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Abstract 
Biomedical research often relies on identification and isolation of specific cell types using 

molecular biomarkers and sorting methods such as fluorescence or magnetic activated 

cell sorting. Labelling processes potentially alter the cells’ properties and should be 

avoided, especially when purifying cells for clinical applications. A promising alternative 

is the label-free identification of cells based on their physical properties. Sorting real-time 

deformability and fluorescence cytometry (soRT-FDC) is a microfluidic technique for label-

free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are 

analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far 

only demonstrated for blood cells which show clear morphological differences and are 

naturally in suspension. Most cells, however, grow in tissues, requiring dissociation 

before cell sorting which is associated with additional challenges including survival, 

changes in morphology, or presence of aggregates. Here, we introduce methods for 

robust analysis and sorting of single cells from mammalian nervous tissue and provide 

DNNs which are capable of distinguishing visually similar cells. Exemplarily, we employ 

the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina 

for transplantation into the mouse eye. Results provide evidence that the combination of 

machine learning and soRT-FDC allows label-free enrichment of target cells from 

dissociated tissues.  

 

Introduction   
Cell characterization is a major task in biomedical research as it allows for refined 

analyses and isolation of specific cell types for characterization or therapeutic 

applications. The current gold standard for cell-typing relies on the identification of 
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unique proteins expressed by the target cell population. If the cell-specific protein is 

intracellular, it cannot be accessed in live cells and genetic engineering is required to 

introduce expression of a fluorescent reporter. If the protein is located on the cell surface, 

commercially available antibodies allow to label the cells with a fluorescent or magnetic 

marker. Thus, the target cells become detectable for fluorescent activated cell sorting 

(FACS) or magnetic activated cell sorting (MACS), respectively [1–3]. However, specific 

markers for many cell types have still not been defined and such labeling processes 

present a treatment which could alter the cells’ properties and therefore skew any 

subsequent analysis or cellular response. Additionally, enzymatic dissociation of tissues 

frequently affects binding sites essential for the recognition by specific antibodies [4]. A 

promising alternative is the label-free identification of cells based on inherent physical 

and morphological properties.   

Density gradient centrifugation and filtration-based approaches are well-established 

methods allowing to enrich cells based on their density and cell size – however these have 

limited sensitivity. Deterministic lateral displacement is a microfluidic method for the 

enrichment of cells based on their deformation and size characteristics [5]. Similar to 

MACS, these techniques sort cells passively, allowing for bulk processing, resulting in an 

unmatched throughput. On the downside, these bulk sorting techniques only allow to 

enrich cells based on a small number of characteristics which are often shared by diverse 

cell types in a tissue and the sorting logic is hard-wired into the setup. In contrast, single 

cell approaches allow a flexible tuning of the sorting decision. Arguably, the most popular 

label-free single cell analysis and sorting device is FACS as it allows to obtain size and 

transparency information (forward scatter and side scatter) without need for staining, 

however not all cell types can be distinguished using this method [6]. Further inherent 

properties are chemical composition and mass density, and corresponding methods for 

single cell analysis or sorting have already been demonstrated [7,8].  

A microfluidic method for capturing mechanical properties of single cells is real-time 

deformability cytometry (RT-DC), in which cells flow through a narrow channel where they 

are deformed and captured by a high-speed camera [9]. For retrieval of mechanical 

features, only the outline of the tracked object (contour) is required, but the technology 

also provides bright-field images. RT-DC was complemented with fluorescence detection 

capability (real-time fluorescence and deformability cytometry – RT-FDC [10]), which allows 

to record bright-field images and fluorescence information of conventional markers 

simultaneously at a throughput of up to 1,000 cells/s. This technology proved to be ideal 

to generate labeled image datasets for training deep neural nets (DNNs) which learn to 

detect cell types based on the bright-field image alone. More recently, a sorting unit was 

added to the RT-FDC setup (sorting real-time deformability and fluorescence cytometry - 

soRT-FDC [11]) which leverages real-time image analysis by a DNN to actuate the sorting 

trigger based on the classification score. The study demonstrated DNN-assisted, image-

based sorting of blood cells, which are cells that are naturally occurring in 

suspension. However, most cells grow in tissues, resulting in a need for dissociation 

before any kind of single cell flow cytometry method can be applied. The same applies 

for 2D or 3D cell cultures such as organoids. Organoids are an increasingly popular tool 

in biomedical research for investigation of developmental and pathologic mechanisms, 

and they represent a promising cell source for therapeutic purposes [12–14].  
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Besides possibilities for label-free sorting, tissue dissociations are subject to non-uniform 

outcome. While naturally suspended cells tend to show a round shape (e.g. cells from 

blood or bone marrow), the morphology of cells in tissues is more heterogeneous. Alone 

in the retina, the shapes range from elongated (e.g. Müller glia) to elliptical (e.g. retinal 

pigment epithelium), resulting in a broad range of cell morphologies even after 

dissociation. Furthermore, single cells are prone to aggregate. Aggregates are 

unfavorable as they could skew a measurement, create artifacts in analysis results, cause 

accidental sorting of undesired cells, or even congest a sorting unit.  Due to the 

heterogeneous morphologies of dissociated cells and their tendency to aggregate, 

automatically differentiating single cells and cell aggregates is challenging. 

In the present work, we introduce software and hardware methods to improve reliability 

of RT-FDC data analysis and image-based cell sorting in the context of enzymatically 

dissociated tissues. We updated the chip design to promote a microfluidic based division 

of cell aggregates. Furthermore, we trained a convolutional neural net (CNN) for detection 

of aggregates in images which can be employed for offline analyses of RT-FDC datasets. 

For real-time detection of aggregates during sorting, we introduce efficient algorithms 

that employ object counting and the frequency of the occurrence of cells. soRT-FDC was 

previously demonstrated for DNN-based sorting of blood cells which show prominent 

phenotype differences [11]. In this work, we describe a DNN architecture for optimized 

utilization of CPU (central processing unit) resources which improves the accuracy of 

image-based cell identification for sorting. To demonstrate the applicability of the 

method to biomedical research, we trained the DNN for detection of photoreceptors 

from dissociated mouse retinae. The trained model was employed for label-free image-

based sorting of photoreceptors, which were subsequently transplanted into adult mice 

and were successfully shown to survive and interact with the host retina. 

 

Results   

Hardware based reduction of cell aggregates  
In the present work, we build upon the existing soRT-FDC technology to improve reliability 

of measurement, analysis, and sorting of enzymatically dissociated tissues. To develop 

and showcase the methods, we used dissociated retina cells originating from human 

retinal organoids (HROs) and mouse eyes (see Figure 1A). HROs differentiated from a 

photoreceptor-specific reporter human induced pluripotent stem cell line (hiPSC-

Crx-mCherry [14]) were cultured for 125 days. Mice expressing GFP restricted to rod 

photoreceptors (Nrl-eGFP mouse [15]) were at postnatal day 4 (P04) when applying the 

dissociation protocol (see Materials and Methods). For flow cytometry measurement in 

RT-FDC or sorting using soRT-FDC, cells were resuspended in a measurement buffer with 

elevated viscosity (see Materials and Methods), as illustrated in Figure 1A. 

soRT-FDC is a microfluidic technique allowing not only to capture bright-field images and 

fluorescence information from single cells at 1,000 cells/s, but also sort specific cells 

based on the decision of a DNN. In soRT-FDC, suspended cells and sheath fluid are 

pumped into a microfluidic chip by means of two syringe pumps. The sheath flow 

focusses the sample flow towards a narrow channel. At the end of the channel the cells 
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are captured by a high-speed camera and optionally fluorescence information is retrieved 

for up to three wavelengths. After the narrow channel, the microfluidic system widens 

and divides into a path towards the default and target outlet (see Figure 1B). The narrow 

channel is a distinct feature of soRT-FDC as it allows to deform cells to obtain information 

about the mechanical properties of cells. Furthermore, cells are aligned in the channel 

which simplifies image analysis tasks due to the reduced degrees of freedom. 

However, any constriction in a microfluidic design introduces the risk of being blocked by 

debris or large objects contained in the processed sample. A blocked or partially blocked 

channel will impair sorting. Moreover, presence of cell clumps in a dataset can skew 

analysis results. Especially for dissociated samples, presence of cell aggregates like 

doublets is very common. To prevent such objects from reaching highly confined parts of 

the chip, multiple columns of filter pillars were implemented. The distance between 

pillars at the first column is 60 µm (indicated as d1 in Figure 1C), which allows to catch 

larger objects (see Figure 1C). The pillars at the final column show a distance of 15 µm, 

which catch smaller objects and also contribute to separating and dividing aggregates 

into single cells. In the sheath inlet the first and last column of filters have an inner 

distance of 60 µm and 10 µm, respectively. Separation of cells is further promoted by 

serpentine channels of a width of 30 µm (see Figure 1C and Figure S1, Supporting 

Information). We observed that debris particles are prone to get stuck in the curvature of 

the serpentines. To prevent a full blocking of the chip, multiple serpentines were placed 

in parallel, resulting in a practically undisturbed execution of measurements or sorting 

experiments for hours.  

