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Abstract 22 

Microbiome management research and applications rely on temporally-resolved 23 

measurements of community composition. Current technologies to assess community 24 

composition either make use of cultivation or sequencing of genomic material, which 25 

can become time consuming and/or laborious in case high-throughput measurements 26 

are required. Here, using data from a shrimp hatchery as an economically relevant case 27 

study, we combined 16S rRNA gene amplicon sequencing and flow cytometry data to 28 

develop a computational workflow that allows the prediction of taxon abundances 29 

based on flow cytometry measurements. The first stage of our pipeline consists of a 30 

classifier to predict the presence or absence of the taxon of interest, with yields an 31 

average accuracy of 88.13±4.78 % across the top 50 OTUs of our dataset. In the second 32 

stage, this classifier was combined with a regression model to predict the relative 33 

abundances of the taxon of interest, which yields an average R2 of 0.35±0.24 across the 34 

top 50 OTUs of our dataset. Application of the models on flow cytometry time series 35 

data showed that the generated models can predict the temporal dynamics of a large 36 

fraction of the investigated taxa. Using cell-sorting we validated that the model correctly 37 

associates taxa to regions in the cytometric fingerprint where they are detected using 38 

16S rRNA gene amplicon sequencing. Finally, we applied the approach of our pipeline 39 

on two other datasets of microbial ecosystems. This pipeline represents an addition to 40 

the expanding toolbox for flow cytometry-based monitoring of bacterial communities 41 

and complements the current plating- and marker gene-based methods.  42 
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Importance 43 

Monitoring of microbial community composition is crucial for both microbiome 44 

management research and applications. Existing technologies, such as plating and 45 

amplicon sequencing, can become laborious and expensive when high-throughput 46 

measurements are required. Over the recent years, flow cytometry-based 47 

measurements of community diversity have been shown to correlate well to those 48 

derived from 16S rRNA gene amplicon sequencing in several aquatic ecosystems, 49 

suggesting there is a link between the taxonomic community composition and 50 

phenotypic properties as derived through flow cytometry. Here, we further integrated 51 

16S rRNA gene amplicon sequencing and flow cytometry survey data in order to 52 

construct models that enable the prediction of both the presence and the abundance of 53 

individual bacterial taxa in mixed communities using flow cytometric fingerprinting. 54 

The developed pipeline holds great potential to be integrated in routine monitoring 55 

schemes and early warning systems for biotechnological applications.  56 
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Introduction 57 

Bacterial communities are complex and highly dynamic associations that play 58 

important roles in many biotechnological applications. One issue that hinders efforts to 59 

study and manage these communities, is the fact that existing technologies to assess 60 

community composition either rely on cultivation or necessitate the extraction and 61 

sequencing of genomic material, both of which are time consuming and laborious. As a 62 

result, the availability of fine-scale resolution data on bacterial community dynamics is 63 

still limited in many fields. One example hereof is the aquaculture sector (Wang et al., 64 

2020), where the development of effective management strategies to reduce the 65 

occurrence of diseases is hampered by the limited knowledge on the microbial ecology 66 

of these systems. Additionally, routine monitoring schemes in aquaculture farms are 67 

still mainly relying on (selective) plating, which prohibits accurate description of 68 

general dysbiotic states and specific disease outbreaks.  69 

Flow cytometry (FCM) is a single-cell technique that is increasingly used as a fast and 70 

inexpensive tool for characterising microbial communities in a wide variety of fields, 71 

including drinking water production and distribution (Besmer and Hammes, 2016; 72 

Buysschaert, Vermijs, et al., 2018; Favere et al., 2020), surveys of natural ecosystems 73 

(Ferrera et al., 2015; Read et al., 2015; Santos et al., 2019; Giljan et al., 2020), 74 

aquaculture (Lucas et al., 2010) and fermentation (Salma et al., 2013; Narayana et al., 75 

2020). Over the last decade, through the development of advanced data-analysis 76 

pipelines, the application of FCM has moved beyond its initial purpose of estimating cell 77 

densities (Rubbens and Props, 2021). These computational advances include a range of 78 

fingerprinting pipelines (Koch, Fetzer, Harms, and Muller, 2013; Koch, Fetzer, Schmidt, 79 

et al., 2013), algorithms for estimating community stability (Liu et al., 2018) and 80 
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algorithms for estimating community diversity metrics (Props et al., 2016). Flow 81 

cytometry-derived diversity metrics have been shown to be highly correlated to those 82 

derived from 16S rRNA gene amplicon sequencing in some ecosystems (García et al., 83 

2015; Props et al., 2016, 2018; Rubbens et al., 2021), suggesting there is a link between 84 

the taxonomic community composition and phenotypic properties as derived through 85 

FCM. This observation is supported by the fact that sorted fractions of a community 86 

have different taxonomic compositions compared to the entire community (Vogt et al., 87 

2009; Zimmermann et al., 2016; Lambrecht et al., 2019; Liu et al., 2019; Haange et al., 88 

2020).  89 

Using machine learning techniques, Bowman et al. (2017) and Rubbens, Schmidt, et al. 90 

(2019) showed that the relative abundance of specific OTUs is predictive for the 91 

abundance of high nucleic acid (HNA) and low nucleic acid (LNA) sub-communities in 92 

FCM data of natural ecosystems, illustrating the possibility of linking specific regions in 93 

the cytometric fingerprint to taxonomic groups using modelling approaches. Several 94 

studies have sought to further exploit this relationship in order to build predictive 95 

models for taxonomic community composition based on FCM data. Most of these studies 96 

take a bottom-up approach in which they train predictive models on data of axenic 97 

bacterial cultures. Rubbens et al. (2017) introduced the use of in silico communities 98 

based on axenic culture data, while Özel Duygan et al. (2020) developed a pipeline that 99 

allows to classify mixed communities into classes of predefined “cell types” by 100 

comparing data to signatures of a set of strains and bead standards. However, 101 

cytometric fingerprints of axenic cultures are known to be dynamic over time, for 102 

example in function of growth stage (Müller, 2007; Neumeyer et al., 2012; Buysschaert, 103 

Kerckhof, et al., 2018). Additionally, we have recently shown that the single-cell 104 
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properties of an individual taxon, as measured by FCM, depend on the presence of other 105 

bacterial taxa in the community. Therefore, training models on axenic culture data may 106 

lead to unreliable predictions (Heyse et al., 2019).  107 

In this study, we aimed to further integrate 16S rRNA gene amplicon sequencing and 108 

flow cytometry survey data in order to construct models that enable the prediction of 109 

both the presence and the abundance of multiple individual bacterial taxa in mixed 110 

communities using flow cytometric fingerprinting (Figure 1). As a case study, we used 111 

samples taken from a whiteleg shrimp (Litopenaeus vannamei) hatchery of which the 112 

dynamics have been previously described (Heyse et al., 2021). We first verified the 113 

taxonomic stratification in the cytometric fingerprints using cell sorting. We then 114 

developed a two-stage pipeline using flow cytometry data as input that, firstly, predicts 115 

the presence/absence of bacterial taxa, and, secondly, predicts the relative abundance 116 

of bacterial taxa. Through the direct linking of flow cytometry and amplicon sequencing 117 

survey data, the constructed models are not relying on data from axenic cultures. We 118 

verified the ability of the models to assign taxa to the specific regions in the cytometric 119 

fingerprint using marker gene data from the cell sorted community fractions and using 120 

a three strain mock community. Finally, we validated the approach of our pipeline on 121 

two independent datasets.  122 
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Results 123 

