileup using the options   476 

-aa -A -d 0 -B -Q 0. The ‘PASS’ field in the output of iVar was ignored in generation of 477 

the vcf files (22).  478 

6. GATK HaplotypeCaller v4.1.7.0 with the -ploidy option set to 100. This generates a vcf 479 

with both snps and indels. GATK selectVariants was used to extract just the snps from 480 

these files (23, 24).  481 

Intersections between the workflow VCF files (produced by Mutect2, Freebayes, timo, VarScan, 482 

iVar and haplotype caller) and the golden VCF file were generated using bcftools isec v1.9 (48). 483 

The output from bcftools isec was then analyzed and compared against the respective AF-484 

specific golden VCF to compare allele frequencies using a custom script.  485 

The pipeline used to analyze the data is available at https://github.com/gencorefacility/MAD. 486 
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 487 

Assembly of genomes and consensus sequences 488 

Reads were base-called with Picard Tools IlluminaBasecallsToFastq v2.17.11 and 489 

demultiplexed using Pheniqs allowing for 1 mismatch in sample index sequences (49, 50). 490 

Illumina sequencing adapters and primer sequences were trimmed with Trimmomatic v0.36 (47). 491 

The trimmed reads were aligned to the Wuhan-Hu-1 SARS-CoV-2 reference genome 492 

(NC_045512.2) using BWA mem v0.7.17 with the -K parameter set to 100000000 for 493 

reproducibility and -Y to use soft clipping for supplementary alignments (48). The two primer pool 494 

libraries for each biological sample were merged into one alignment file using Picard Tools 495 

MergeSamFiles v2.17.11. Duplicates were marked using GATK MarkDuplicatesSpark v4.1.3.0 496 

(https://gatk.broadinstitute.org/hc/en-us/articles/360037224932-MarkDuplicatesSpark). Variants 497 

were called using GATK HaplotypeCaller v4.1.3.0 with -ploidy set to 1 and filtered for single 498 

nucleotide variants with Quality Depth > 2, Fisher Strand < 60, Mapping Quality > 40, and 499 

Symmetric Odds Ratio > 4.0. Viral consensus sequences were generated from VCF files based 500 

on the NC_045512.2 reference using GATK FastaAlternateReferenceMaker v4.1.3.0; regions 501 

below 5x were masked with Ns. Predicted SNV effects were called using SnpEff v4.3i (51). The 502 

pipeline used to analyze the data is available at https://github.com/gencorefacility/covid19.  503 

 504 

Identification of minority variants 505 

Minority variants were identified using our in-house python script, timo, that iterates 506 

through merged alignment files (https://github.com/GhedinLab/timo). Minority variants were 507 

initially called if present at, or above, a .1% frequency at a position with at least 1x coverage, 508 

identified in both forward and reverse reads, and had a Phred score of at least 25. Of the 12 509 

samples included in these analyses, nine were sequenced in duplicate. Only minority variants 510 

present in both outputs at an allele frequency greater than 0.02, at a coverage of at least 200X 511 

were considered for follow up analysis.  512 
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 513 

Generation of phylogenetic trees 514 

Isolates of human SARS-CoV-2 were retrieved from the GISAID EpiCov database as of 2020-10-515 

15 (52). The of 3’ and 5’ regions of sequences were truncated, and sequences containing more 516 

than 1% ambiguous sites or those which had an incomplete collection date annotation were 517 

removed. From the remaining set we sampled randomly up to 1000 isolates per month leaving 518 

10932 isolates as representatives of the global population (Supplementary Table 2). The 519 

sequences were aligned with MAFFTv7.467 (53) to a reference isolate from GenBank (54) 520 

(Accession: MN908947, Wuhan-Hu-1, isolate collected on December 19th 2019 in Wuhan, 521 

China).  This alignment of the selected 10932 isolates, including the consensus sequences from 522 

the NYU Langone samples, was used to infer the maximum likelihood phylogeny under the 523 

nucleotide substitution model GTR+G in IQTree (55). The tree topology was assessed using the 524 

ultrafast bootstrap function with 1000 replicates (56). To root the tree, we specified the reference 525 

isolate hCoV-19/Wuhan/Hu-1/2019 (GISAID-Accession: EPI ISL 402125), which is identical in 526 

sequence to the GenBank isolate used in the alignment step. We inferred the sequences of 527 

internal nodes, the optimized timing of internal nodes and resolved polytomies on the final ML-528 

