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Abstract 61 

Large-scale, reproducible manufacturing of therapeutic cells with consistently high quality is vital 62 

for translation to clinically effective and widely accessible cell therapies. However, the biological 63 

and logistical complexity of manufacturing a living product, including challenges associated with 64 

their inherent variability and uncertainties of process parameters, currently make it difficult to 65 

achieve predictable cell-product quality. Using a degradable microscaffold-based T cell process as 66 

an example, we developed an Artificial Intelligence (AI)-driven experimental-computational 67 

platform to identify a set of critical process parameters (CPP) and critical quality attributes (CQA) 68 

from heterogeneous, high dimensional, time-dependent multi-omics data, measurable during early 69 

stages of manufacturing and predictive of end-of-manufacturing product quality. Sequential, 70 

Design-of-Experiment (DOE)-based studies, coupled with an agnostic machine-learning 71 

framework, were used to extract feature combinations from media assessment that were highly 72 

predictive of total live CD4+ and CD8+ naïve and central memory (CD63L+CCR7+) T cells and 73 

their ratio in the end-product. This computational workflow could be broadly applied to any cell 74 

therapy and provide a roadmap for discovering CQAs and CPPs in cell manufacturing.  75 
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Introduction 76 

T cell-based immunotherapies have received great interest from clinicians and industry due to their 77 

potential to treat, and often functionally cure some cancers and their potential applicability in many 78 

other diseases1,2. Since 2017, four genetically modified autologous Chimeric Antigen Receptor 79 

(CAR) T cell therapies (YescartaTM, KymriahTM, TecartusTM, Breyanzi®) have received FDA 80 

approval to treat certain B-cell malignancies. Despite these successes, CAR-T cell therapies are 81 

constrained by poorly-understood manufacturing processes that are time-intensive, expensive, and 82 

difficult to scale3,4 with a lack of methods and tools to predict product quality during manufacturing 83 

and identify product Critical Quality Attributes (CQAs) and the associated Critical Process 84 

Parameters (CPPs). 85 

Translating laboratory-scale T cell expansion experiments into a large-scale manufacturing 86 

process is hindered by the incomplete understanding of cell properties and how they are affected 87 

by process variables, lack of detailed characterization, and high variability of materials during 88 

manufacturing5. These challenges of manufacturing a “living product” are further magnified since 89 

current chemistry, manufacturing, and control (CMC), analytics, regulations, and product-90 

specifications are designed for conventional chemical and biopharmaceutical manufacturing 91 

systems6. This underscores the need to develop innovative tools,  methods, and standards to ensure 92 

appropriate quality controls, and new strategies involving quality by design (QbD) and good 93 

manufacturing practices (GMP) for cell-based therapies7–9. The intricate manufacturing process 94 

for T cells and other cell therapies must be deeply assessed and appropriately controlled to ensure 95 

scalability, predictability, and a high-quality manufacturing process at the most reasonable cost. A 96 

key step for reaching this goal is to identify putative CQAs and CPPs early in the manufacturing 97 

process that can predict the quality of the manufactured cell-therapy product. We hypothesized 98 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442854doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442854


that rigorous characterization of process parameters along with longitudinal measurements of cell-99 

secreted cytokine, chemokine, and metabolites from the culture media early during manufacturing 100 

will allow us to develop an AI-based mathematical-computational framework for the identification 101 

of multivariate parameters that are predictive of the end-of-manufacturing product phenotypes.  102 

Characterization studies of approved autologous anti-CD19 CAR-T cell therapies have recently 103 

revealed initial sets of candidate quality attributes, i.e. percent transduction, vector copy number, 104 

and interferon-γ production for Axicabtagene ciloleucel (YescartaTM)10 while CAR expression and 105 

release of interferon-γ are a few of those identified for Tisagenlecleucel (KymriahTM)11. Many of 106 

these attributes are calculated as endpoint responses and thus a deeper understanding of the cell 107 

growth process impacted by starting conditions and performance during their manufacturing is 108 

essential. Hence, CQAs that enable early monitoring through real-time process measurements such 109 

as multi-omics cell characterization can overcome current challenges in assessing product 110 

consistency. Yet, the computational complexity of dealing with the heterogeneity and multivariate 111 

nature of multi-omics measurements to characterize T cell quality, i.e., high definition phenotyping 112 

of naïve and memory subsets, remains a challenge.  113 

Generally, T cells with a lower differentiation state such as naïve and stem cell or central memory 114 

cells have been shown to provide superior anti-tumor potency, presumably due to their higher 115 

potential to replicate, migrate, and engraft, leading to a long-term, durable response18–21. Likewise, 116 

CD4 T cells are similarly important to anti-tumor potency due to their cytokine release properties 117 

and ability to resist exhaustion22,23. Our group has developed a novel degradable microscaffold 118 