In this study, we used published flow cytometry and 16S rRNA gene amplicon data from 124 

an 18-day sampling campaign in a L. vannamei hatchery where five replicate 125 

cultivations were studied (Heyse et al., 2021). The replicate cultivation tanks were 126 

sampled at a resolution of 3 hours for flow cytometry and once per day for 16S rRNA 127 

gene sequencing. This dataset was combined with newly-generated 16S rRNA gene 128 

amplicon data on sorted fractions of samples originating from this previous study.  129 

Taxonomic information is conserved in flow cytometric fingerprints  130 

Prior to model training, the connection between the taxonomic composition of the 131 

bacterial communities, as derived through 16S rRNA gene amplicon sequencing, and 132 

their phenotypic properties, as derived by flow cytometry, was evaluated using cell 133 

sorting. In total, 57 community fractions were sorted from 20 samples using 5 gates 134 

(referred to as “sub-community” or “SC” 1 to 5). The sorted regions in the flow 135 

cytometry data space (i.e. gates) were chosen to maximize the coverage of the 136 

community across the side scatter and SYBR Green I fluorescence range 137 

(Supplementary Figure 1), and represented sub-communities with relative cell 138 

abundances between 3 to 56 % of the total cell gate (Figure 2A).  139 

For all sub-communities, the taxonomic richness was significantly lower as compared to 140 

that of the cell gate (one-sided Wilcoxon rank sum test, p < 0.0001, Figure 2B). The 141 

taxonomic composition of each of the five gated sub-communities was significantly 142 

different from that of the cell gate as well as from each other (PERMANOVA on Bray-143 

Curtis dissimilarities, p < 0.01, Supplementary Table 1, Supplementary Figure 1). Each 144 

sub-community was enriched in specific taxa and shared a limited number of taxa with 145 
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the other sub-communities (Figure 2C). Many taxa were uniquely detected in a specific 146 

sub-community (e.g. OTU1 Phaeodactylibacter sp. in SC 1), however, some taxa were 147 

detected in two (e.g. OTU3 Nioella sp. in SC 1 and 2) or three (e.g. OTU7 Kordia sp. in SC 148 

1, 2 and 3) sub-communities (Figure 2C, Supplementary Figure 2). The overlap in 149 

taxonomic composition between gates that were more dissimilar from each other was 150 

smaller (e.g. SC 1 and 5, which are more dissimilar, only share 15 OTUs, while SC 1 and 151 

2, which are close to each other, have 147 OTUs in common; Figure 2C), confirming that 152 

specific taxa typically occur in the specific positions of the cytometric space. 153 

The two most narrowly defined sub-communities (i.e. SC 3 and 5), with the lowest 154 

abundance in the community, represented sub-communities with low taxonomic 155 

diversity and were nearly mono-dominant, (i.e. Kordia sp. in SC 3 and unclassified 156 

Alphaproteobacteria sp. in SC 5), while the larger and abundant gates (i.e. SC 1, 2 and 4) 157 

were dominated by multiple taxa (Supplementary Figure 2). It should be noted that the 158 

number of sorted samples were not equally distributed over the five sorting gates (i.e. 159 

SC3 and 5 was sorted once and three times, respectively, while SC1, 2 and 4 were sorted 160 

15, 17 and 18 times), which may have caused the cumulative number of observed taxa 161 

in SC3 and 5 to be lower than those of SC1, 2 and 4. Nevertheless, also the average 162 

number of taxa per sample was lower in SC3 and 5 as compared to SC1, 2 and 4 (Figure 163 

2B). 164 

Throughout the shrimp cultivation, the phylogenetic composition in the sub-165 

communities was preserved well, even though the composition of the total community 166 

was dynamic over time and differed between the replicate tanks from which samples 167 

were sorted.  168 

Development of a pipeline to extract taxonomic information  169 
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Cell sorting was performed on a different instrument (BD Influx) as compared to the 170 

FCM measurements of community samples (BD FACSVerse). To be able to use both the 171 

community sample and the sorted sample data as a single dataset, a set of 172 

representative samples was measured on both instruments, the gates that were used 173 

for sorting were manually-recreated on the FACSVerse data and correspondence 174 

between the relative cell abundances in the gates on data of the two instruments was 175 

used to evaluate the quality of the manually recreated gates (Supplementary Figure 1). 176 

The corresponding flow cytometric fingerprints of the sorted sub-communities were 177 

obtained from the community measurements using these gates. The combined dataset 178 

(i.e. including both sorted and community measurements) consisted of 169 samples for 179 

which both 16S rRNA gene amplicon and flow cytometry data were available. Models 180 

were trained for each OTU individually, using the flow cytometry data as input and the 181 

presence or abundance of the OTU of interest as model output. Details about the model 182 

construction are provided in the Materials and Methods sections. Performances for the 183 

top 50 OTUs from the aquaculture dataset were evaluated. All reported performance 184 

values are performances on the validation sets (i.e. on data that was not used for model 185 

training). 186 

In the first part of the pipeline, a presence/absence classifier is trained. Classification 187 

performance was evaluated using accuracy (i.e. percentage correctly predicted 188 

samples) and AUC (area under the ROC curve, i.e. probability that a randomly-chosen 189 

sample where the taxon is “present” is assigned a higher probability for “present” than a 190 

randomly-chosen sample where the taxon is “absent”). We were able to perform 191 

presence/absence classification with high accuracies, ranging from 78 % to 98 % for 192 

individual OTUs and AUC values between 0.66 and 0.99 (Figure 3A and B). The number 193 
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of false positive (i.e. taxon is incorrectly predicted to be present) and false negative (i.e. 194 

taxon is incorrectly predicted to be absent) samples did not differ strongly for 195 

individual OTUs (two-sided Wilcoxon rank sum test, p > 0.05, Supplementary Figure 3).  196 

In the second part of the pipeline, the relative abundances of individual taxa were 197 

modelled using a regression ensemble. Regression performance was evaluated using R2 198 

(i.e. proportion of the variance in the relative abundance values that can be predicted 199 

from the flow cytometry data) and MAE (mean average error, i.e. average deviation 200 

between true and predicted relative abundances).The regression ensembles had R2-201 

values between 0.00 and 0.64 (0.21 ± 0.18 on average) and MAE (Mean Absolute Error) 202 

values between 0.24 and 9.06 (3.41 ± 2.19 on average) (blue dots in Figure 3). The 203 

regression ensembles frequently predicted high relative OTU abundances for samples 204 

where an OTU was either absent or present in very low abundance (Supplementary 205 

Figure 4B). Therefore the predictions of the classifier were superimposed on the 206 

regression predictions (Supplementary Figure 4A): the predicted relative OTU 207 

abundances in samples that were classified as “absent” were set to zero, predictions for 208 

samples where the OTU was predicted to be “present” remain unchanged. This reduced 209 

the number of false positive samples by an average of 10 fold (i.e. from 40 ± 17 to 4 ± 3 210 

out of 100 samples). However, superimposing the classifier to the regression results 211 

slightly increased the number of false negative samples from 3 ± 3 out of 100 samples to 212 

8 ± 5 on average. Overall, the R2-values were increased to 0.35 ± 0.24 on average 213 

(ranging between 0.00 and 0.81), and the MAE was reduced to 1.31 ± 0.97 on average 214 