Tree with TreeTime (57).  We used a fixed clock rate of 8	 ×	10* (stdev = 4	 ×	10*) mutations/ 529 

(bp day) under a skyline coalescent tree prior and we rooted the tree using the same reference 530 

isolate as with the IQTree step of topology reconstruction (GISAID-Accession: EPI ISL 402125) 531 

(58). The clock rate was computed as the total number of mutations on the tree, divided by the 532 

total length of branches of the timed tree. This rate was optimized by iterative runs of TreeTime 533 

until convergence. The time of the root of the tree is estimated to December 19, 2019. 534 

 535 

Identification of circulating clades 536 

We characterize the main genetic clades by identifying non-synonymous amino-acid mutations 537 

that originate prevalent viral population subtrees. We computed global population clade frequency 538 
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as follows: (1) Individual isolates, which we index with 𝑖, are assigned a smoothened multiplicity 539 

factor, 𝑛+(𝑡) = exp[− (𝑡 − 𝑡+)* (2𝜎*)⁄ ], where 𝑡+ is the collection date of the isolate, and the 540 

squared Gaussian kernel is 𝜎 = 3 days. Sample frequencies of isolates are computed as 𝑥+,(𝑡) =541 

𝑁+(𝑡)/𝑁(𝑡), where 𝑡+ is the sampling time and 𝑁(𝑡) = ∑ 𝑁+(𝑡).+  (2) To correct for regional sequence 542 

sampling bias, we computed reweighed frequencies by calibration with the daily incidence data 543 

from JHU(59), 𝑥+(𝑡) = 𝑚!(+)𝑥+,(𝑡), where 𝑐(𝑖) is the continent of isolate 𝑖. The reweighing factors 544 

are defined by 𝑚!(𝑡) = 𝑦!(𝑡)	/ ∑ 𝑥+,(𝑡)+∈! . Here 𝑦!(𝑡) denotes the fraction of incidence in continent 545 

𝑐, which is obtained from the JHU data on a given date 𝑡 (59). We use the following broad 546 

geographical regions: USA East Coast, USA West Coast, North America remainder, Europe, 547 

Asia, China, South America, Africa, and Oceania. (3) From the corrected isolate frequencies, we 548 

obtained global clade frequencies 𝑋0(𝑡) = ∑ 𝑥+(𝑡)+∈0  . We kept all clades that have reached a 549 

threshold frequency 5% on any day since the start of the epidemic. 550 

 551 

Distance statistics of doublet variants 552 

The cumulative distance distribution for doublet pairs, 𝑃(𝑑) was compared with the corresponding 553 

null distribution for random pairs of variants across different hosts in our sample set. The 554 

cumulative null distribution is given by   555 

𝑃#(𝑑) = 	
∑ 𝑛1𝑛1"121" 𝐻(−𝑑11" + 𝑑)

∑ 𝑛1𝑛1"121"
 556 

where 𝑛1 is the number of singlet variants in host 𝑘 and 𝐻 is the Heaviside step function (Fig 5A). 557 

In these analyses, higher multiplets were excluded because they are a priori unlikely to occur 558 

under transmission.  559 

 560 

Mutant weight functions  561 
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Empirical mutant weight distributions 𝑌(𝑥)	of intra-host variants were constructed from a list of 562 

mutants ordered by decreasing frequency, (𝑥3, 𝑥%, … ),	i.e., by increasing origination time. We 563 

recursively computed  564 

𝑌4 =	𝑌4$3 + 𝑥4(1 − 𝑌4$3) (3) 565 

and plotted 𝑌4 vs. 𝑥4. This recursion used a random-genealogy assumption: the 𝑚th mutation 566 

appears with probability (1 − 𝑌4$3) on the ancestral background and with probability 𝑌4$3 on the 567 

background of a previous mutation. This recursion was evaluated independently for all mutations, 568 

synonymous mutations, and non-synonymous mutations, giving the weight functions 𝑌(𝑥), 𝑌,(𝑥), 569 

and 𝑌)(𝑥) reported in Fig 6B 570 

 571 

Data Availability 572 

Data is available in NCBI GenBank and SRA. All accession IDs can be found in Supplementary 573 

Table 1, and data in SRA can be found under BioProject ID PRJNA721724. 574 

 575 
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approved by the NYU Langone IRB. 580 
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FIGURE LEGENDS 613 