The microfluidic design shown in Figure 1C decreases the probability of the occurrence 

of large aggregates (see Figure S1, Supporting Information) but does not guarantee to 

generate a pure single cell suspension. In the following, a method for detection of 

aggregates such as cell doublets is introduced, allowing to exclude such events during 

data analysis.  
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Figure 1: Cell preparation, soRT-FDC setup and chip design 

(A) Retinae from reporter mice (Nrl-eGFP) or human retinal organoids (Crx-mCherry) are dissociated and 

resuspended in measurement buffer for soRT-FDC. 

(B) Sketch of the soRT-FDC setup. Two syringe pumps supply a microfluidic chip with sample and sheath fluid. 

Lasers excite fluorescence signal which is measured by avalanche photodetectors and the cell is imaged by a 

high-speed camera. A high-power LED illuminates the cell. Interdigital transducers (IDTs) excite surface 

acoustic waves, which push selected cells towards the target outlet.  

(C) Figure shows the 2D-CAD design of the entire sorting chip and zoomed in versions show specific parts. 

The red rectangles indicate filter assemblies, which consist of a cascade of pillars with decreasing distance. 

The orange rectangles indicate a unit of several serpentines, which helps to divide aggregates of cells and to 

increase the spacing between cells. The layout was designed using KLayout 0.25.3.  

 

DNN based detection of cell aggregates 
In flow cytometry, cell doublets can skew datasets and any subsequent analysis requires 

an exclusion of such events. For example, when a non-fluorescent cell is attached to a 

fluorescent cell, the event would be assigned to the fluorescence positive group but other 
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features such as granularity are affected by both cells. Image flow cytometers like RT-FDC 

and soRT-FDC provide a bright-field image and doublets of cells could be identified by 

human eye. As datasets typically contain several thousands of images, this task would be 

extremely labor intensive, resulting in a need for automation. Therefore, we visually 

assessed more than 60,000 cells (42,583 single cells and 21,137 doublets of cells) using 

RT-FDC measurements of HROs to create a labelled dataset. To speed up the labelling 

process, we developed a dedicated software (YouLabel) with graphical user-interface 

(Figure S2, Supporting Information). Using the generated dataset we trained supervised 

machine learning models, more specifically, convolutional neural nets (CNNs, Figure 2A), 

a type of DNN that is commonly used for image classification tasks. The input image size 

for the CNN is 36x36 pixels (= 24.5x24.5 µm) which is large enough to cover aggregates 

of cells and cells in proximity (Figure 2A). Accidental sorting of multiple cells and 

erroneous assignment of fluorescence intensities is not only a problem when cells are 

directly attached to each other but also when they travel at a close distance (see Figure 

S3 A, Supporting Information). To train the CNN to detect such events, they were assigned 

to the class of doublets during the manual labeling process. 

In order to span a wide variety of phenotypes, we used images of dissociated HRO 

cultures [16]. Based on the resulting dataset, we trained a CNN (Figure 2A) to perform the 

task of identifying doublets, and the resulting model (CNNdoublet) reaches a validation 

accuracy of 80.3% (Figure 2B).  To test the applicability of the model to new data, we 

recorded a dataset of murine Nrl-eGFP cells. In Nrl-eGFP transgenic mice GFP expression 

is restricted to rod photoreceptors [15]. Each event was forwarded through CNNdoublet to 

obtain the probability that the event is a doublet (pdoublet) and the histogram in Figure 2C 

shows the resulting distribution of probabilities. Interestingly, the model confidently 

predicts single cells and doublets into the correct class as shown by example images. The 

CNN classifies an event as doublet if a second cell is closer than approximately 15 µm 

(Figure S3 B, Supporting Information). The model also delivers sensible results for a 

measurement of whole blood (Figure S3 C, Supporting Information, data taken from [11]), 

indicating that the model could be employed for a general-purpose doublet detection 

algorithm.   

  

 

Figure 2: CNN for detection of cell aggregates  

(A) Bright-field images of single cells and cell aggregates of human retinal organoid cells. Images are used to 

train a CNN for discrimination between single cells and cell aggregates. 

(B) Confusion matrix resulting when applying the CNN on the validation set. The validation accuracy is 80.3%. 

(C) Probability distribution resulting when applying the model to a testing dataset of dissociated Nrl-eGFP 
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retina. Despite the different origin of the cells, the model is able to distinguish between single (left, low 

probability) and aggregated cells (right, high probability). 

  

CNN based detection of cell aggregates is a helpful tool for analyzing RT-DC or RT-FDC 

data which could be employed for many datasets and comes at low computational cost. 

Forwarding a single image through CNNdoublet only requires 1.4 ms (Intel Core i7 3930K @ 

3.2 GHz). Processing 10,000 images at once (batch processing) allows to achieve an 

inference time of 0.75 ms per image. While these times are sufficient to process large 

datasets, for sorting an inference time below 250 µs is required. Therefore, faster doublet 

detection methods are required.   

  

Detection and separation of cell aggregates for single cell sorting 
In RT-DC, RT-FDC, and soRT-FDC a real-time contour detection algorithm evaluates 

acquired images using efficient OpenCV implementations. By counting the number of 

contours in an image, we implemented a switch that allows to suppress sorting if more 

than n=1 contours were detected (see Figure 3A). The additional contour counting step 

comes at no additional computational cost. To reduce the chance of having multiple cells 

within the ROI, the cell concentration could be decreased but since that would decrease 

the frequency of measurement and sorting, an optimal cell concentration needs to be 

determined. 

The duration of a standing surface acoustic wave (SSAW) pulse is 2 ms. No additional cell 

should enter the SSAW region during that time to avoid accidental sorting of wrong cells. 

For the common flowrate of 0.04 µl/s, a volume of 𝑉2𝑚𝑠 = 0.04
µ𝑙

𝑠
∙ 2 𝑚𝑠 = 0.08 𝑛𝑙 is passing 

the chip during an SSAW pulse. One cell contained in 𝑉2𝑚𝑠 corresponds to a concentration 

of 12.5 million cells/ml. To reach that concentration, an initial sample concentration of 

c1=50 million cells/ml has to be applied since the sample flow (𝑄𝑠𝑎𝑚𝑝𝑙𝑒 = 0.01 µ𝑙/𝑠) is 

diluted by the sheath fluid (𝑄𝑠ℎ𝑒𝑎𝑡ℎ = 0.03 µ𝑙/𝑠). As a result, 𝑉2𝑚𝑠 contains on average a 

single cell, but presence of a cell in a volume element is a random process and presence 

of individual cells is independent. Therefore, the number of cells (𝑛) in a volume element 

(𝑉2𝑚𝑠) can be described by a Poisson distribution: 

𝑝(𝑛) =
𝜇𝑛𝑒−𝜇

𝑛!
, 

where 𝜇 is the expected (average) number of cells in the volume element 𝑉2𝑚𝑠. Figure 3B 

shows the Poisson distribution for 𝜇 = 1 (blue, corresponds to c1=50 million cells/ml). The 

area under the curve (pale blue) shows the probability that more than one cell is 

contained in 𝑉2𝑚𝑠  which is p1=26.4%. For sorting experiments, we reduced the 

concentration to c2=20 million cells/ml, which corresponds to an average of 𝜇 = 0.4 cells 

and a probability of getting multiple cells in 𝑉2𝑚𝑠 of p2=6.2% (see red plot in Figure 3B and 

pale red area under the curve). 

The underlying assumption of the Poisson distribution is that cells travel independently, 

which is not entirely true, as they can stick together and form aggregates [17]. As a result, 

avalanches of cells occasionally traverse the channel (see Figure 3C). Figure 3C shows the 

measurement time versus event number and the color code indicates the time difference 
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between two captured events. Two steep increases of the curve indicate occasions where 

avalanches of cells flushed through the channel. As a result, each captured image 

contained an object, resulting in an average time difference of Δ𝑇 =
1

3000 𝑓𝑝𝑠
= 0.33 𝑚𝑠 

(purple regions in the plot). For the rest of the plot, the event number rises steadily and 

the time difference between captured events is on average 0.09 s (yellow regions of the 

line), which is a bit lower than the expected frequency. This is likely caused by cell 

sedimentation over time. Figure 3C suggests that avalanches of cells can be identified 

based on the characteristic time difference between captured events of Δ𝑇 =
1

𝑓𝑝𝑠
. 