(green dots in Figure 3). 215 

To evaluate the ability of our approach to correctly capture dynamics of taxa over time, 216 

we predicted the presence and relative abundances of four taxa on the time points for 217 
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which no amplicon data were available. Additionally, we calculated the predicted 218 

absolute OTU abundances by multiplying bacterial densities with the predicted relative 219 

OTU abundances. The taxa were selected based on a good (OTU1, R2 = 0.81), 220 

intermediate (OTU2, R2 = 0.65 and OTU6, R2 = 0.19) and low (OTU13, R2 = 0.03) overall 221 

prediction performance. For OTU1, the predictions followed the overall patterns that 222 

were estimated by interpolation of the time points for which amplicon data was 223 

available (Figure 4). Additionally, the predictions for which the abundances did not 224 

match the trends that were estimated by interpolation, often coincided with low 225 

absolute abundances. Similarly, for OTU2 and OTU6, which had intermediate model 226 

performances, the abundance patterns were following the expected trends well 227 

(Supplementary Figure 5, Supplementary Figure 6). For OTU13, which had the lowest 228 

performance, the patterns were not corresponding to those that would be expected 229 

based on interpolation of the available data points (Supplementary Figure 7). 230 

Since the models were trained on survey data, in which there may be co-occurrence 231 

between taxa, predictions of individual OTUs may be (partly) relying on detecting co-232 

occurring OTUs and not the OTU of interest itself. In that case, the applicability of the 233 

pipeline may be limited to filling gaps in time series of the dataset that was used for 234 

model training (i.e. relying on auto-correlation between the samples over time), but the 235 

reliability of predictions on independently generated time series of the same 236 

environment (e.g. repeated shrimp cultivation in this case) may be limited. To verify the 237 

impact of co-occurrence, we compared the performances of models that were trained 238 

on only four of the replicate tanks and predictions were made on the 5th tank (setting 1) 239 

with models that were trained using a randomly chosen training- and validation set 240 

from data of all replicate tanks (setting 2). The former ensured that the co-occurrence 241 
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patterns of the validation data (i.e. data from the 5th tank) were not incorporated during 242 

model training, while the latter incorporated a all co-occurrence patterns during model 243 

training. There was an average decrease in R² of 0.02 across the 50 OTUs in setting 2 244 

relative to setting 1. This small decrease suggests that co-occurrence has only a minor 245 

influence on model performance. To investigate this further, we assessed, for the top 10 246 

OTUs, the feature importance of the clusters in the cytometric fingerprint (see Materials 247 

and Methods for procedure) with the regions of the sorting gates in which these taxa 248 

were observed. Overall, the positions of clusters with high feature importances were 249 

corresponding well to the positions of the gates in which these taxa were observed, with 250 

the exception of OTU6, for which clusters were detected over the entire range of the 251 

bacterial community fingerprint (Supplementary Figure 8). For some OTUs there were 252 

small deviations, which may be the result of technical aspects. For example, some OTUs 253 

were not detected in regions with high feature importances, which may be the result of 254 

the limited number of sorted samples and the fact that these were biased towards only 255 

3 tanks during the first half of the sampling campaign (i.e. day 4-13). Secondly, the 256 

sorting gates were recreated from the data of one instrument to the other (see Materials 257 

and Methods, Supplementary Figure 1). This may have caused gates immediately 258 

adjacent to the sub-communities to be either marked or not marked while this was not 259 

the case. Overall, these results show that the models can robustly associate taxa to 260 

regions in the cytometric fingerprint where they are detected using 16S rRNA gene 261 

amplicon sequencing, and, hence they are not relying heavily on co-occurrence patterns. 262 

To test whether taxa that are phylogenetically closely related are more likely to be 263 

associated to the same regions in the cytometric fingerprints, the relationship between 264 

phylogenetic distance between taxa and feature importance similarity was evaluated. 265 
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There was a significant (Adj. R. sq. = 0.039 and p < 2e-16, Cp = -0.20) relationship 266 

between the similarity of cluster importance for different OTUs assigned by the model 267 

and the phylogenetic similarities (Supplementary Figure 9). This relationship was 268 

negative, indicating that OTUs which are phylogenetically more closely related, are 269 

more likely to be associated with the same regions in the cytometric fingerprints. 270 

The sensitivity of the model performance to the amount of data available for training 271 

was investigated for two OTUs (i.e. OTU1 and 6), by training models on randomly 272 

subsampled datasets that contained 20, 40, 60 or 80 % of the dataset (i.e. 34, 68, 101 or 273 

135 samples). For both OTUs and for both classification and regression, there was a 274 

strong reduction in performance at the lower sample sizes (learning curves in 275 

Supplementary Figure 10). Classification accuracy was reduced by 10 % and 5 %, for 276 

OTU1 and OTU6, respectively, for every 20 % reduction in dataset size. For the 277 

regression models, the R2-values were halved when the model was trained on only 20 278 

% of the data as compared to when it was trained on 80 % of the data. For both of the 279 

OTUs the performance did not yet reach a plateau, suggesting that more data is required 280 

to improve model performances. 281 

Validation of the approach on external datasets 282 

To test whether the approach of our pipeline was applicable for monitoring of other 283 

(managed) microbial systems, the entire workflow was replicated on a three strain 284 

cytometric mock community from Cichocki et al. (2020) and a dataset of insular reactor 285 

communities from Liu et al., (2019). Details about the datasets are provided in 286 

Supplementary Table 2.  287 
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For the mock community classifier AUC was 0.96 ± 0.07 % on average and R2-values 288 

were 0.89 ± 0.03 on average (Figure 5). Since this was a simple mock community, we 289 

could validate that the clusters that were assigned a high importance by the model 290 

corresponded well to the regions where these taxa were found in the cytometric 291 

fingerprint (Supplementary Figure 11). For the reactor communities, AUC of the top 18 292 

OTUs were 0.81 ± 0.12 on average. As for the aquaculture dataset, there were big 293 

differences in the model performances of individual OTUs. The range of performances 294 

was similar as for the aquaculture dataset, with an average R2 of 0.33 ± 0.27.  295 
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Discussion 296 

The objectives of our study were: (1) to verify the taxonomic structure in flow 297 

cytometry fingerprints for our model system, L. vannamei larviculture rearing water 298 

communities, using cell sorting; (2) to further integrate 16S rRNA gene amplicon 299 

sequencing and flow cytometry data to develop a pipeline that allows to predict the 300 

presence/absence and the relative abundance of multiple individual bacterial taxa in 301 

mixed communities based on flow cytometry measurements (Figure 1); (3) to validate 302 

the approach of our pipeline on two independent datasets. 303 

Models can predict temporal abundance dynamics  304 

Substantial variation in model performances were observed for the individual OTUs, for 305 

both the aquaculture (Figure 3) and the validation datasets (Figure 5). For all OTUs the 306 

classifier accuracies were largely above the random guessing threshold of 50 %, 307 

indicating that the presence of all taxa could be predicted with moderate to high 308 

accuracy. In contrast, for the prediction of relative abundances, there were large 309 

differences in performance between OTUs. For the aquaculture dataset, predictions for 310 

OTUs with a high to intermediate R2 occasionally diverged from what would be 311 

expected based on interpolation of the time points for which 16S rRNA data was 312 

available, but the overall patterns of taxon presence and abundance were predicted well 313 