Figure 1. Analysis of variant callers across several allele frequencies on simulated SARS-614 

CoV-2 data. (A) Receiver Operating Characteristic (ROC) of tested variant callers across a range 615 

of allele frequencies (AF). ROC is a function of the true positive rate (true positive/condition 616 

positive) and the false positive rate (false positive/condition negative). (B) Precision/Recall (PR) 617 

curves of variant callers across a range of allele frequencies. PR graphs precision (true 618 

positive/true positive + false positive) against recall, also known as the true positive rate (true 619 

positive/condition positive. Green boxes show area of the graph which indicate superior 620 

performance based on these metrics. (C) ROC of tested variant callers across a range of down-621 

sampled coverages at a set AF of 0.02 (D) PR of tested variant callers across a range of down-622 

sampled coverages at a set AF of 0.02. (E) Variant calling performance of timo at ranges of AFs 623 

in simulated data where minority variants were placed at random allele frequencies. 624 

 625 

Figure 2. Phylogeny of New York City SARS-CoV-2 samples. (A, B) Maximum-likelihood timed 626 

strain tree reconstructed from 10932 sequences from GISAID (Methods). The tree is colored by 627 

major genetic clades, the isolates from this study are shown in detail on the left panel and 628 

highlighted in the right panel. (C) Consensus changes found with the 12 samples plotted across 629 

the SARS-CoV-2 genome. Y axis represents the frequency of a given consensus change within 630 

our cohort, where 1.0 indicates the change is found in all 12 samples. Bars are colored according 631 

to the nucleotide and the reference nucleotide (Wuhan-Hu-1) is shown along the bottom of the 632 

graph. (D) Heatmap showing the frequency of transitions and transversions represented in the 633 

identified consensus changes.  634 

 635 

Figure 3. Reproducibility of minority variants across sequencing replicates. (A) UpsetR 636 

plots show the shared and unique minority variants identified by timo at an allele frequency of > 637 

0.5% in replicate amplification/sequencing runs from clinical NS samples. Red numbers below 638 
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indicate intersections at an allele frequency of 0.02. (B, C) Correlation between viral load and 639 

both reproducible and non-reproducible minority variants shown in panel (A). 640 

 641 

Figure 4. Minority variants in SARS-CoV-2 sequence data. (A) High confidence minority 642 

variants (identified in replicate amplification/sequencing runs) graphed across the SARS-CoV-2 643 

genome. Height of bar indicates frequency of the variant across the cohort samples. Shared 644 

variants (present in > 1 sample) are labeled with the gene ID and the nucleotide change. (B) 645 

Heatmap showing the frequency of transitions and transversions represented in the identified 646 

minority variants. (C) UpsetR plot showing sharing of minority variants between samples in the 647 

cohort. Vertical bars indicate the size of the shared set of variants while dots and connecting lines 648 

show which samples share a given set of variants. Horizontal bars show total numbers of variants 649 

identified in each sample. (D) Circle plot showing shared, non-synonymous minority variants 650 

across the 12 samples. Outer circle represents the major amino acid at the indicated position 651 

which inner circle represents the amino acid coded by the minority variant. Circles are not shown 652 

for samples/regions where coverage at that position was not >= 200X. (E) Circle plot of ORF1a, 653 

aa position 1429.  654 

 655 

Figure 5. Uniquely shared variants are enriched at close distances on the consensus tree. 656 

(A) UpsetR plot showing sharing of minority variants between samples in the cohort at an allele 657 

frequency of 0.005. Vertical bars indicate the size of the shared set of variants while dots and 658 

connecting lines show which samples share a given set of variants. Horizontal bars show total 659 

numbers of variants identified in each sample. (B) Cumulative distribution of Hamming distances 660 

between samples for doublet minor variants, 𝑃(𝑑), and for random pairs of variants across all 661 

samples, 𝑃#(𝑑) (Methods). (C) The fraction of doublet variants in sample NYU-VC-022 is 662 

significantly enriched as compared to the remaining samples, due to the 6 variants shared with 663 

sample NYU-VC-023. 664 
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 665 

Figure 6. SARS-CoV-2 transmission droplets are heterogeneous. (A) Data distributions Φ,(𝑥) 666 