Therefore, we implemented a timer, allowing to suppress the sorting pulse if Δ𝑇 is below 

a set threshold. In practice, we found that a Δ𝑇 of 0.38 ms results in reliable omission of 

sorting during cell avalanches. The image insets in Figure 3C deliberately show only 

events with multiple cells in an image. While such events occur more often during 

avalanches, the majority of the images still shows a single cell. This fact highlights the 

advantage of time delay analysis in contrast to contour count. All methods were 

implemented into the C++ based sorting software. 

 

 

Figure 3: Detection and separation of cell aggregates 

(A) Examples of images captured during sorting. A single contour is detected in the upper image, while three 

contours are detected in the lower image. Sorting trigger is omitted when more than one contour is detected. 

Scale bar: 20 µm. 

(B) The histogram shows the probability to have n cells in a unit volume. The chance of having more than one 

cell in the sorting region during a sorting pulse is 26.4% (red) and 6.2% (blue) for an initial cell concentration 

of 50 million cells/ml and 20 million cells/ml, respectively. 

(C) Plot shows the measurement time and number of captured events of a measurement of Nrl-eGFP mice 

retina cells. Color code indicates the time difference between two events. While most of the time, events are 

captured with a time difference of >0.02 s, during an avalanche, each captured frame contains cells, resulting 

in a time difference of approximately 0.00033 s=0.33 ms. Scale bar: 10 µm. 

 

DNN architecture for optimized CPU utilization  
Intelligent image-activated cell sorting allows to sort cells based on the decision of a 

trained DNN. While a CNN would be the preferred architecture for image classification 

tasks, in ref. [11], a multilayer perceptron (MLP) was used due to considerably better 

computational efficiency. The input layer of the model accepts grayscale values of an 8-

bit raw image divided by 255. The following hidden layers perform a transformation of 

the input information by a set of weights and biases and an activation function (Rectified 

linear unit – ReLU) as indicated in Figure 4A. The MLP was trained to return the class 

probabilities for different blood cell types in the output layer. To allow for real-time 
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inference to trigger a cell sorting mechanism, the MLP was optimized to provide an 

inference time 𝑡 < 200 µ𝑠  while conserving a high classification accuracy for the 

distinction between different blood cell types. However, CPU specifications were not 

regarded in the choice of MLP design. Modern CPU chipsets provide methods for parallel 

computations (Hyper-Threading, Intel Advanced Vector Extensions), allowing to increase 

the complexity of an MLP, without changing its inference time. 

The complexity of an MLP depends on its number of parameters. The number of 

parameters increases the more layers and nodes are present in the neural net. Therefore, 

we built MLPs with 𝑘 (1 ≤ 𝑘 ≤ 4) hidden layers and iterated through a set of numbers of 

nodes 𝑛𝑖  (Figure 4A). The number of nodes 𝑛𝑖  of each layer was set to a multiple of 8 

between 8 and 240 and for every possible combination, a model was built to determine 

the inference time and the number of trainable parameters 𝑁. To limit the computational 

resources, we omitted models containing 𝑁 >80,000 parameters from the screening, 

resulting in a total number of 396,521 models (30, 671, 16527, and 379,293 models for 

𝑘=1,2,3, and 4, respectively). The screening was carried out on the same PC that is used 

to operate the soRT-FDC setup (Intel Core i7 3930K @ 3.2GHz) and results are shown in 

Figure 4B (red, orange, blue, and magenta indicate models for 𝑘 =1,2,3, and 4, 

respectively).  

As expected, MLPs with more layers but the same number of parameters have a higher 

inference time due to reduced potential of parallel computation. The MLP architecture 

suggested by Nawaz et al. [11] which has 𝑁=8708, is included in our screening, and results 

in an inference time of 𝑡𝑁𝑎𝑤𝑎𝑧 = 174 µ𝑠 (indicated as MLPNawaz in Figure 4B). Interestingly, 

no 4-layer MLP reached an inference time ≤ 𝑡𝑁𝑎𝑤𝑎𝑧. Multiple models with k=1,2, and 3 

comprehend more trainable parameters while having an inference time close to 𝑡𝑁𝑎𝑤𝑎𝑧. 

We searched for models with the maximum number of parameters in the range 170 µ𝑠 ≤

𝑡 ≤ 175 µ𝑠. The identified models with 𝑘=1,2, and 3 layers are indicated in Figure 4B by 

MLP1, MLP2, and MLP3, respectively. The models MLP1, MLP2, and MLP3 contain 2.7 to 9.1 

times more trainable parameters compared to MLPNawaz and the total number of 

parameters for each model is shown in Table 1. The screening is independent of actual 

classification performance, but allows to find models with optimized CPU utilization. In 

the following, these models are employed to solve an image classification problem to 

assess the resulting accuracy levels. 

Name Nr. of 

layers 

Nr. of 

parameters 

n1 n2 n3 

MLPNawaz 3 8,708 24 16 24 

MLP1 1 78,964 240 - - 

MLP2 2 39,284 96 80 - 

MLP3 3 23,396 24 88 144 
Table 1: MLP screening summary 
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Figure 4: MLP screening 

(A) Sketch shows general design of multilayer perceptrons. The input layer contains all pixels of the provided 

image. Each of the following 𝑘 hidden layers contains 𝑛𝑖  (1 ≤ 𝑖 ≤ 𝑘) nodes. Each node represents a linear 

combination of the input values, which is modulated by an activation function (ReLU for the hidden layers 

and Softmax for the output layer). The output layer returns probabilities for each class of the classification 

task. 

(B) The scatterplot shows the inference time and number of trainable parameters of 396,521 different MLP 

architectures with 𝑘=1 (red), 𝑘=2 (orange), 𝑘=3 (blue), 𝑘=4 (magenta). Chosen models with identical inference 

time, but more trainable parameters compared to MLPNawaz are indicated by MLP1, MLP2, and MLP3. 

 

DNN classifier for photoreceptor detection and sorting 
We performed seven independent experiments using RT-FDC to acquire data from 

dissociated retinae of Nrl-eGFP mice at postnatal day 4 (P04)±1 day. To that end, we used 

the Nrl-eGFP mouse line, which expresses eGFP under the control of the Nrl promoter, 

labelling rod photoreceptors from an early stage onwards. Figure 5A shows an example 

measurement and gates indicate certain subpopulations of cells. In a size region between 

20 and 35 µm2, there are cells of various fluorescence expressions. To minimize wrongly 

labelled cells in the dataset, we employed CNNdoublet to remove all events with pdoublet>0.3, 

excluding doublets and too proximate cells. Furthermore, we used a conservative gating 

strategy by only keeping cells with very low and very high fluorescence for the class of 

small GFP- and small GFP+ cells, respectively (see gray and green rectangles in Figure 5A). 

Debris (area<20 µm2) and objects larger than 35 µm2 were not considered for the deep 

learning image classification task as they can be gated out based on their size during 

sorting. The challenging classification task that should be solved using DNNs is to 

distinguish small GFP+ (green in Figure 5A) and small GFP- cells (gray in Figure 5A).  

In the current experimental setup, the focus is adjusted manually, resulting in slight 

differences between sessions and even slight focus drifts during long sorting procedures. 

To include phenotypes from different focus positions in the dataset, the focus was 

manually altered during acquisition of the training dataset. The range of alteration was 

kept in a range that would in practice be used for sorting or measurement. For acquisition 

of the validation dataset, the focus was left at a fixed position. Table 2 shows the number 

of events captured for small GFP- and small GFP+ cells. 

Class name Nr. of training images Nr. of validation images 

Small GFP- 52,127 14,000 

Small GFP+ 43,321 14,000 
Table 2: Number of images in training and validation set. 
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As focus alteration increases the variety of phenotypes contained in the training dataset 

we would like to introduce the phrase “experimental data augmentation”. In contrast, 

“mathematical data augmentation” refers to computational operations applied to the 

image data after the measurement. Mathematical data augmentation allows to modify 

the image phenotype during DNN training and was shown be an effective tool to improve 

the accuracy and robustness of DNNs [18]. A strong modification of the phenotype may 

enable the DNN to become robust to such alterations, but also increases the difficulty to 

converge. Therefore, data augmentation should ideally modify the images in a range that 

could occur in practice. In the following, image augmentation operations are introduced 

and assessed to identify sensible parameter settings. Each augmentation option is 

implemented into AIDeveloper which is a software for training DNNs for image 

classification without need for programming. All model training in this study has been 

performed using AIDeveloper 0.2.3 [19]. 

 

Data augmentation: Brightness 

In the current soRT-FDC setup, there is variation in brightness between experiments. 