(Figure 4, Supplementary Figure 5, Supplementary Figure 6). Based on these results we 314 

conclude that the constructed models are suitable for monitoring dynamics over time, 315 

but that one should be more cautious when evaluating single snapshot samples. The 316 

number of required samples to predict reliable trends will be dependent on the taxa of 317 

interest and the dynamics of the system under study. We acknowledge that for a subset 318 
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of the investigated OTUs, accuracies were very low and predictions were not 319 

corresponding to the expected patterns (Supplementary Figure 7). Further 320 

improvement of prediction performances would greatly increase the applicability of the 321 

model. The required model accuracy and tolerated bias will be depend on the final 322 

context and application (e.g. research, environmental monitoring, pathogen monitoring, 323 

etc.). Aspects that can further improve model performances include increased dataset 324 

sizes for model training (Supplementary Figure 10), optimisation of acquisition settings 325 

and included fluorescence detectors (Rubbens, Props, Garcia-Timermans, et al., 2017) 326 

or the incorporation of different or additional stains in the cytometric measurements 327 

(Buysschaert et al., 2016; Duquenoy et al., 2020).  328 

It should be noted that we do not expect the models to improve until the relative 329 

abundance of all taxa in a mixed community can be perfectly predicted, since flow 330 

cytometric data contain only information regarding a limited set of phenotypic 331 

properties. Studies using axenic culture data have observed that some combinations of 332 

taxa are difficult to distinguish (Rubbens, Props, Boon, et al., 2017; Özel Duygan et al., 333 

2020), and, studies using sorting and subsequent sequencing, typically also observe 334 

sub-communities that contain multiple taxa (Zimmermann et al., 2016). Some taxa may 335 

be indistinguishable based on their cytometric fingerprints. Our results indicated that 336 

OTUs that are phylogenetically more closely related to each other, are more likely to be 337 

associated to the same regions in the cytometric fingerprints, and can therefore be 338 

harder to distinguish (Supplementary Figure 9). Additionally, some taxa are known to 339 

exhibit high phenotypic plasticity (Horvath et al., 2011), which may make it difficult for 340 

the model to reliably associate a region in the cytometric fingerprint to such taxa. This 341 

implies that we can expect that for some taxa in a given environment it may be 342 
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impossible to construct performant models, despite the availability of large datasets 343 

and/or sorting data. 344 

In contrast to previous developed methods to predict taxon abundances based on flow 345 

cytometry (Rubbens, Props, Boon, et al., 2017; Özel Duygan et al., 2020), the pipeline in 346 

our study does not rely on training models based on fingerprints of pure cultures. We 347 

have previously shown that the cytometric fingerprint of an individual taxon depends 348 

on the presence of other taxa in the community, and, that because the fingerprint of a 349 

single taxon in axenic culture and in mixed culture differs, relative abundance 350 

predictions that rely on axenic culture data may be unreliable (Heyse et al., 2019). 351 

Hence, the applicability of pipelines that rely on FCM fingerprints of individual taxa for 352 

model training is limited to experimental setups where it is possible to determine the in 353 

situ phenotypic fingerprint of individual taxa (e.g. through physical separation of 354 

cultivated taxa, cell sorting, etc.). Using cell sorting we have shown that our pipeline is 355 

able to directly link taxonomic groups to clusters in the cytometric fingerprint of both 356 

mixed and synthetic communities (Supplementary Figure 11, Supplementary Figure 8). 357 

As a result, the currently proposed pipeline is suitable for studying both environmental 358 

and synthetic communities.  359 

Prospects for bacterial monitoring  360 

We used aquaculture as our model system since bacterial diseases are causing annual 361 

losses of billions of dollars worldwide in this sector (Stentiford et al., 2017; Shinn et al., 362 

2018). These disease outbreaks are not caused by the presence of a pathogen alone, but 363 

rather by complex changes in the microbial community structure (Lemire et al., 2015; 364 

Dai et al., 2020; Huang et al., 2020; Infante-villamil et al., 2020). Additionally, the onset 365 

of mortality typically occurs very fast (Lucas et al., 2010; Heyse et al., 2021). Fast and 366 
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high-throughput monitoring of bacterial community composition is a first step to 367 

mitigate the disease outbreaks, and is therefore a crucial aspect for microbial 368 

management. In practice, routine monitoring is mostly relying on (selective) plating. 369 

While these cultivation-based methods are simple and inexpensive, they remain slow 370 

(i.e. > 24h; Hallas and Monis, 2015; Rech et al., 2018), and provide a biased view of 371 

bacterial abundance (Van Nevel et al., 2017; Cheswick et al., 2019) and community 372 

composition (Gensberger et al., 2015; Sala-Comorera et al., 2020).  373 

The flow cytometric toolbox for monitoring environmental communities already 374 

contains algorithms for estimating community level diversity (Props et al., 2016; 375 

Wanderley et al., 2019), stability (Liu et al., 2018) and turnover (Liu and Müller, 2020), 376 

as well as algorithms that allow to associate population dynamics with environmental 377 

or experimental parameters (Koch, Fetzer, Harms, and Müller, 2013) and pipelines that 378 

are designed for community-level classification into different categories (e.g. 379 

diseased/healthy, etc.) (Rubbens et al., 2020). Standalone community level metrics such 380 

as diversity or stability may be difficult to interpret, and, therefore, to couple to specific 381 

management actions, because of the high bacterial heterogeneity and fast dynamics that 382 

are typically observed in aquaculture microbiomes (Schmidt et al., 2017; Chun et al., 383 

2018; Heyse et al., 2021). Additionally, different pathogens or dysbiotic states may 384 

require a different treatment. The pipeline of our study allows to add an additional 385 

layer of taxonomic information to these metrics, which will increase the actionability of 386 

the farmers. Once the models have been constructed, predictions can be made for 387 

multiple taxa simultaneously allowing to monitor a large fraction of the bacterial 388 

community.  389 
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We have shown that the pipeline that was developed in this study can be extrapolated 390 

to other applications, including analysis of laboratory mock communities and mixed 391 

reactor communities (Figure 5). In our study, average model performances on the 392 

reactor communities were lower as compared to those of the taxa in the aquaculture 393 

communities. This can be due to the smaller dataset size (i.e. 43 samples as compared to 394 

169 for the aquaculture dataset), as this was shown to have a large influence on model 395 

performance (Supplementary Figure 10). Performances for the mock community 396 

strains was high, which can be expected due to the lower community complexity. 397 

The main advantages of using flow cytometry for community composition monitoring 398 

lies in the speed (i.e. minutes) and the high potential for automation (Hammes et al., 399 

2012; Arnoldini et al., 2013), which enables monitoring with high temporal resolution. 400 

Additionally, the independence of cultivation is a great advantage for monitoring 401 

managed ecosystems, since man-induced stressors, such as disinfection, are known to 402 

induce VBNC-states (Chen et al., 2020). Practical applications of the pipeline can include 403 

monitoring the efficacy of management strategies, follow-up disease outbreaks, 404 

monitoring the presence of probiotic strains, etc. We believe the pipeline that was 405 

developed in this study holds great potential to be integrated in routine monitoring 406 

schemes and early warning systems for biotechnological applications.  407 
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Materials and Methods 408 