(synonymous mutations, blue), Φ((𝑥) (nonsynonymous mutations, orange), and Φ(𝑥) = Φ,(𝑥) +667 

	Φ((𝑥) (all mutations, green) are plotted together with fit functions of the form (1) (dashed lines). 668 

(B) Empirical mutant weight functions 𝑌,(𝑥) (synonymous mutations, blue), 𝑌((𝑥) 669 

(nonsynonymous mutations, orange), and 𝑌(𝑥) (all mutations, green); see Methods.  670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 29 

REFERENCES 690 

1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, 691 

Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen 692 

QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak 693 

associated with a new coronavirus of probable bat origin. Nature 579:270-273. 694 

2. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, 695 

Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. 2020. A new 696 

coronavirus associated with human respiratory disease in China. Nature 579:265-269. 697 

3. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan 698 

F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus I, Research T. 699 

2020. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 700 

382:727-733. 701 

4. Coronaviridae Study Group of the International Committee on Taxonomy of V. 2020. The 702 

species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV 703 

and naming it SARS-CoV-2. Nat Microbiol 5:536-544. 704 

5. Organization WH.  10/02/2020 2020.  WHO Coronavirus Disease (COVID-19) Dashboard. 705 

https://covid19.who.int/. Accessed 10/01/2020. 706 

6. Bedford T, Greninger AL, Roychoudhury P, Starita LM, Famulare M, Huang ML, Nalla A, 707 

Pepper G, Reinhardt A, Xie H, Shrestha L, Nguyen TN, Adler A, Brandstetter E, Cho S, 708 

Giroux D, Han PD, Fay K, Frazar CD, Ilcisin M, Lacombe K, Lee J, Kiavand A, Richardson M, 709 

Sibley TR, Truong M, Wolf CR, Nickerson DA, Rieder MJ, Englund JA, Hadfield J, Hodcroft 710 

EB, Huddleston J, Moncla LH, Muller NF, Neher RA, Deng X, Gu W, Federman S, Chiu C, 711 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 30 

Duchin J, Gautom R, Melly G, Hiatt B, Dykema P, Lindquist S, Queen K, Tao Y, Uehara A, 712 

Tong S, et al. 2020. Cryptic transmission of SARS-CoV-2 in Washington State. medRxiv 713 

doi:10.1101/2020.04.02.20051417. 714 

7. Prevention CfDCa.  10/01/2020 2020.  Coronavirus Disease 2019 (COVID-19). 715 

covid.cdc.gov/covid-data-tracker. Accessed 10/1/2020. 716 

8. Gonzalez-Reiche AS, Hernandez MM, Sullivan MJ, Ciferri B, Alshammary H, Obla A, Fabre 717 

S, Kleiner G, Polanco J, Khan Z, Alburquerque B, van de Guchte A, Dutta J, Francoeur N, 718 

Melo BS, Oussenko I, Deikus G, Soto J, Sridhar SH, Wang YC, Twyman K, Kasarskis A, 719 

Altman DR, Smith M, Sebra R, Aberg J, Krammer F, Garcia-Sastre A, Luksza M, Patel G, 720 

Paniz-Mondolfi A, Gitman M, Sordillo EM, Simon V, van Bakel H. 2020. Introductions and 721 

early spread of SARS-CoV-2 in the New York City area. Science 369:297-301. 722 

9. Maurano MT, Ramaswami S, Westby G, Zappile P, Dimartino D, Shen G, Feng X, Ribeiro-723 

Dos-Santos AM, Vulpescu NA, Black M, Hogan M, Marier C, Meyn P, Zhang Y, Cadley J, 724 

Ordonez R, Luther R, Huang E, Guzman E, Serrano A, Belovarac B, Gindin T, Lytle A, Pinnell 725 

J, Vougiouklakis T, Boytard L, Chen J, Lin LH, Rapkiewicz A, Raabe V, Samanovic-Golden 726 

MI, Jour G, Osman I, Aguero-Rosenfeld M, Mulligan MJ, Cotzia P, Snuderl M, Heguy A. 727 

2020. Sequencing identifies multiple, early introductions of SARS-CoV2 to New York City 728 

Region. medRxiv doi:10.1101/2020.04.15.20064931. 729 

10. Koyama T, Platt D, Parida L. 2020. Variant analysis of SARS-CoV-2 genomes. Bull World 730 

Health Organ 98:495-504. 731 

11. Peck KM, Lauring AS. 2018. Complexities of Viral Mutation Rates. J Virol 92. 732 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 31 

12. Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. 2011. Coronaviruses: an RNA 733 

proofreading machine regulates replication fidelity and diversity. RNA Biol 8:270-9. 734 

13. Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. 2013. Coronaviruses lacking 735 

exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading 736 

and potential therapeutics. PLoS Pathog 9:e1003565. 737 

14. Lewis-Rogers N, Seger J, Adler FR. 2017. Human Rhinovirus Diversity and Evolution: How 738 

Strange the Change from Major to Minor. J Virol 91. 739 

15. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R. 2010. Viral mutation rates. J Virol 740 

84:9733-48. 741 

16. Zhao Z, Li H, Wu X, Zhong Y, Zhang K, Zhang YP, Boerwinkle E, Fu YX. 2004. Moderate 742 

mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol 4:21. 743 

17. Capobianchi MR, Rueca M, Messina F, Giombini E, Carletti F, Colavita F, Castilletti C, Lalle 744 

E, Bordi L, Vairo F, Nicastri E, Ippolito G, Gruber CEM, Bartolini B. 2020. Molecular 745 

characterization of SARS-CoV-2 from the first case of COVID-19 in Italy. Clin Microbiol 746 

Infect 26:954-956. 747 

18. Lythgoe K.A. HM, Ferretti L, et al. 2020. Shared SARS-CoV-2 diversity suggests localised 748 

transmission of minority variants. bioRxiv 749 

doi:https://doi.org/10.1101/2020.05.28.118992. 750 

19. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson 751 

M, Lander ES, Getz G. 2013. Sensitive detection of somatic point mutations in impure and 752 

heterogeneous cancer samples. Nat Biotechnol 31:213-9. 753 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 32 

20. Garrison EM, Gabor. 2012. Haplotype-based variant detection from short-read 754 

sequencing. ArXiv 1207.3907v2. 755 

21. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding 756 

L, Wilson RK. 2012. VarScan 2: somatic mutation and copy number alteration discovery in 757 

cancer by exome sequencing. Genome Res 22:568-76. 758 

22. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL, Paul 759 

LM, Brackney DE, Grewal S, Gurfield N, Van Rompay KKA, Isern S, Michael SF, Coffey LL, 760 

Loman NJ, Andersen KG. 2019. An amplicon-based sequencing framework for accurately 761 

measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 20:8. 762 

23. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del 763 

Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, 764 

Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation discovery 765 

and genotyping using next-generation DNA sequencing data. Nat Genet 43:491-8. 766 

24. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, 767 

Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, 768 

DePristo MA. 2013. From FastQ data to high confidence variant calls: the Genome Analysis 769 

Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11 10 1-11 10 33. 770 

25. Stephens ZD, Hudson ME, Mainzer LS, Taschuk M, Weber MR, Iyer RK. 2016. Simulating 771 

Next-Generation Sequencing Datasets from Empirical Mutation and Sequencing Models. 772 

PLoS One 11:e0167047. 773 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 33 

26. B K, WM F, al. e. 2020. Spike mutation pipeline reveals the emergence of a more 774 

transmissible form of SARS-CoV-2. bioRxiv 775 

doi:https://doi.org/10.1101/2020.04.29.069054. 776 

27. Júnior IJM, Polveiro RC, Souza GM, Bortolin DI, Sassaki FT, Lima ATM. 2020. The global 777 

population of SARS-CoV-2 is composed of six major subtypes. bioRxiv. 778 

28. Luria SE, Delbruck M. 1943. Mutations of Bacteria from Virus Sensitivity to Virus 779 

Resistance. Genetics 28:491-511. 780 

29. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S. 1982. Rapid evolution 781 

of RNA genomes. Science 215:1577-85. 782 

30. Eigen M. 1993. Viral quasispecies. Sci Am 269:42-9. 783 

31. Domingo E, Martin V, Perales C, Grande-Perez A, Garcia-Arriaza J, Arias A. 2006. Viruses 784 

as quasispecies: biological implications. Curr Top Microbiol Immunol 299:51-82. 785 