(DMS)-based method using porous microcarriers functionalized with anti-CD3 and anti-CD28 119 

mAbs for use in T cell expansion cultures. We showed that compared to commercially available 120 

microbeads (Miltenyi), degradable microscaffolds (DMSs) generated a higher number of 121 
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migratory naïve (TN) and central-memory (TCM)  (CCR7+CD62L+) T cells and CD4+ T cells across 122 

multiple donors12. We used this manufacturing process as an exemplar to develop an experimental-123 

computational AI-based tool to predict product quality from early process measurements. This 124 

two-phase approach consists of (1) the optimization of process parameters through experimental 125 

designs, and (2) the extraction of early predictive signatures of T cell quality by multi-omics 126 

integration using regression models. This agnostic computational approach provides a platform to 127 

discover early predictive CQAs and CPPs to ensure consistent product quality, that can be widely 128 

applicable for other cellular therapies. 129 

 130 

Results 131 

I. Overall multi-omics study design  132 

T cells were expanded ex vivo for 14 days and 100 L of supernatant media samples were collected 133 

at days 4, 6, 8, 11, and 14 to measure cytokine profiles and perform NMR analysis. Endpoint 134 

responses on DMS-based T cell extracts were measured for different combinations of DMS 135 

parameters: IL2 concentration, DMS concentration, and functionalized antibody percent. Two 136 

experimental regions were determined using a design-of-experiments (DOE) methodology to 137 

maximize the yields of CD62L+CCR7+ cells (i.e. naïve and central memory T cells, TN+TCM) as a 138 

function of these process parameters. The first DOE resulted in a randomized 18-run I-optimal 139 

custom design where each DMS parameter was evaluated at three levels. To further optimize this 140 

DOE in terms of total live CD4+ TN+TCM cells, a sequential adaptive design-of-experiment 141 

(ADOE) was designed with 12 additional samples (Fig.1b). All 30 runs from both experiments 142 

(DOE, ADOE) were molecularly characterized to model total live TN+TCM (a) CD4+, (b) CD8+, 143 

and (c) their ratio. The extraction of early predictive CPPs and CQAs for the expansion of TN+TCM 144 
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cells during ex vivo culture was performed in two phases: (1) optimization of process parameters, 145 

and (2) integration of multi-omics for predictive modeling (Fig.1). 146 

 147 

Fig.1. Two-phase approach to extract early predictive CPPs and CQAs for CD4+/CD8+  148 

TN+TCM cells. a DOE modeling and optimization of process parameters. b Experimental region 149 

studied and optimized for total live CD4+ TN+TCM cells. c Overall study design (two experiments 150 

varying process parameters while measuring multi-omics and TN+TCM responses. e). d Integrative 151 

multi-omics approach through e a machine learning consensus analysis to identify early predictive 152 

CPPs and CQAs putative candidates for both total live CD4+ and CD8+ TN+TCM cells. 153 

 154 

 155 

II. Optimization of TN+TCM cells as a function of process parameters  156 

Using symbolic regression (DataModeler software from Evolved Analytics LLC), we examined 157 

the interactive effects of the DMS parameters on yield to simultaneously predict and optimize both 158 

CD4+ and CD8+ TN+TCM. A model ensemble predicted 4.2 x 106 CD4+ TN+TCM cells at an 159 
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optimum setting of 30 U/L IL2, 2500 carriers/L, and 100% functionalized mAbs 160 

(Supp.Fig.S1,S3,S4). This result was consistent with the observed maximum value of 4.0 x 106, 161 

highlighting that CD4+ TN+TCM yield was maximized at high levels of DMS parameters (Fig.1b). 162 

In contrast, the predicted optimum yield for CD8+ TN+TCM was 1.9 x 107 cells at a setting of 30 163 

U/L IL2, 600 carriers/L, and 100% functionalized mAbs (Supp.Fig.S2,S3,S4). Although this 164 

combination was not experimentally tested, the closest measured record (30 U/L IL2, 500 165 

carriers/L, 100% functionalized mAbs) achieved the predicted maximum yield. Hence, the CD8+ 166 

TN+TCM yield was maximized at high IL2 concentration and functionalized mAbs percentage but 167 

low DMS concentration. 168 

The DOE analysis highlighted the potential for further optimization of total live CD4+ TN+TCM 169 

cells, as well as the potential to optimize the CD4+ to CD8+ TN+TCM cells ratio, at DMS levels 170 

greater than those originally evaluated (DOE). Therefore, to test and validate, a second adaptive 171 

design of experiment (ADOE) was designed to maximize the total live CD4+ TN+TCM cells. We 172 

expanded the parameter range, assessing IL2 concentration>30 U/L and DMS 173 

concentration>2500 carriers/L (Fig.1b). CD4+ TN+TCM and its ratio to CD8+ TN+ TCM, 4.7 x 106 174 

cell and 0.49 respectively, were maximized when IL2 concentration (40 U/L) and DMS 175 

concentration (3500 carriers/L) were maximized (Fig.1b;Supp.Table.S2;Supp.Fig.S1-S11). 176 

Utilizing the ADOE dataset, new response ensembles were generated enabling more robust 177 

prediction over the expanded parameter space (↑IL2 and ↑DMS concentrations).  178 