Alteration of brightness can be performed computationally. To get an intuition for the 

range of brightness levels of different experiments, we assessed pixels at the upper 

border (10x255 pixels, see red rectangles in Figure 5B) of one image from each of 29 

measurements. This region allows to obtain information of the background brightness as 

it is located outside the measurement channel. We found minimum, maximum, and 

median brightness levels of 24, 49, and 39, respectively. For each case, one example 

image is shown in Figure 5B and a histogram of the background brightness values of 29 

measurements is shown in Figure S4 A, Supporting Information. AIDeveloper allows a 

linear brightness alteration: 𝐼′ = 𝑚𝐼 + 𝑛, where 𝐼 is the original image and 𝑚 and 𝑛 are 

random values. Assuming an image of median brightness level, the full range of 

brightness levels could be covered using a multiplicative factor of 0.6 < 𝑚 < 1.3 (given 𝑛 =

0). Similarly, the range of brightness values could approximately be covered using 𝑛 =

±12 (given 𝑚 = 1). 

 

Data augmentation: Gaussian noise 

The captured images of soRT-FDC already contain image noise, which is static, i.e. the 

same noise pattern is present in each image. By applying Gaussian noise, the noise 

pattern of an image can be altered. To determine the level of noise in original images, the 

standard deviation of the pixel values in the background regions (red rectangle in Figure 

5B) was determined for each measurement of the training and validation set. In average, 

the standard deviation of the background pixels is 2.9. For a histogram of the values from 

29 experiments, see Figure S4 B, Supporting Information. 

 

Data augmentation: Rotation 
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In the current soRT-FDC setup, there is variation of the alignment of individual cells in the 

channel. Rotation of images can also be performed computationally. To assess the typical 

range of rotational variation of cells, the tilt of the contours was determined for small 

GFP+ cells of all measurements of the training and validation set. Tilt is computed based 

on the contour of the tracked object (see Materials and Methods). The tilt of the small 

GFP+ events of the measurement displayed in Figure 5A is shown in Figure 5C. The red 

line indicates the median tilt, located at 13°, meaning, 50% of cells have a tilt ≤13°. In 

average, the median tilt across all measurements of the training and validation set is 11°. 

 

Data augmentation: Flipping 

The measurement principle of RT-DC infers a vertical symmetry, allowing to perform a 

vertical flipping of images without changing the typical phenotype. In contrast, horizontal 

flipping would result in unusual phenotypes as cells are deformed in the channel 

according to the flow direction. Therefore, only vertical flipping is a useful image 

augmentation operation for RT-DC, RT-FDC and soRT-FDC data. 

 

Data augmentation: Left-right, up-down shift 

During a measurement or during sorting, the contour of each object is tracked in real-

time and the bounding box is determined. To crop the original image of size 80x250 down 

to 18x18 pixels with the cell body centered, the middle of the bounding box is used. Image 

noise affects the location of the contour and the resulting middle point of the cell. 

Therefore, we used random shifting (left-right and up-down) of the cropped image by one 

pixel during model training. 

 

  

Figure 5: Dataset assembly 

(A) The scatterplot shows a measurement of dissociated retina (Nrl-eGFP) in soRT-FDC. Axes show the cell 

size (area in µm2) and the fluorescence expression of Nrl-eGFP. Red, green and gray rectangles indicate 

regions in the plot which correspond to debris, small GFP+, and small GFP- cells, respectively. Images show 

examples of the appearance of cells at different locations in the scatterplot. The color code indicates the 

density of data points. Scale bars: 10 µm. 

(B) Images show three different measurements with various brightness levels. To evaluate the background 

brightness and image noise, a region above the cannel was used (red rectangle). Scale bars: 10 µm. 

(C) Histogram shows the absolute tilt of contours of small GFP+ events (same measurement as shown in 

Figure 5A). The red line indicates the median tilt at 13°. Image insets show exemplary phenotypes of cells at 

low (left) and high (right) tilt. While a low tilt indicates a good alignment with the flow, a tilt of 90° shows a cell 

aligned orthogonal to the flow direction. Scale bars: 10 µm. 
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Learning rate screening 

The error of a model is determined by a loss function 𝐿 (categorical cross entropy) and 

stochastic gradient descent allows to find in which direction the weights of a model (𝑊) 

need to be updated in order to reduce the loss (loss gradient 
𝜕𝐿

𝜕𝑊
) [20]. The learning rate (𝑙) 

is one of the most important hyper-parameters when training DNNs as it controls how 

strong the weights 𝑊 of a model are adjusted in each training iteration (𝑛): 

𝑊𝑛 = 𝑊𝑛−1 − 𝑙 ∙
𝜕𝐿

𝜕𝑊
 

The framework for deep learning which was used in this study (TensorFlow, Keras) 

suggests a default learning rate of 𝑙 = 0.001, but there is no guarantee that this is an 

optimal value for each dataset and model [21,22]. Low learning rates correspond to slow 

learning of the model and therefore unnecessarily long training times. On the other hand, 

high learning rates can result in strong weight updates, preventing from reaching the 

minimum, or even a divergence of 𝐿. To discover a sensible value for 𝑙, a screening of a 

range of learning rates can be performed [23]. To provide an easy access to that method, 

we implemented it into AIDeveloper. Graphical software elements guide the user through 

the analysis and tooltip annotations offer basic information (see Figure S5, Supporting 

Information).  To our knowledge, this is the first time, the learning rate screening method 

is implemented into a software with graphical user-interface for easy accessibility. 

 

MLP training 

During acquisition of the training and validation dataset, the number of available cells 

was differing between samples. Therefore, some measurements contained more events 

than others. To avoid overfitting of the model to the phenotype of the measurement with 

most events, we performed random sampling to achieve an equal contribution of each 

measurement. In each training iteration of the model, a different batch of training images 

was sampled from each measurement. Using the same routine, the validation dataset 

was assembled before the first training iteration and left constant throughout all training 

iterations. 

Training and validation data were loaded into AIDeveloper and the following data 

augmentation parameters were set: rotation: ±10°, left-right shift: ±1 pixel, up-down shift: 

±1 pixel, additive brightness: ± 12, multiplicative brightness: 0.6…1.3, standard deviation 

of Gaussian noise: 3.0, and random vertical flipping. A learning rate screening was 

performed (see Figure 6A), considering the image augmentation parameters. For all MLP 

models, we found a steep decrease of the loss approximately at 𝑙 = 10−5, which is 100 

times smaller than the default learning rate (𝑙 = 10−3) as shown in Figure 6A and Figure 

S5 B, Supporting Information. Using the learning rate 𝑙 = 10−5 , the models MLPNawaz, 

MLP1, MLP2, and MLP3 were trained for 30,000 training iterations (see Figure 6B, Figure S6 

F, Supporting Information). Interestingly, the worst performance is shown by MLPNawaz. 

MLP2 performs better than MLP1 despite having less trainable parameters (orange and 

red in Figure 6B). Table 3 shows the maximum validation accuracy for MLP1, MLP2, MLP3, 
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and MLPNawaz, indicating that the architecture of MLP2 is the best choice for this 

classification task. To obtain a benchmark for the classification accuracy if there was no 

restriction of the inference time, we trained two different convolutional neural net 

architectures. These architectures contain two (CNNLeNet) and four (CNNNitta) convolutional 

layers (see Figure S6 D, E, Supporting Information). Interestingly, CNNLeNet performs worse 

compared to all MLPs (see Figure S6 F, Supporting Information). Only CNNNitta was able to 

outperform the MLPs. For comparison, we also trained each model using the default 

learning rate (10-3) but the overall performance was lower for each model (see Figure S6 

F). 

 

Name Max. 

val.acc. 

Training iterations to 

reach max.val.acc. 

Training time [h] to 

reach max.val.acc. 

MLP1 0.735 21,790 37.3 

MLP2 0.737 11,442 20.1 

MLP3 0.732 21,271 35.5 

MLPNawaz 0.731 25,024 38.5 
Table 3: Comparison of best models based on the maximum validation accuracy (max. val. acc.) of each MLP 

architecture. 

 

When applying MLP2 to an image, the model returns the probability that the image 

contains a small GFP+ cell: P(GFP+). The histogram in Figure 6C shows P(GFP+) for all events 

of the validation set. As expected, events that are actually GFP+ cells return high values 

for P(GFP+) (green histogram), while GFP- cells tend to return lower P(GFP+) values (gray 

histogram). But there is also a considerable overlap between the distributions, which is 

the reason for the imperfect classification performance of the model. Typically, a 

threshold of P(GFP+)thresh=0.5 is used to assign events to different classes. By increasing 

this threshold, only cells are predicted to be GFP+ where the model returns a high enough 

P(GFP+). Increasing P(GFP+) causes an increase of the precision (see Materials and 

Methods), which would in practice correspond to a higher concentration of GFP+ cells in 

the target sample after sorting: 

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

(with TP: true GFP+, FP: false GFP+). At the same time, increasing the threshold reduces 

the sensitivity of the model, which in practice means a reduced yield of GFP+ cells after 

sorting: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑁𝑟.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐺𝐹𝑃+ 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑟.  𝑜𝑓 𝐺𝐹𝑃+ 
= 𝑦𝑖𝑒𝑙𝑑 

(with FN: false GFP-). The evolution of concentration and yield for different threshold 

values is plotted in Figure 6D.  