Samples 409 

In this study, we used a combination of previous published flow cytometry and 16S 410 

rRNA gene amplicon data from a L. vannamei hatchery (Heyse et al., 2021) and new 411 

generated 16S rRNA gene amplicon data on sorted sub-communities of samples 412 

originating from this previous study. This dataset is referred to as the “aquaculture 413 

dataset”. Five gates were created for cell sorting (Supplementary Figure 1). The gates 414 

were chosen to cover the range of SYBR Green I fluorescence and side scatter that were 415 

observed in the dataset. The samples that were selected for sorting were chosen from 416 

three of the replicate tanks, over different days, in order to include communities with 417 

heterogeneous taxonomic compositions.  418 

Flow cytometry 419 

Samples for flow cytometry were fixed with 5 µL glutaraldehyde (20 % vol/vol) per mL 420 

(Heyse et al., 2021). Glutaraldehyde-fixed, SYBR Green I-stained community samples 421 

were measured with a FACSVerse flow cytometer and sorting was performed with a BD 422 

Influx v7 Sorter USB. The procedures for flow cytometric measurements, cell sorting 423 

and control samples accompanying these procedures are outlined in detail in 424 

Supplementary Materials and Methods.  425 

Illumina sequencing  426 

Sequencing of the V3-V4 region of the 16S rRNA gene amplicon sequencing was 427 

performed on an Illumina MiSeq. The DNA extraction protocols and details about the 428 

sequencing are outlined in Supplementary Materials and Methods.  429 
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Validation datasets  430 

The applicability of the pipeline was verified on two datasets: a synthetic community 431 

and a mixed community. The synthetic community dataset contained samples of a three 432 

strain mock community (Stenotrophomonas rhizophila DSM 14405, Kocuria rhizophila 433 

DSM 348 and Paenibacillus polymyxa DSM 36). The reactor community dataset 434 

originated from the study of Liu et al. (2019). More information regarding the validation 435 

datasets, their processing and availability is provided in Supplementary Table 2.  436 

Data analysis 437 

Flow cytometry analysis 438 

The flow cytometry data were imported in R (v3.6.3) (R Core Team, 2017) using the 439 

flowCore package (v1.52.1) (Hahne et al., 2009). The data were transformed using the 440 

arcsine hyperbolic function, and the background of the fingerprints was removed by 441 

manually creating a gate on the primary fluorescent channels (Supplementary Figure 442 

12).  443 

16S rRNA gene amplicon sequencing analysis 444 

Raw sequencing reads from the previous study and raw sequencing reads generated in 445 

this study were processed together. Analysis was performed with the software package 446 

MOTHUR (v.1.42.3) (Schloss et al., 2009). Contigs were created by merging paired-end 447 

reads based on the Phred quality score heuristic and they were aligned to the SILVA 448 

v123 database. Sequences that did not correspond to the V3–V4 region as well as 449 

sequences that contained ambiguous bases or more than 12 homopolymers, were 450 

removed. The aligned sequences were filtered and sequencing errors were removed 451 
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using the pre.cluster command. UCHIME was used to removed chimeras (Edgar et al., 452 

2011) and the sequences were clustered in OTUs with 97 % similarity with the 453 

cluster.split command (average neighbour algorithm). OTUs were subsequently 454 

classified using the SILVA v123 database. The OTU table was further analysed in R 455 

(v3.6.3) (R Core Team, 2017). OTU abundances were rescaled by calculating their 456 

proportions and multiplying them by the minimum sample size present in the data set. 457 

Absolute taxon abundances are calculated by multiplication of relative abundances with 458 

total bacterial densities as determined through flow cytometry. 459 

Predictive models  460 

FCM preprocessing. The data is normalized to the [0,1] interval by dividing each 461 

parameter by the maximum SYBR Green I fluorescence channel (i.e. the targeted 462 

channel) intensity value over the data set. Next, the flow cytometry data were processed 463 

by applying a Gaussian mixture mask to the data that allows to classify each cell into 464 

one of the cell clusters that are detected in the dataset. For generating the mask, all 465 

samples are subsampled to the same number of cells per sample, in order to not bias 466 

model training towards a specific sample. Similar to the method of Ludwig et al. (2019), 467 

the Gaussian mixture model (GMM) was optimised based on the Bayesian information 468 

criterion (BIC) using PhenoGMM (Rubbens et al., 2021, Supplementary Figure 13). This 469 

discretisation results in a 1D-vector for each sample that represents the number of cells 470 

present in each mixture. Unless indicated otherwise, the parameters that are included 471 

in the model are those that were optimised prior to measurement (i.e. FSC, SSC, FL1 472 

(527/32) and FL3 (700/54)). Finally, the mixture counts were converted to relative 473 

abundances per sample and transformed using a centered log ratio (clr) transformation 474 
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implemented in the compositions package (v. 2.0.0) (van den Boogaart and Tolosana-475 

Delgado, 2008):  476 

𝑐𝑙𝑟(𝑥𝑖) =  ln (
𝑥𝑖

(∏ 𝑥𝑗
𝑛
𝑗=1 )

1/𝑛
) 

Illumina preprocessing. Taxa with low relative abundances are not expected to be 477 

detected through flow cytometry. Hammes et al., (2008) determined a quantification 478 

limit for flow cytometry of 102 cells/mL. Since all samples were diluted 10 times, taxa 479 

with an absolute abundance below 103 cells/mL were not expected to be observable in 480 

the flow cytometry data. Therefore, in each sample, the relative abundance of OTUs with 481 

an absolute abundance lower than 103 cells/mL was set to zero.  482 

Model training and validation. Models are trained for each OTU individually. To test 483 

the robustness of the pipeline, prediction performance was evaluated using 484 

independent validation sets with a nested cross-validation scheme (i.e. in the outer loop 485 

20 % of the data is held out for validation of the final model, in the inner loop 5-fold 486 

cross-validation is used for tuning and training of the models). This outer loop was 487 

repeated three times with different fold splits. The pipeline consists of a random forest 488 

classifier to predict presence or absence of the taxon of interest and a regression 489 

ensemble (i.e. combination of a gradient boost regression and a support vector 490 

regression with polynomial kernel) to predict the relative abundance of the taxon of 491 

interest. All models were implemented using the caret (v6.0.86) (Kuhn, 2008) and 492 

caretEnsemble (v2.0.1) (Deane-Mayer, Zachary A. Knowles, 2019) packages. 493 

Sequencing survey data is typically zero-inflated (i.e. for each individual OTU, the OTU 494 

will be absent or have a very low relative abundance; Supplementary Figure 14A). Prior 495 
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to model training, samples were randomly combined in silico to increase the number of 496 

samples where the OTU was abundant (Supplementary Figure 14B and C). This 497 

increased model performances (Supplementary Figure 14D). 498 

For the presence/absence classifier, samples with an OTU abundance lower than 1 % 499 

were labelled as “absent”, samples with an OTU abundance higher than 1 % were 500 

labelled as “present”. The reason why an arbitrary value of 1 % was chosen as a cut-off 501 

is that small differences in sequencing depth between samples may cause samples with 502 

similarly low relative abundances to be labelled differently (i.e. as absent or present). A 503 

random forest (RF) classifier was trained to separate both classes. Before training the 504 

classifier, the number of features was reduced using a recursive feature elimination 505 

strategy (rfe function in caret, 25 iterations). In short, the training data is split into a 506 

test- and trainset, the model is tuned on the train set and the features are ranked 507 

according to their importance. For each subset of the Si most important features, the 508 

model is trained on the training set and predictions are made on the test set. This 509 

procedure was repeated 25 times and the average performance profile over the 510 

different subset sizes is calculated. The performances quickly reached a plateau. To 511 

avoid incorporation of redundant features, the features required to reach an accuracy 512 

with a maximal deviation of 0.5 % of the maximal accuracy were included 513 

(pickSizeTolerance function in caret). Inclusion feature selection improves the ability of 514 

the model to use features/clusters that are associated to the modelled taxon, and not on 515 

correlated clusters that may belong to other taxa (Supplementary Figure 15). 516 

For predicting the relative abundances, models with unbound outcomes were used. To 517 

avoid the generation of predictions outside the [0,1] range, the logit transformation was 518 
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applied to map the relative abundances of the individual OTUs to values in the [–Inf, Inf] 519 

range before training the regression models:  520 

𝑙𝑜𝑔𝑖𝑡(𝑥𝑖) =  ln (
𝑥𝑖

1−𝑥𝑖
)  