32. Lauring AS, Andino R. 2010. Quasispecies theory and the behavior of RNA viruses. PLoS 786 

Pathog 6:e1001005. 787 

33. Novella IS, Presloid JB, Taylor RT. 2014. RNA replication errors and the evolution of virus 788 

pathogenicity and virulence. Curr Opin Virol 9:143-7. 789 

34. Fitzsimmons WJ, Woods RJ, McCrone JT, Woodman A, Arnold JJ, Yennawar M, Evans R, 790 

Cameron CE, Lauring AS. 2018. A speed-fidelity trade-off determines the mutation rate 791 

and virulence of an RNA virus. PLoS Biol 16:e2006459. 792 

35. Sapoval N, Mahmoud M, Jochum MD, Liu Y, Elworth RAL, Wang Q, Albin D, Ogilvie H, Lee 793 

MD, Villapol S, Hernandez KM, Berry IM, Foox J, Beheshti A, Ternus K, Aagaard KM, Posada 794 

D, Mason CE, Sedlazeck F, Treangen TJ. 2020. Hidden genomic diversity of SARS-CoV-2: 795 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 34 

implications for qRT-PCR diagnostics and transmission. bioRxiv 796 

doi:10.1101/2020.07.02.184481. 797 

36. Goswami P, Bartas M, Lexa M, Bohalova N, Volna A, Cerven J, Cervenova V, Pecinka P, 798 

Spunda V, Fojta M, Brazda V. 2020. SARS-CoV-2 hot-spot mutations are significantly 799 

enriched within inverted repeats and CpG island loci. Brief Bioinform 800 

doi:10.1093/bib/bbaa385. 801 

37. Simmonds P. 2020. Rampant C-->U Hypermutation in the Genomes of SARS-CoV-2 and 802 

Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term 803 

Evolutionary Trajectories. mSphere 5. 804 

38. Di Gioacchino A, Šulc P, Komarova AV, Greenbaum BD, Monasson R, Cocco S. 2021. The 805 

Heterogeneous Landscape and Early Evolution of Pathogen-Associated CpG Dinucleotides 806 

in SARS-CoV-2. Molecular Biology and Evolution doi:10.1093/molbev/msab036. 807 

39. Valesano ALR, Kalee E; Dimcheff, Derek E; Blair, Christopher N; Fitzsimmons, William J; 808 

Petrie, Joshua G; Martin, Emily T; Lauring, Adam S. 2021. Temporal dynamics of SARS-809 

CoV-2 mutation accumulation within and across infected hosts. bioRxiv 810 

doi:https://doi.org/10.1101/2021.01.19.427330. 811 

40. Martin MAK, Katia. 2021. Reanalysis of deep-sequencing data from Austria points towards 812 

a small SARS-COV-2 transmission bottleneck on the order of one to three virions. bioRxiv 813 

doi:https://doi.org/10.1101/2021.02.22.432096. 814 

41. Popa A, Genger JW, Nicholson MD, Penz T, Schmid D, Aberle SW, Agerer B, Lercher A, 815 

Endler L, Colaco H, Smyth M, Schuster M, Grau ML, Martinez-Jimenez F, Pich O, Borena 816 

W, Pawelka E, Keszei Z, Senekowitsch M, Laine J, Aberle JH, Redlberger-Fritz M, Karolyi 817 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 35 

M, Zoufaly A, Maritschnik S, Borkovec M, Hufnagl P, Nairz M, Weiss G, Wolfinger MT, von 818 

Laer D, Superti-Furga G, Lopez-Bigas N, Puchhammer-Stockl E, Allerberger F, Michor F, 819 

Bock C, Bergthaler A. 2020. Genomic epidemiology of superspreading events in Austria 820 

reveals mutational dynamics and transmission properties of SARS-CoV-2. Sci Transl Med 821 

12. 822 

42. Wang DX, Wang YQ, Sun WY, Zhang L, Ji JK, Zhang ZY, Cheng XY, Li YM, Xiao F, Zhu AR, 823 

Zhong B, Ruan SC, Li JD, Ren PD, Ou ZH, Xiao MF, Li M, Deng ZQ, Zhong HZ, Li FQ, Wang 824 

WJ, Zhang YW, Chen WJ, Zhu SD, Xu X, Jin X, Zhao JX, Zhong NS, Zhang WW, Zhao JC, Li 825 

JH, Xu YH. 2021. Population Bottlenecks and Intra-host Evolution During Human-to-826 