For one photoreceptor transplantation experiment, 100,000 cells are required and the 

sorting duration should be limited to one hour to assure high viability of the cells [24]. 

Calculations above showed that in average 0.4 cells are passing the camera within 2 ms 
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(for a sample concentration of 20 million cells/ml). As a result, in average one cell is 

captured every 5 ms, which corresponds to a measurement frequency of 200 cells/s. As 

there are approximately 50% GFP+ cells, 100 cells/s could potentially be sorted. Due to 

the presence of cell aggregates, a more realistic sorting rate is 75 cells/s. Based on these 

boundary conditions, the minimum yield can be computed as following: 

𝑦𝑖𝑒𝑙𝑑𝑚𝑖𝑛 =
100.000 𝑐𝑒𝑙𝑙𝑠

75 
𝑐𝑒𝑙𝑙𝑠

𝑠
∙ 3600𝑠

= 37.0% ≈ 40% 

The yield of 40% is reached for a P(GFP+)thresh of 0.67 (marked in plot), which corresponds 

to a concentration of GFP+ cells of 77%. Figure 6E shows confusion matrices for 

P(GFP+)thresh=0.5 and P(GFP+)thresh=0.67.  

 

 

Figure 6: MLP training and assessment 

(A) Plot shows a learning rate screening for all MLP architectures. During screening, MLPs are trained using 

the available training data and data augmentation methods are applied. The learning rate screening was 

performed using AIDeveloper 0.2.3. 

(B) Plot shows the validation accuracy during training of four MLPs to distinguish GFP- and GFP+ cells. For a 

smooth appearance, each line shows the rolling median (window size = 50).  

(C) Green and gray histogram show the probabilities returned by MLP2 for each event the GFP+ and GFP- class 

of the validation set. 

(D) Scatterplot shows the concentration and yield of GFP+ rod photoreceptors when applying MLP2 to the 

validation set using different threshold values P(GFP+)thresh for prediction. 

(E) Confusion matrices when using a threshold P(GFP+)thresh of 0.5 and 0.67. The red rectangle indicates the 

events that are predicted to be GFP+. Those events would be sorted during a sorting experiment. 

 

Photoreceptor sorting and transplantation 
To verify the working principle, we employed the methods introduced in this work for 

image-based sorting of rod photoreceptors of dissociated Nrl-eGFP mouse retina. After 

sorting, the initial sample and the sorted target sample were both measured using RT-
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FDC to evaluate the number of fluorescent cells. The color code of scatter plots in Figure 7 

illustrates the event-density, which suggests that the maximum density is located at 300 

and 4,000 a.U. of fluorescence for the initial and target sample, respectively. An elevated 

fluorescence of cells in the target sample is also confirmed by the medians of the 

fluorescence intensity (MInit=728 and MTarg=1,684 in Figure 7A). To evaluate the number of 

GFP+ and GFP- events a gate was chosen manually (solid green line in Figure 7A). The 

percentage of events within that gate is 𝑐𝐺𝐹𝑃+
𝐼𝑛𝑖𝑡 =

3957

7428
∙ 100 = 53.2% for the initial sample 

and 𝑐𝐺𝐹𝑃+
𝑇𝑎𝑟𝑔

=
1516

2180
∙ 100 = 69.5% for the target sample.  

 

 

Figure 7: Photoreceptor sorting of dissociated Nrl-eGFP mouse retina cells & transplantation 

(A) Scatterplots show RT-FDC measurements of the initial sample and the target sample after sorting. The 

axes show the area and fluorescence expression and the color code represents the density of events. The 

median fluorescence expressions are given as MInit (= 728) and MTarg (= 1,684). The gating strategy for 

selection of GFP+ events is indicated by a green rectangle, resulting in 53.2% and 69.5% GFP+ cells in the initial 

and target sample, respectively. 

(B) Immunofluorescence images showing sorted GFP+ cells in the murine SRS, two weeks after 

transplantation.  GFP+ cell bodies and segments can be found in the host ONL (magnification), likely as a 

result of cytoplasmic material transfer from donor to host cells. SRS = subretinal space; ONL = outer nuclear 

layer; INL = inner nuclear layer. 

 

Cells contained in the target fraction were washed and subretinally transplanted into 

adult female C57Bl/6JRj mice. Two weeks after transplantation, GFP+ signal could be 

detected marking transplanted cells in the subretinal space of recipient mice (Figure 7B), 

as well as in photoreceptor cell bodies within the host ONL (Figure 7B, insert), the latter 

likely as a result of material transfer from donor to host cells [25]. Although control eyes, 

in which similar numbers of unsorted cells were transplanted, contain more GFP+ cells at 

analysis (Figure S9, Supplementary Information), this is a proof of concept that cells 
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enriched via soRT-FDC can be used for transplantation and survive in the murine retina, 

making soRT-FDC a useful method to provide cells for downstream applications. 

 

Discussion 
High-throughput imaging flow cytometry with the option for label-free cell classification 

and sorting has the potential to complement biomedical research as it removes the 

dependency on molecular labels. In this work we introduce methods to improve reliability 

of soRT-FDC with respect to data analysis and cell sorting of dissociated tissues. 

 

Hardware based reduction of cell aggregates 
As soRT-FDC is based on a measurement of single cells in a narrow channel, we introduce 

a microfluidic chip design that promotes division of cell aggregates by means of 

serpentines and filter structures (see Figure 1C). The majority of cells contained in human 

retinal organoids, young postnatal mouse retina, and human blood have a diameter 

below 15 µm. For the sample inflow, the minimum distance of the filter structures is 

therefore 15 µm, allowing most cells to pass without mechanical impact. A better 

separation of aggregates could be achieved using filters with an even smaller distance, or 

higher flowrates. We also placed filter structures in the sheath inflow part with an even 

smaller minimum inner distance of 10 µm. As pre-clinical experiments are typically not 

carried out in a clean-room atmosphere, this filter structure serves to catch dust particles 

and also debris of the PDMS chips, which occur even in the sheath inlet and the filter 

structures allow to catch those objects. 

 

DNN based detection of cell aggregates   
While doublet detection is not trivial in FACS as doublets are defined only indirectly 

through the ratio of event size and width, in imaging flow cytometers like soRT-FDC, a 

bright-field image is available for visual inspection [26,27]. Because of the large datasets, 

containing several thousands of images, an automated doublet detection is 

desired. Many doublets can be identified by a larger area or less smooth contour. 

Interestingly, many HRO photoreceptors show a characteristic shape with an appended 

tail (Figure 2A), likely presenting neural processes such as inner and outer 

segments.  With such irregular morphologies, area and area ratio (measure for 

smoothness of contour) are insufficient to distinguish cell doublets from singlets. Since 

single cells and doublets of cells can be categorized by the human eye, we manually 

trained a convolutional neural net for doublet detection using data from HROs. When 

creating the dataset, events were also labeled as doublet when a second object travelled 

too closely (distance <15 µm) for confident assignment of the fluorescence intensities to 

the correct cell (see Figure S3 A, Supporting Information). Due to its reliable capacity of 

avoiding wrong assignment of fluorescence signals in RT-FDC datasets and detecting 

aggregates, this model will also be helpful for RT-DC datasets where cells possess a 

heterogeneous shape and are likely to cluster, e.g. when assessing activated neutrophils 
[28].  
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Labelling software: YouLabel 

To facilitate the manual labelling process, we developed YouLabel. YouLabel is a software 

with graphical user-interface allowing to view images of an RT-DC, RT-FDC or soRT-FDC 

dataset and perform binary labelling. YouLabel is especially useful to screen large 

datasets for rare events such as doublets. The open-source software is provided as an 

executable for Windows and as Python script on GitHub: 

https://github.com/maikherbig/YouLabel. YouLabel cannot only be employed for retina 

datasets or datasets of dissociated samples, but for any (RT-FDC) dataset which needs to 

be split into two groups. However, splitting into more than two groups is currently not 

supported. 

Despite originating from a different species and more than one year between capturing 

of training and testing dataset, the doublet discrimination model shows a robust 

classification performance for primary mouse retina cells and even for cell types of 

entirely different lineages, such as blood cells (see Figure S3 C, Supporting Information).  

So far, the doublet discrimination model was only trained using data from a single 

microscope system using fixed settings and sorting chips. As the substrate of sorting 

chips is birefringent, the phenotype is different from normal glass chips. Therefore, the 

model will likely fail to make correct predictions for images of cells in chips with glass 

substrate, different magnification levels or illumination. To optimize the model for altered 

system settings, transfer learning could be employed [29]. Such an approach requires the 

acquisition of only a small dataset using the new system, which can then be employed to 

continue training the existing model. Building on pre-existing capabilities, transfer 

learning has the advantage of saving time and computational power compared to training 

a new model from the beginning. 