Zero values were replaced by one tenth of the smallest non-zero abundance value. The 521 

final regression predictions were inversely transformed so the final predictions were 522 

bound to the [0,1] range. A linear regression ensemble was trained using a gradient 523 

boosting regression and a support vector regression with polynomial kernel. Because 524 

the regression models were marked by a high frequency of false positive predictions, 525 

the classifier was used to correct the regression output (i.e. predicted abundances of 526 

samples for which classifier predicted “absent” were set to zero, Supplementary Figure 527 

4). 528 

Relative feature importance values of each model were stored to be compared either 529 

between taxa or to the sorting data. For the random forest classifier and gradient 530 

boosting regression, the mean squared error was calculated on the out-of-bag data for 531 

each tree, the values of the variable that was tested were randomly shuffled in the out-532 

of-bag-sample and the mean squared error was calculated again. Differences in the mean 533 

squared error values were averaged and normalized. For the support vector regression, 534 

the relationship between each predictor and the outcome was evaluated by fitting a 535 

loess smoother. The R2 statistic was calculated for this model against the intercept only 536 

null model. This number was returned as a relative measure of variable importance.  537 

Data availability 538 
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The entire data-analysis pipeline is available as an R Markdown document at 539 

https://github.com/jeheyse/FCM-16S_PredictiveModelling. Raw FCM data and 540 

metadata for the aquaculture dataset are available on FlowRepository under accession 541 

ID FR-FCM-Z3CY. Raw sequence data of the bulk samples originated from a previous 542 

study (Heyse et al., 2021) and are available from the NCBI Sequence Read Archive (SRA) 543 

under accession ID PRJNA637486. Raw sequence data of the control samples, the sorted 544 

and the mock communities generated in this study are available from the NCBI 545 

Sequence Read Archive (SRA) under accession ID PRJNA691168. 546 
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Figure legends 733 

Figure 1 - Overview illustration of the workflow and application of the pipeline 734 

presented in this study. During the training stage, samples from the system under study 735 

are collected and analysed using both flow cytometry and 16S rRNA gene amplicon 736 

sequencing. For the 16S rRNA gene amplicon data, the reads are processed to calculate 737 

relative abundance profiles for each sample. The models are trained for each taxon 738 

individually. Therefore, the relative abundances of the taxa of interest are extracted 739 

which results in a single vector for each taxon. For flow cytometry, the single cell data 740 

are separated from the background signals by manually creating a gate on the primary 741 

fluorescent channels and subsequently discretised by applying a Gaussian Mixture 742 

mask, which assigns each cell to a specific cluster. This results in a data frame with the 743 

relative abundance for each cluster of the Gaussian Mixture in each sample. Two models 744 

are constructed for each taxon: an absence/presence classifier and a regression 745 

ensemble to predict the relative abundance of the taxon of interest. During the 746 

deployment stage, the system under study is sampled using flow cytometry, the trained 747 

models are used to predict the presence/absence and relative abundances of one or 748 

multiple taxa of interest.  749 

Figure 2 – (A) Relative abundances of the sorted sub-communities (SC), based on the 750 

measurements of the Influx v7 Sorter. (B) Observed taxonomic richness in the sorted 751 

community and sub-communities. The values above the brackets indicate the p-values 752 

of a one-sided (lower) Wilcoxon rank sum test. Note that for sub-community 3 no p-753 

value is supplied since this sub-community was sorted only once. (C) Upset graph 754 

illustrating intersections between the taxonomic composition of the sorted sub-755 

communities (i.e. number of common OTUs). The upper bars illustrate the cumulative 756 

number of OTUs that are found in a sub-community (in case of a single dot) or shared 757 

between sub-communities (in case of two connected dots). Note that the number of 758 

sorted samples were not homogeneously distributed over the five sorting gates (i.e. SC3 759 

and 5 were sorted once and three times, respectively, while SC1, 2 and 4 were sorted 760 

15, 17 and 18 times, Supplementary Figure 2). 761 

Figure 3 – Classifier accuracy (A) and AUC (B), and regression R2 (C) and MAE (D) 762 

values for the top 50 abundant OTUs from the aquaculture dataset. For the regression 763 

metrics (R2 and MAE) both the regression model outputs (in blue) and final pipeline 764 

outputs (i.e. after imposing the classifier predictions to the regression results, in green, 765 

visualised in Supplementary Figure 4) are illustrated. OTUs are ordered according to 766 

their final R2 values. The three dots for each model represent three repeated fold splits, 767 

the vertical line per OTU indicates the average performance of the replicates. The 768 

vertical line at 50 % in (A) and 0.5 in (B) indicates the random guessing threshold of a 769 

binary classifier. 770 
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Figure 4 - Predictions for OTU 1 (Phaeodactylibacter sp.; R2 = 0.81) from the 771 

aquaculture dataset. The five replicate shrimp cultivation tanks (“T1” to “T5”) were 772 

sampled at a resolution of 3 hours for flow cytometry and once per day for 16S rRNA 773 

gene sequencing. The presence and relative abundances for OTU1 on the time points for 774 

which no amplicon data were available were predicted in order to evaluate the ability of 775 

our approach to correctly capture dynamics of this taxon over time. The dark shades 776 

(“measured”) correspond to the values that were determined based on 16S rRNA 777 

sequencing. The lighter shades (“predicted”) correspond to time points for which only 778 

flow cytometry data was available and predictions were made using the models. 779 

Expected values can be estimated by interpolation of the measured samples (indicated 780 

with the lines between the measured samples). The reported values are averages of the 781 

two replicate measurements at each time point. (A) Predictions of the 782 

presence/absence classifier. (B) Predicted relative abundances. (C) Predicted absolute 783 

abundances, calculated by multiplying the predicted relative abundances by the total 784 

cell density as determined through flow cytometry. 785 

Figure 5 – Model performances on the two validation sets. (A) Classifier AUC-values for 786 

the three strain mock community. (B) R2 values for the three strain mock community. 787 

(C) Classifier AUC-values for the top 18 OTUs of the reactor communities. (D) R2 values 788 

for the top 18 OTUs of the reactor communities. The three dots for each model 789 

represent three repeated fold splits, the vertical line per OTU indicates the average 790 

performance of the replicates. The vertical line at 0.5 in (A) and (C) indicate the random 791 

guessing threshold of a binary classifier.  792 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.05.442872doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442872