Human Transmission of SARS-CoV-2. Frontiers in Medicine 8. 827 

43. Lythgoe KA, Hall M, Ferretti L, de Cesare M, MacIntyre-Cockett G, Trebes A, Andersson M, 828 

Otecko N, Wise EL, Moore N, Lynch J, Kidd S, Cortes N, Mori M, Williams R, Vernet G, 829 

Justice A, Green A, Nicholls SM, Ansari MA, Abeler-Dorner L, Moore CE, Peto TEA, Eyre 830 

DW, Shaw R, Simmonds P, Buck D, Todd JA, Oxford Virus Sequencing Analysis G, Connor 831 

TR, Ashraf S, da Silva Filipe A, Shepherd J, Thomson EC, Consortium C-GU, Bonsall D, Fraser 832 

C, Golubchik T. 2021. SARS-CoV-2 within-host diversity and transmission. Science 833 

doi:10.1126/science.abg0821. 834 

44. Wang Y, Wang D, Zhang L, Sun W, Zhang Z, Chen W, Zhu A, Huang Y, Xiao F, Yao J, Gan M, 835 

Li F, Luo L, Huang X, Zhang Y, Wong SS, Cheng X, Ji J, Ou Z, Xiao M, Li M, Li J, Ren P, Deng 836 

Z, Zhong H, Xu X, Song T, Mok CKP, Peiris M, Zhong N, Zhao J, Li Y, Li J, Zhao J. 2021. Intra-837 

host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 838 

patients. Genome Med 13:30. 839 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 36 

45. Cheung PP, Rogozin IB, Choy KT, Ng HY, Peiris JS, Yen HL. 2015. Comparative mutational 840 

analyses of influenza A viruses. RNA 21:36-47. 841 

46. CDC. 2020. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel. 842 

47. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina 843 

sequence data. Bioinformatics 30:2114-20. 844 

48. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler 845 

transform. Bioinformatics 25:1754-60. 846 

49. Anonymous. 2018.  Picard toolkit, on Broad Institute. 847 

http://broadinstitute.github.io/picard/. Accessed 2020-10-02. 848 

50. Galanti LS, Dennis; Gunsalus, Kristin C. . 2017. Pheniqs: Fast and flexible quality-aware 849 

sequence demultiplexing. bioRxiv doi:https://doi.org/10.1101/128512. 850 

51. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 851 

2012. A program for annotating and predicting the effects of single nucleotide 852 

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; 853 

iso-2; iso-3. Fly (Austin) 6:80-92. 854 

52. Elbe S, Buckland-Merrett G. 2017. Data, disease and diplomacy: GISAID's innovative 855 

contribution to global health. Glob Chall 1:33-46. 856 

53. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: 857 

improvements in performance and usability. Mol Biol Evol 30:772-80. 858 

54. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2017. 859 

GenBank. Nucleic Acids Res 45:D37-D42. 860 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 37 

55. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, 861 

Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference 862 

in the Genomic Era. Mol Biol Evol 37:1530-1534. 863 

56. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving 864 

the Ultrafast Bootstrap Approximation. Mol Biol Evol 35:518-522. 865 

57. Sagulenko P, Puller V, Neher RA. 2018. TreeTime: Maximum-likelihood phylodynamic 866 

analysis. Virus Evol 4:vex042. 867 

58. Kingman JFC. 1982. The coalescent. Stochastic Processes and their Applications 13:235-868 

248. 869 

59. Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track COVID-19 in 870 

real time. Lancet Infect Dis 20:533-534. 871 

 872 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


Figure 1

haplotype
caller

freebayes
iVar
mutect2

timo

varscan

tool

haplotype
caller

freebayes
iVar
mutect2

timo

varscan

tool

allele freq
0.02
0.03
0.05

0.00 0.25 0.50 0.75 1.00

Recall

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on

Precision/Recall

0.00 0.025 0.05

False Positive Rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic (ROC)
ROC

P/R

A B

0.00 0.025 0.05

False Positive Rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic (ROC)

0.00 0.25 0.50 0.75 1.00

Recall

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on

Precision/RecallDC E

> 0
.05

> 0
.03

> 0
.01

> 0
.02 > 0

.0pr
op

or
tio

n 
of

 id
en

tif
ie

d 
m

in
or

ity
 v

ar
ia

nt
s

allele frequency

0.00

0.25

0.50

0.75

1.00

False negative
False positive
True positive

100
200
300
500
1000

coverage

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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