 

Detection and separation of cell aggregates for single cell sorting 
Due to the computational time required, we unfortunately could not use the doublet 

discrimination model during sorting. To recognize cell aggregates and avalanches of cells, 

we instead used the number of contours and the time delay between detected objects. 

However, these methods are purely image based and are therefore limited to the 

framerate of the camera. By integrating a laser for acquisition of forward scattered light, 

the cell count could be tracked for up to 50,000 cells/s (similar to FACS), which would allow 

for improved detection of cell avalanches [6].  

To further manually decrease the occurrence of cell aggregates, the cell concentration 

could be reduced, leading to an increase of the average space between cells in the sample 

and thus in the measurement channel (Figure S7 A, Supporting Information). For 

example, for concentrations of 50, 20, and 10 million cells/ml, the free space between 

cells in the channel is 190 µm, 490 µm, and 990 µm, respectively (assuming each cell has 

a diameter of 10 µm). However, high measurement throughput requires high cell 

concentrations (Figure S7 B, Supporting Information e.g. average measurement 

frequency of 500, 200, and 100 cells/s at 50, 20, and 10 million cells/ml, assuming a total 
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flow rate of 0.04 µl/s), so an optimization of aggregate prevention without the need for 

sample dilution would be preferable.  

 

DNN architecture for optimized CPU utilization   
The most popular DNN architecture for image classification is the CNN. In CNNs, 

convolutional filters are fixed and applied across the image to transform the pixels of a 

certain neighborhood, which reduces the degrees of freedom of the model. This 

approach often results in a robust classification performance of CNNs, but comes at a 

cost of computational time, because convolutional filters are facilitated by sparse matrix 

operations. To run inference using CNNs with sub-millisecond inference time, special 

hardware such as FPGAs are required, rendering CNNs unfavorable for sorting when 

computation capacities are limited to a CPU [8]. The requirement for low inference time 

calls for utilization of very small models with a low number of parameters. MLPs allow an 

efficient usage of the available parameters as every node in a layer is connected to each 

node in the subsequent layer. However, the increased flexibility of MLPs makes them 

more prone to overfitting. In this work, we performed a screening to identify MLPs that 

offer a high number of trainable parameters at low inference times. However, the result 

of that screening is only valid for our PC hardware and power settings. Therefore, we 

provide the script (Zenodo: https://doi.org/10.5281/zenodo.4738936), allowing everyone 

to perform the screening, for example using the Python editor that is integrated into 

AIDeveloper. 

 

DNN classifier for photoreceptor detection and sorting 
To train a DNN for prospective sorting, a biologically diverse dataset containing data from 

multiple biological replicates needs to be used. Therefore, we acquired data of seven 

Nrl-eGFP mice at maturation stage postnatal day 4 (P04)±1. A control of the maturation 

stage is required as retinal development occurs rapidly before and within 10 days after 

birth and it was demonstrated that murine photoreceptors at P04 are best suited for 

subretinal transplantation [30–33]. Variation in image phenotype cannot only be due to 

biological, but also technical reasons. Since the substrate of microfluidic chips for sorting 

is a birefringent material, the phenotype differs slightly between chips. Therefore, we 

used a new chip for each sample. To reduce the differences between chips, a more 

standardized and automated chip production would be beneficial. Automation would 

also allow to eliminate focus and brightness differences between measurements. An 

autofocus system would not only omit the need to record training data at many focus 

positions, but also simplify neural net training as fewer degrees of freedom would have 

to be considered by the model. 

For data acquisition, RT-FDC was employed as it allows to simultaneously record a bright 

field image and a 1D track of fluorescence information (see Figure S3 A, Supporting 

Information). The section on the fluorescence track corresponding to a certain cell in the 

image varies due to slightly differing object velocity in the channel. Doublets of cells, or 

cells travelling closely, present a risk of assigning the wrong fluorescence expression 

value (see Figure S3 A, Supporting Information), which would lead to wrongly labeled 
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images in the dataset. As such, GFP+ cells that are larger than 35 µm2 refer to cell doublets 

i.e. photoreceptor cells attached to another cell (see example image in Figure 5A). 

Therefore, the dataset was cleaned through application of CNNdoublet and through size 

exclusion of cell debris (< 20 µm2). The remaining cells in the size region between 20 and 

35 µm2 show a continuous range of fluorescence values, as expected for the Nrl-eGFP 

mouse line [34], and were considered for the DNN training process.  

Prior to the MLP training, we performed a learning rate screening using AIDeveloper. We 

found that the learning rate 𝑙 = 10−5 results in a steep decrease of the loss for all MLPs 

and CNNs (see Figure S5 B, Supporting Information) and trained all models using that 

constant learning rate (Figure 6B and Figure S6F). However, there is no guarantee that 

this value is optimal throughout the entire training process. Therefore, we implemented 

learning rate schedules (exponential decay and cyclical learning rates) into AIDeveloper, 

but we could not find any setting that outperformed the constant learning rate [23]. In 

order to prevent overfitting that is more common for MLPs compared to CNNs, we 

introduced methods to find optimal parameters for data augmentation. While the 

augmentation methods are already enabled in AIDeveloper, the methods to find optimal 

ranges for augmentation are not implemented yet. After training using these tools, the 

model with the highest validation accuracy theoretically allows to enrich rod 

photoreceptors to 71%, or 77%, depending on the sorting threshold P(GFP+)thresh (see 

Figure 6E). An established sorting method using CD73 antibodies and MACS allows to 

obtain a concentration of photoreceptors of ≈80% [24]. MLP2 would theoretically also allow 

such a concentration when using a sorting threshold P(GFP+)thresh of 0.76 [24,34]. 

Unfortunately, since the curves for concentration and yield are developing in opposite 

direction (see Figure 6D), the corresponding yield is only 31%.  

In this work we focused on MLPs due to their lower inference time. However, for image 

classification tasks, CNNs would be preferred as they typically allow to reach higher 

accuracies. For comparison, we also trained two CNNs, which required considerably 

longer training times, despite using a GPU (Nvidia GTX 1080). While the MLP1, MLP2, MLP3, 

and MLPNawaz reached the maximum validation accuracy after 37.3 h, 20.1 h, 35.5 h, and 

42.8 hours, CNNLeNet and CNNNitta took 242.0 h and 93.6 h, respectively.  

The GFP- cells that are in the same size region as rod photoreceptors could be any other 

cell type of the retina. Given the almost equal cell number of GFP+ and GFP- cells in the 

size range 20 µm2 to 35 µm2, those GFP- cells must either be a highly abundant cell type, 

or a superposition of multiple cell types. After rods, the most abundant retinal cell types 

are bipolar and amacrine cells [35]. Unfortunately, we only had access to a bipolar reporter 

mouse line (mGluR6-GFP) which we measured using RT-FDC. Bipolar cell size was larger 

than 35 µm2 (see Figure S8 A, Supporting Information), indicating that the Nrl-eGFP- cells 

cannot be caused by presence of bipolar cells. Furthermore, we measured retina cells 

from a cone reporter line, indicating that cones tend to be larger than 35 µm2 (see Figure 

S8 B, Supporting Information). At P04, there are still retinal progenitor cells present 

because cell differentiation continues until P10 [30,36]. However, retinal progenitor cells are 

larger than rod photoreceptors [37]. Furthermore, despite lacking retinal progenitor cells 

at P10, the Nrl-eGFP- population still contains cells in the area range 20 µm2 to 35 µm2 

(Figure S8 C, Supporting Information) [37]. Cells that could meet the sizes of the Nrl-eGFP- 
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cells are horizontal, Müller, and amacrine cells [35]. While we cannot yet specify the cell 

types of the Nrl-eGFP- population, cell numbers suggest that amacrine cells should be 

assessed in the future [30,35]. Currently, the MLPs are trained for the binary classification 

task to distinguish bright-field image differences between GFP+ and GFP- cells. As the GFP- 

fraction is likely composed of multiple cell types, the MLP has to learn weights that suit 

all of the occurring phenotypes. A more detailed labelling of cell types and training using 

multiple classes would allow the model to assign individual weights to each class which 

could result in higher accuracies. 

 

Photoreceptor sorting and transplantation 
One common reason for blindness are retinal degenerations which result in a loss or 

malfunctioning of photoreceptors. A promising approach to treat retinal degenerations 

is photoreceptor transplantation, using photoreceptors generated in vitro from human 

embryonic or induced pluripotent stem cells [16]. Nowadays, photoreceptors are most 

efficiently produced in three-dimensional organoids, which often contain a complex mix 

of cell types and a tissue-like architecture [38,39]. Although transplantation of organoid 

sheets retaining that architecture is possible, it is surgically complex and might introduce 

undesired cell types. The donor material can alternatively be dissociated in order to 

obtain single cells, allowing for prospective cell sorting and purification. Established 

sorting techniques like MACS or FACS however require molecular markers which label the 

target cells [40,41]. Unfortunately, such markers are not always well-defined and if they are, 

their binding could potentially alter the cells, which should be avoided in a clinical setting. 