33 
 

Supplementary Figures 793 

Supplementary Figure 1 – For the aquaculture dataset, cell sorting was performed on a 794 

different instrument (BD Influx v7 Sorter) as compared to the FCM measurements of 795 

community samples (BD FACSVerse). To be able to use both the community sample and 796 

the sorted sample data as a single dataset, a set of representative samples (i.e. samples 797 

originating from the replicate tanks and sampling days from which final samples for 798 

sorting were selected) was measured on both instruments and the gates that were used 799 

for sorting were manually recreated on the FACSVerse data. (A) Illustration of the five 800 

gates that were used to perform sorting on the Influx v7 Sorter. (B) Illustration of the 801 

manually recreated gates on samples that were measured on the FACSVerse. (C) 802 

Relationship between the sub-community (SC) densities in the gates drawn on data of 803 

the two instruments. The colour intensity in the first two panels is proportional to the 804 

log-scaled density of the events. Note that the colour scaling of figure A and B are 805 

independent. (Adj. R. Sq. = adjusted R-squared, Cp = Pearson correlation) 806 

Supplementary Figure 2 – Community composition in samples from the aquaculture 807 

dataset. (A) Composition in the sorted samples obtained in this study. The upper title 808 

bars indicate which sub-community was sorted (i.e. “SC 1” to “SC 5”). The lower title 809 

bars indicate from which replicate tank (i.e. ‘T1” to “T5”) the community originated. (B) 810 

Composition in the non-sorted samples (data originating from the previous study, 811 

Heyse et al., 2021). The OTUs belonging to the 15 most abundant genera are coloured, 812 

all other genera were labelled as “Other”. The legend on the bottom applies on both 813 

panel A and B. 814 

Supplementary Figure 3 – Number of false positive (i.e. samples incorrectly predicted to 815 

be present) and false negative (i.e. samples incorrectly predicted to be absent) samples 816 

for the classifiers that were built for the top 50 OTUs of the aquaculture dataset. Note 817 

that the number of samples are reported and not the rate. The reported p-values are the 818 

results of two sided Wilcoxon rank sum tests. The three dots for each model represent 819 

three repeated fold splits, the vertical line per OTU indicates the average performance 820 

of the replicates. 821 

Supplementary Figure 4 – The regression ensembles frequently predicted high relative 822 

abundances for samples where an OTU was absent or present in very low abundance. 823 

To improve prediction accuracy, the predictions of the classifier were superimposed on 824 

the regression predictions: i.e. the predicted relative abundances of samples that were 825 

classified as “absent” are set to zero, predictions of samples that were classified as 826 

“present” remain unchanged. (A) Hypothetical example to illustrate the corrections that 827 

were made using the classifier predictions. Lines in blue indicate samples for which the 828 

classifier predicted “absent”, and, thus, predicted relative abundances were set to zero. 829 

Lines in white indicate samples for which the classifier predicted “present”, and, thus, 830 

the predicted relative abundance remained unchanged. (B) Illustration of predicted 831 

relative abundances for OTU 1 (Phaeodactylibacter sp.) from the aquaculture dataset 832 
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before correction with the classifier predictions. (C) Illustration of final predicted 833 

relative abundances for OTU 1 after correction with the classifier predictions. (R. sq. = 834 

R-squared value). 835 

Supplementary Figure 5 - Predictions for OTU2 (Balneola sp.; R2 = 0.65) from the 836 

aquaculture dataset. The five replicate shrimp cultivation tanks (“T1” to “T5”) were 837 

sampled at a resolution of 3 hours for flow cytometry and once per day for 16S rRNA 838 

gene sequencing. The presence and relative abundances for OTU2 on the time points for 839 

which no amplicon data were available were predicted in order to evaluate the ability of 840 

our approach to correctly capture dynamics of this taxon over time. The dark shades 841 

(“measured”) correspond to the values that were determined based on 16S rRNA 842 

sequencing. The lighter shades (“predicted”) correspond to time points for which only 843 

flow cytometry data was available and predictions were made using the models. 844 

Expected values can be estimated by interpolation of the measured samples (indicated 845 

with the lines between the measured samples). The reported values are averages of the 846 

two replicate measurements at each time point. (A) Predictions of the 847 

presence/absence classifier. (B) Predicted relative abundances. (C) Predicted absolute 848 

abundances, calculated by multiplying the predicted relative abundances by the total 849 

cell density as determined through flow cytometry. 850 

Supplementary Figure 6 – Predictions for OTU6 (Marivita sp.; R2 = 0.19) from the 851 

aquaculture dataset. The five replicate shrimp cultivation tanks (“T1” to “T5”) were 852 

sampled at a resolution of 3 hours for flow cytometry and once per day for 16S rRNA 853 

gene sequencing. The presence and relative abundances for OTU6 on the time points for 854 

which no amplicon data were available were predicted in order to evaluate the ability of 855 

our approach to correctly capture dynamics of this taxon over time. The dark shades 856 

(“measured”) correspond to the values that were determined based on 16S rRNA 857 

sequencing. The lighter shades (“predicted”) correspond to time points for which only 858 

flow cytometry data was available and predictions were made using the models. 859 

Expected values can be estimated by interpolation of the measured samples (indicated 860 

with the lines between the measured samples). The reported values are averages of the 861 

two replicate measurements at each time point. (A) Predictions of the 862 

presence/absence classifier. (B) Predicted relative abundances. (C) Predicted absolute 863 

abundances, calculated by multiplying the predicted relative abundances by the total 864 

cell density as determined through flow cytometry.  865 

Supplementary Figure 7 – Predictions for OTU13 (Maritalea sp.; R2 = 0.03) from the 866 

aquaculture dataset. The five replicate shrimp cultivation tanks (“T1” to “T5”) were 867 

sampled at a resolution of 3 hours for flow cytometry and once per day for 16S rRNA 868 

gene sequencing. The presence and relative abundances for OTU13 on the time points 869 

for which no amplicon data were available were predicted in order to evaluate the 870 

ability of our approach to correctly capture dynamics of this taxon over time. The dark 871 

shades (“measured”) correspond to the values that were determined based on 16S 872 

rRNA sequencing. The lighter shades (“predicted”) correspond to time points for which 873 
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only flow cytometry data was available and predictions were made using the models. 874 

Expected values can be estimated by interpolation of the measured samples (indicated 875 

with the lines between the measured samples). The reported values are averages of the 876 

two replicate measurements at each time point. (A) Predictions of the 877 

presence/absence classifier. (B) Predicted relative abundances. (C) Predicted absolute 878 

abundances, calculated by multiplying the predicted relative abundances by the total 879 

cell density as determined through flow cytometry. 880 

Supplementary Figure 8 – Relationship berween cluster importances assigned by the 881 

models for the top 10 OTUs in the aquaculture dataset and location of the five sorting 882 

gates in which these OTUs were detected. The colors of the dots correspond to the 883 

cluster importances that were assigned by the model. Gates in which the OTU were 884 

detected in one or more sorted sub-communities at an abundance of 1 % or higher, are 885 

indicated in blue. OTUs for which no gates are marked in blue were not found 886 

abundantly in the sorted sub-communities. The OTUs are ordered according to their R2 887 

values (𝑅𝑂𝑇𝑈1
2 = 0.81, 𝑅𝑂𝑇𝑈2

2 = 0.65, 𝑅𝑂𝑇𝑈3
2 = 0.57, 𝑅𝑂𝑇𝑈4

2 = 0.49, 𝑅𝑂𝑇𝑈5
2 = 0.32, 𝑅𝑂𝑇𝑈6

2 = 888 

0.19, 𝑅𝑂𝑇𝑈7
2 = 0.10, 𝑅𝑂𝑇𝑈8

2 = 0.68, 𝑅𝑂𝑇𝑈9
2 = 0.29, 𝑅𝑂𝑇𝑈10

2 = 0.80). 889 

Supplementary Figure 9 – Relationship between phylogenetic distance and similarity of 890 

model feature importances between all top 50 OTUs from the aquaculture dataset, 891 

calculated using the Bray-Curtis dissimilarities. The shaded area represents the 95 % 892 

confidence interval around the ordinary least squares regression model (p <2e-16). 893 

(Adj. R. Sq. = adjusted R-squared, Cp = Pearson correlation). 894 

Supplementary Figure 10 – Learning curves to evaluate the influence of the dataset size 895 

available for training on the prediction performances for the aquaculture dataset for 896 

two OTUs: OTU1 (A & C) and OTU6 (B & D). The three dots for each model represent 897 

three repeated fold splits, the vertical line per OTU indicates the average performance 898 

of the replicates. (20 % = 34 samples, 40 % = 68 samples, 60 % = 101 samples, 80 % = 899 

135 samples). 900 

Supplementary Figure 11 – Correspondence of pure culture data with relative feature 901 

importance for the three strain mock community. The feature importances are averaged 902 

over the three repeats and folds. Pure culture data for P. polymyxa (A), S. rhizophila (B) 903 

and K. rhizophila (C). Relative cluster/feature importance of the classifier for P. 904 

polymyxa (D), S. rhizophila (E) and K. rhizophila (F). Relative cluster/feature importance 905 

regression ensemble for P. polymyxa (G), S. rhizophila (H) and K. rhizophila (I). Note that 906 

the different subplots have different colour scales. 907 

Supplementary Figure 12 - Illustration of the cell gate applied on the inverse hyperbolic 908 

sine transformed aquaculture flow cytometry dataset. Cells are isolated from most (in-909 

)organic and instrumental background by manual gating on the SYBR Green I 910 

fluorescence channel (533/30) and a red (> 670 nm) fluorescence channel. The colour 911 

intensity is proportional to the log-scaled density of the events. 912 
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Supplementary Figure 13 – Learning curves for the Gaussian mixture models used in 913 

this study, based on the Bayesian information criterion (BIC) (according to Rubbens et 914 

al., 2021). The different colours indicate different restrictions on the covariance 915 

matrices, and are indicated with a three letter code: EII (equal volumes, equal shapes, 916 

no orientation because spherical), VII (variable volumes, equal shapes, no orientation 917 

because spherical), EEI (equal volumes, equal shapes, orientation along axis), VEI 918 

(variable volumes, equal shapes, orientation along axis), EEE (equal volumes, equal 919 

shapes, equal orientation), EVE (equal volumes, variable shapes, equal orientation), VEE 920 

(variable volumes, equal shapes, equal orientation), VVE (variable volumes, variable 921 

shapes, equal orientation), EEV (equal volumes, equal shapes, variable orientation), VEV 922 

(variable volumes, equal shapes, variable orientation), EVV (equal volumes, variable 923 

shapes, variable orientation), VVV (variable volumes, variable shapes, variable 924 

orientation), EVI (equal volumes, variable shapes, orientation along axis), VVI (variable 925 

volumes, variable shapes, orientation along axis). The model with the highest BIC is 926 

retained as the final model and is indicated with the black dot. (A) For the aquaculture 927 

dataset using the scatters and two fluorescence parameter (optimum: 80 clusters, VEV). 928 

(B) For the three strain mock community (optimum: 31 clusters, VVI). (C) For the 929 

reactor communities of Liu et al. (2019) (optimum: 41 clusters, VEV). 930 

Supplementary Figure 14 – (A) Relative abundance distributions of the top 50 OTUs 931 

from the aquaculture dataset, illustrating the strong zero-inflation that is typically 932 

observed in community composition survey data. (B) Distribution of the relative 933 

abundances of a random strain (OTU3) prior to the generation of in silico data. (C) 934 

Distribution of the relative abundances of a strain after the generation of in silico data. 935 

(D) Illustration of the advantage of including in silico generated samples for the top 3 936 

OTUs from the aquaculture dataset. The three dots for each model represent three 937 

repeated fold splits and the vertical line indicates the average performance of the 938 

replicates. 939 

Supplementary Figure 15 – Illustration of the added value of including a feature 940 

selection step in the pipeline for one of the taxa from the three strain mock community. 941 

(A) Pure culture data for S. rhizophila. (B) Relative cluster/feature importance for 942 

models that were trained without feature selection. (C) Relative cluster/feature 943 

importance for models that were trained with feature selection. 944 

Supplementary Figure 16 – Relative abundances of the clusters that were detected in 945 

the microbial mock communities that were used to test for variability in flow cytometric 946 

measurements at the single-cell level, according to the recommendation of Cichocki et 947 

al. (2020). (A) Results for the replicates that were measured on the BD FACSVerse. (B) 948 

Results for the replicates that were measured on the BD Influx v7 Sorter USB. Note that 949 

the clusters of the two instrument are independent. 950 

Supplementary Figure 17 – Community composition that was retrieved from the 951 

samples to evaluate the effect of glutaraldehyde in the 16S rRNA gene profile. Each test 952 
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sample was sequenced in duplicate. The OTUs belonging to the 16 genera with the 953 

highest overall abundance are coloured, all other genera are labelled as “Other”. 954 

Supplementary Figure 18 – Overview of the samples that were included to verify 955 

extraction-induced bias. (A) Community composition that was retrieved from the 956 

dilution series of the ZymoBIOMICS Microbial Community Standard (Zymo Research, 957 

USA) and the blanks, extracted with two different DNA extraction protocols (i.e. “Zymo” 958 

and “Chelex”). All contaminating OTUs are indicated as ‘Other’. (B) Sample originating 959 

from cultivation tanks that was extracted using the two DNA extraction protocols. (C) 960 

Sample originating from the algal cultures that was extracted using the two DNA 961 

extraction protocols. (D) Sample originating from the Artemia storage tanks that was 962 

extracted using the two DNA extraction protocols. 963 

Supplementary Figure 19 – Overview of the samples that were included to control for 964 

potential contamination in the sorted samples. (A) Number of reads in samples from the 965 

sampling campaign (“Samples”), the buffer in which the sorted cells were collected 966 

(“Sheath”) and the Chelex solution that was used to extract DNA from the sorted 967 

samples (“Chelex”). (B) Community composition that was retrieved from the Chelex 968 

solution that was used to extract DNA from the sorted samples. One sample was taken 969 

for each of the three days DNA extractions were performed. (C) Community 970 

composition that was retrieved from the buffer in which the sorted cells were collected. 971 

One sample was taken for each day the sorting was performed. The OTUs belonging to 972 

the 16 genera with the highest overall abundance are coloured, all other genera are 973 

labelled as “Other”. 974 

Supplementary Tables 975 

Supplementary Table 1 - P-values resulting from PERMANOVA analysis on the Bray-976 

Curtis dissimilarities between the community compositions in the communities and 977 

sorted sub-communities. Note that sub-communitiy 3 was not included in the analysis 978 

since this sub-community was sorted only once. (* = For this combination it was not 979 

possible to perform PERMANOVA because the beta-dispersion of the groups was 980 

significantly differing.) 981 

Supplementary Table 2 – Information regarding the validation datasets. Accession IDs 982 

provided for the data from the study of Liu et al., 2019 are originating from the original 983 

study. Optimisation curves for the number of clusters detected using PhenoGMM are 984 

provided in Supplementary Figure 13. 985 
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