For example, labelling photoreceptors in HROs is currently still challenging due to a lack 

of defined surface markers [16]. Given that all parts of the soRT-FDC are disposable, the 

system would potentially be adaptable to GMP applications. 

Here, we employ soRT-FDC to enrich young murine photoreceptors in a label-free fashion 

for subretinal transplantation. This proof-of-concept study shows that the cells survive 

the sorting process well enough to not only be detected in situ two weeks later but to also 

interact with the host tissue, as shown by potential material transfer to host cells (Figure 

7B, insert). Despite this important progress, it must be noted that eyes transplanted with 

the sorted fraction contain markedly fewer cells than eyes transplanted with unsorted 

control samples, suggesting the sorting itself to be strenuous and potentially damaging 

to the cells (Figure S9, Supporting Information). Loss of cell viability is an inherent 

problem in most cell sorting methods [24], as high pressure and shearing forces are often 

required. Thus, it will be necessary to improve sorting conditions further in order to 

obtain better viability of the sorted populations and increase the efficiency of the sorting 

setup. Overall, in this report we enable soRT-FDC to perform label-free image-based 

sorting of photoreceptor cells from dissociated retinae of Nrl-eGFP mice. To decrease 

falsely labeled cells in the dataset, we present a model reliably identifying cell doublets 

and cells travelling too closely. For photoreceptor cell identification, we train a deep 

neural net using complex samples of murine retina, a tissue diverse in cell phenotypes. 

Different experimental and mathematical data augmentation techniques exerted upon 

the training dataset allowed to obtain a model with high robustness. Finally, we show that 
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the model can be applied to make sorting decisions in a true experiment and that cells 

sorted with the described setup can successfully be used in downstream applications.  

 

Materials and Methods 

Microfluidic chip with sorting mechanism  
Microfluidic chips for soRT-FDC are manufactured in house. In detail, a mixture of 

polydimethylsiloxane (PDMS, SYLGARD 188, Dow Corning) and curing agent (10:1, w/w) is 

poured over a silicon wafer master with the microfluidic design (see Figure 1C). After 

baking at 65 °C for 60 min, the PDMS layer is removed from the master and holes for 

sheath inlet, sample inlet, default outlet, and target outlets are punched using a biopsy 

puncher (Biopsy Punch with Plunger no. 49115, size 1.5 mm, pfm medical AG). To seal the 

microfluidic structures on the PDMS layer, a lithium niobate substrate is covalently bound 

using plasma activation (50 W, 30 s; Plasma Cleaner Atto; Diener Electronic). Bonded 

devices were then cured for 48 h in an oven at 65 °C.  

The 128° Y-cut lithium niobate (LiNbO3, Roditi International) substrate is equipped with 

two gold electrodes (interdigital transducers - IDTs) that allow to excite surface acoustic 

waves for sorting. Gold electrodes were deposited onto the substrate by a metal 

evaporation process (NANO36, Kurt J Lesker). Each IDT has 40 electrode pairs and a 

distance between electrode fingers of 70 µm, which results in an excitation frequency of 

55.23 MHz. By simultaneously exciting both IDTs, counter-propagating surface acoustic 

waves are generated, resulting in a standing surface acoustic wave (SSAW) with a 

wavelength of 𝜆 =
𝑣

𝑓
=

3978.2 𝑚/𝑠

55.23 𝑀𝐻𝑧
= 72.03 µ𝑚 (speed of sound on LiNbO3 is 3978.2 m/s [42]). 

Objects interact with the SSAW via the acoustic radiation force [43]:  

𝐹𝑡 = − (
𝜋𝑝0

2𝑉𝑐𝛽𝑤

2𝜆
) 𝜙(𝛽, 𝜚)𝑠𝑖𝑛(2𝑘𝑥). 

The acoustic contrast factor 𝜙, 

𝜙(𝛽, 𝜚) =
5𝜚𝑐 − 2𝜚𝑤

2𝜚𝑐 + 𝜚𝑤
−

𝛽𝑐

𝛽𝑤
, 

Is defined computed using acoustic pressure  𝑝
0

, wavelength  𝜆 , cell volume  𝑉𝑐 , cell 

compressibility 𝛽𝑐, fluid compressibility 𝛽𝑤, cell density 𝜚𝑐, and fluid density 𝜚𝑤. Since cells 

have a higher density ( 𝜚𝑊𝑎𝑡𝑒𝑟 ≈ 1.0  𝑔/𝑚3 , 𝜚𝑃𝑟𝑜𝑡𝑒𝑖𝑛 ≈ 1.3 … 1.4 𝑘𝑔/𝑚3 ) and a higher 

compressibility compared to water (𝛽𝑤 ≈ 4.5 𝐺𝑃𝑎−1 ,  𝛽𝑐 ≈ 4  𝐺𝑃𝑎−1 ) [44–46], they have a 

positive 𝜙, and therefore move towards the pressure node. The maximum translocation 

of an object by a SSAW is 𝜆/4 = 18.01 µ𝑚.  

To excite the substrate, the signal of a surface acoustic wave generator (BSG F20, 

BelektroniG) is duplicated using two fast-switches (BPS-300, BelektroniG). LiNbO3 is a 

birefringent material. The resulting image distortion was corrected using a Polarizer 

(Polarizer D, Zeiss). 
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soRT-FDC device 
Sorting real-time deformability and fluorescence cytometry (soRT-FDC) device was 

assembled as shown in [11]. In brief, a microfluidic chip is placed on an Inverted 

microscope with a 20x objective (Plan-Apochromat, 20x/0.8 NA; no. 440640-9903, Zeiss). 

Two syringe pumps (neMESYS 290N, neMESYS) drive sheath and sample fluid into the 

chip at flow rates of 0.03 µl/s and 0.01 µl/s. Another syringe pump withdraws fluid from 

the default outlet (-0.027 µl/s), while the target outlet is at atmospheric pressure. Within 

the chip, the cells flow into a narrow channel where they are aligned and slightly 

deformed by hydrodynamic forces. At the end of the channel, the cells are illuminated by 

2 µs flashes from a high-power LED (CBT-120, Luminus Devices). The LED flashes are 

triggered by a high-speed camera (EoSens CL, MC1362, Mikrotron), which captures 

images of cells at 3000 frames per second. Image data is sent to a PC (Intel Core i7 3930K 

@ 3.2 GHz) via a full camera link frame grabber card (NI-1433, National Instruments) and 

a C++ based software analyzes images using the OpenCV library [47]. A running average of 

the last 100 frames is computed as a background image, which is then subtracted from 

each subsequent image. Next, the image is binarized by a thresholding operation. In the 

following, erosion and dilation operations are applied to finally obtain a smooth contour 

from a contour finding algorithm [48]. Based on the coordinates of the contour, a bounding 

box is computed. The middle of the bounding box is used to crop the image such that the 

cell body is centered. Finally, the cropped image is forwarded through a defined neural 

network and resulting prediction probabilities are used to trigger a sorting unit located 

behind the narrow channel (see Figure 1C).  

Besides image acquisition, also fluorescence information can be obtained for each single 

cell. Fluorescence is excited using up to three lasers of wavelengths 640, 561, and 488 nm 

(OBIS 640 nm LX 40 mW, OBIS 561 nm LS 50 mW, OBIS 488 nm LS 60 mW, Coherent 

Deutschland). The laser beams form a light sheet in the middle of the region where 

images are captured. The emitted fluorescence signal from cells passing the light sheet is 

collected by a photodiode detector assembly (MiniSM10035, SensL Corporate), resulting 

in 1D fluorescence traces for each captured cell [10]. 

 

Alignment of cells in the channel (tilt) 
For quantification of the alignment of cells in the channel, the tracked contour is 

employed. The orientation 𝜑 of a contour with respect to 𝑒𝑥 is computed by [49]: 

𝜑 =  
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 (

2𝐼𝑥𝑦

−(𝐼𝑦𝑦 − 𝐼𝑥𝑥)
) 

with the second moments 𝐼𝑥𝑥 = ∬ 𝑦2𝑑𝑥 𝑑𝑦
𝐴

, 𝐼𝑦𝑦 = ∬ 𝑥2𝑑𝑥 𝑑𝑦
𝐴

, and the biaxial second 

moment 𝐼𝑥𝑦 = − ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦
𝐴

. 

 

Multilayer perceptron 
In an MLP, all pixel values of the image are combined using weights, biases and an 

activation function in a defined number of nodes. If matrix 𝑊(1) contains the weights, 𝑏(1) 
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the biases and 𝑠 the activation function of the first hidden layer, then the transformation 

performed by the first hidden layer can be expressed as: 

ℎ(𝑥) =  𝑠(𝑏(1) + 𝑊(1)𝑥) 

The design of layered neural networks limits the number of parallel tasks. While all nodes 

in a single layer could be computed in parallel, subsequent layers first require the 

preceding layer to complete computations. While in MLPs, each node is connected to all 

subsequent nodes, in convolutional neural nets the connections are limited to a certain 

neighborhood, defined by the size of the convolutional kernel. While this constraint 

typically results in more robust modes that can be trained with less data, the number of 

parameters, resulting in less flexibility. 

 

Inference time 
Inference time is the time required to compute the output of an algorithm. The present 

work introduces different DNNs and the inference time describes how much time the PC 

requires to forward a single image trough the network to compute a prediction. 

Importantly, inference time is different from training time. During training, the model 

parameters are updated based on the computed gradient. The computation of the 

gradient is performed for batches of images in parallel. At inference time, these gradients 

don’t need to be computed and for sorting, only one image has to be forwarded at a time. 

Therefore, training of DNNs is often done on high performance computing clusters, while 

for single image inference, a CPU is sufficient. Sending single images to a computing 

cluster would result in varying data transfer times. In contrast, a local CPU can be 

accessed fast, especially if images are already stored on RAM. 

Under low load, modern CPUs can throttle to save power, and full reactivation requires 

time. For exact determination of the inference time, we pre-heated the CPU by forwarding 

one image. Immediately after pre-heating, 500 images were forwarded through the DNN 

individually (not in parallel). The process of sequentially forwarding 500 images is 

repeated 10 times to compute an average inference time.  

 

Labelling software YouLabel 
We used Python 3.5.6 to establish a software for fast labelling of events in RT-DC datasets 

which is open source: https://github.com/maikherbig/YouLabel. We provide a standalone 

executable for Windows. Alternatively, the software can be executed using the provided 

Python script. 

 

Statistical analysis 
The performance of machine learning models is assessed using the confusion matrix and 

metrics, computed based on the confusion matrix. For computing the confusion matrix, 

a labelled dataset is required and the matrix shows the true and predicted label for each 

class. Assuming a binary classification task with a positive and a negative class, there are 

four options: a positive event is correctly classified as positive (true positive – TP), a 
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positive event is falsely predicted as negative (false negative - FN), a negative event is 

correctly classified as negative (true negative – TN), or a negative event is falsely predicted 

as positive (false positive – FP). Metrics, derived from the confusion matrix are: accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
,  sensitivity =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, specificity =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 and  precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃
. The terms 

“recall” and “true positive rate” are synonyms for sensitivity. 

 

Measurement buffer preparation 
We complemented phosphate buffered saline (PBS, 10010-023, Gibco) with 10% (v/v) 

Leibovitz’s L15 medium (11415064, Thermo Fisher Scientific) to support viability of cells. 

As cells need to stay in suspension for at least one hour during sorting experiments, we 

added 0.6% (w/w) methyl cellulose (4,000 cPs; Alfa Aesar) to reduce sedimentation. The 

resulting viscosity of the buffer is 25 mPas (at 24 °C). The buffer was adjusted to pH 7.4 

and an osmolality of 310–315 mOsm/kg. For reduced formation of cell aggregates, 2% 

(v/v) DNase stock solution was added, with DNase I stock solution containing 5 mg/ml 

(=10.000 Kuntz Units/ml) DNase I (DNase I, D5025-150KU, Sigma) in 0.15 M NaCl (A2942, 

Applichem). 

 

Animal welfare statement 
All animal experiments were approved by the ethics committee of the Technische 

Universität Dresden and the Landesdirektion Dresden (approval no. TVV 10/2018 and TVV 

25/2018) and performed in accordance with the regulations of the European Union, 

German laws (Tierschutzgesetz), the ARVO Statement for the Use of Animals in 

Ophthalmic and Vision Research, as well as the National Institutes of Health Guide for the 

care and use of laboratory animals. 

 

Retina single cell preparation 
Neural retina leucine zipper-enhanced green fluorescent protein (Nrl-eGFP), cone-GFP 

and metabotropic glutamate receptor 6-GFP (mGluR6-GFP) mouse lines were used as 

source for rods, cones and bipolar cells, respectively [15,50,51]. Single cell suspensions of 

P04 ±1 retina were prepared as described in ref. [34]. Briefly, pups were decapitated and 

heads transferred to a petri dish containing cold PBS. Eyes were dissected and retinae 

were isolated, washed in ice-cold Cell Buffer (2 mM EDTA, 1% w/v BSA in PBS without 

calcium or magnesium) and transferred to 37 C Papain solution supplied with 2.5% 

DNase I stock solution (> 200 KU/ml DNase I). Retinae were digested 40 min at 37 C, with 

mixing of the samples by inverting the tube every 10 min. After careful manual trituration, 

the suspension was washed with EBSS wash (EBSS, 10% v/v DNase I stock solution, 10% 

v/v Ovomucoid inhibitor) after which digestion was fully stopped by overlaying onto 

Ovomucoid inhibitor and centrifuging for 5 min at 300 g. Supernatant was removed and 

cells resuspended to 20x106 cells/ml in measurement buffer. Papain solution, EBSS and 

Ovomucoid inhibitor were taken from the Papain Dissociation System (PDS Kit, Cat. No.: 

LK003182, Worthington Biochemical Corporation). 
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Human retinal organoid sample preparation 
For analysis of human photoreceptor cells, human retinal organoids (HRO) derived from 

the Crx-mCherry iPSC line (kindly provided by O. Goureau, Paris) and generated as 

described in ref. [52] were dissociated as follows: organoids were washed 3x in 37 °C PBS, 

transferred to 37 °C Papain solution and incubated for 2 h at 37 °C on a horizontal shaker 

shaking at 90 rpm [53]. Then, DNase I stock solution was added to 5% v/v (> 400 KU/ml) 

and HRO triturated carefully using a glass pipette. After filtering through a 30 µm filter 

(Cat.No.: 130-041-407, Miltenyi Biotech), cells were washed with EBSS wash, digestion was 

stopped and cells were resuspended as described above, centrifuging for 6 min at 600 g.  

 

Sample preparation for photoreceptor transplantation  
For transplantation, the target, unsorted and default fractions containing 30,000 or 

80,000 cells were washed with cell buffer and centrifuged for 5 min at 800 g. Cells were 

resuspended in transplantation (TP) buffer (Cell Buffer containing 2% v/v DNase I stock 

solution) transferred to a fresh tube and centrifuged again for 5 min at 800 g. The cell 

pellet was then resuspended in 1-2 µl TP buffer and kept on ice until subretinal 

transplantation. Adult (>10 w) C57Bl/6JRj females were used as recipients and trans-

vitreal subretinal transplantation was performed as described in detail in ref. [34].  

 

Tissue processing, immunohistochemistry and imaging 
Experimental animals were euthanized, eyes enucleated and fixed for 1 h in 

4% paraformaldehyde (CAS: 50-00-0 , Cat.No.: 100504-858, VWR) ) in PBS at 4 C. After 

removal of the cornea, lens, vitreous and excess muscular tissue, eyes were 

cryoprotected in 30% sucrose in PBS overnight and frozen in Neg-50 (Cat.No: 6502, 

Thermo Fisher Scientific). 12 µm sections were treated with 0.3% Triton-X100, 5% donkey 

serum and 1% BSA in PBS and immunostained (Primary antibody: chicken-anti-GFP, 

ab13970, Abcam, 1:500; Secondary antibody: donkey-anti-chicken-Cy2, 703-225-155, 

Jackson Immuno Research, 1:1000; Counterstain: DAPI, Sigma, 0.2 µg/ml). Stained 

sections were imaged using an Apotome Imager Z1 equipped with ApoTome.2 and ZEN 

2.5 pro blue edition (Carl Zeiss Microscopy GmbH). 

 

Supporting information 

Supporting Information is available from the bioRxiv preprint server or from the 

author. 

 

Data availability 

All datasets and trained models are publicly available at Zenodo: 

https://doi.org/10.5281/zenodo.4738936. Python scripts to reproduce analysis tasks and 

generate plots are contained in the repository. Each script can be executed using PyBox 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442869doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.4738936
https://doi.org/10.1101/2021.05.05.442869
http://creativecommons.org/licenses/by/4.0/


   

 

0.1.0 (https://github.com/maikherbig/PyBox). PyBox 0.1.0 is a readily installed Python 

environment that contains all required Python packages.  

AIDeveloper is open source software and can be downloaded from GitHub: 

https://github.com/maikherbig/AIDeveloper.  

YouLabel is open source software and can be downloaded from GitHub: 

https://github.com/maikherbig/YouLabel.  
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