 179 

III. Multi-omic integrative analysis for early monitoring of T cell manufacturing  180 
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Due to the heterogeneity of the multivariate data collected and knowing that no single model 181 

structure is perfect for all applications, we implemented an agnostic modeling approach to better 182 

understand these TN+TCM responses. To achieve this, a consensus analysis using seven machine 183 

learning (ML) techniques, Random Forest (RF), Gradient Boosted Machine (GBM), Conditional 184 

Inference Forest (CIF), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least-185 

Squares Regression (PLSR), Support Vector Machine (SVM), and DataModeler’s Symbolic 186 

Regression (SR), was implemented to molecularly characterize TN+TCM cells and to extract 187 

predictive features of quality early on their expansion process (Fig.1d-e).  188 

SR models achieved the highest predictive performance (R2>93%) when using multi-omics 189 

predictors for all endpoint responses (Table.1). SR achieved R2>98% while GBM tree-based 190 

ensembles showed leave-one-out cross-validated R2 (LOO-R2) >95% for CD4+ and CD4+/CD8+ 191 

TN+TCM responses. Similarly, LASSO, PLSR, and SVM methods showed consistent high LOO-192 

R2, 92.9%, 99.7%, and 90.5%, respectively, to predict the CD4+/CD8+ TN+TCM. Yet, about 10% 193 

reduction in LOO-R2, 72.5%-81.7%, was observed for CD4+ TN+TCM with these three methods. 194 

Lastly, SR and PLSR achieved R2>90% while other ML methods exhibited exceedingly variable 195 

LOO-R2 (0.3%,RF-51.5%,LASSO) for CD8+ TN+TCM cells. 196 

The top-performing technique, SR, showed that the median aggregated predictions for CD4+ and 197 

CD8+ TN+TCM cells increases when IL2 concentration, IL15, and IL2R increase while IL17a 198 

decreases in conjunction with other features. These patterns combined with low values of DMS 199 

concentration and GM_CSF uniquely characterized maximum CD8+ TN+TCM. Meanwhile, higher 200 

glycine but lower IL13 in combination with others showed maximum CD4+ TN+TCM predictions 201 

(Fig.2). 202 

 203 
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Table 1. LOO-R2 prediction performance results for all ML models when evaluating process 204 

parameters, and features from cytokine and NMR media analysis at day 6 or day 4.  205 

LOO-R2    ML    

Response/Predictors SR RF GBM CIF LASSO PLSR SVM 

Ratio.of.CD4.to.CD8.TN+TCM.Cells        

PP+N4 99% 86.8% 96.3% 84.5% 88.6% 92.5% 88.5% 

PP+N6 99% 73.6% 95.9% 70.1% 81.0% 95.8% 79.7% 

PP+S6 99% 87.1% 99.9% 83.4% 87.2% 97.9% 86.8% 

PP+S6+N6 99% 85.5% 95.3% 83.4% 92.9% 99.7% 90.5% 

Total.live.CD4+.TN+TCM.cells        

PP+N4 97% 67.0% 93.6% 69.3% 34.3% 90.1% 75.5% 

PP+N6 96% 45.9% 92.6% 51.2% 42.8% 92.1% 79.4% 

PP+S6 98% 71.4% 99.9% 75.0% 74.9% 80.0% 75.5% 

PP+S6+N6 98% 68.2% 95.6% 74.4% 72.5% 81.7% 77.0% 

Total.live.CD8+.TN+TCM.cells        

PP+N4 93% 4.7% 44.4% 9.2% 1.2% 65.1% 9.1% 

PP+N6 86% 2.0% 29.9% 15.8% 28.5% 63.3% 30.6% 

PP+S6 93% 7.8% 28.0% 15.1% 76.2% 98.4% 49.8% 

PP+S6+N6 93% 0.3% 32.7% 9.8% 51.5% 96.4% 37.8% 

ML models prediction performance is measured as the leave-one-out cross-validated R2 (LOO-R2) 206 

while SR prediction performance is measured as R2 of the ensemble prediction where the ensemble 207 

is composed of diverse models with complexity constrained. Predictors evaluated: (PP) Process 208 

parameters, (N) NMR, (S) Cytokines measured at day 4 or 6. max R2 within each ML method 209 

are shown in bold. 210 
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 211 

Fig.2. Multi-omics culturing media prediction profiles at day 6 from DataModeler. Prediction 212 

model profiles from day 6 culturing media monitoring where total live CD4+ TN+TCM is 213 

maximized.  214 

 215 

Selecting CPPs and CQAs candidates consistently for T cell memory is desired. Here, TNFα was 216 

found in consensus across all seven ML methods for predicting CD4+/CD8+ TN+TCM when 217 

considering features with the highest importance scores across models (Fig.3a;Methods). Other 218 

features, IL2R, IL4, IL17a, and DMS concentration, were commonly selected in ≥5 ML methods 219 

(Fig.3a,c). Moreover, IL13 and IL15 were found predictive in combination with these using SR 220 

(Supp.Table.S4). 221 

This integrative analysis of cytokine and NMR media analysis monitored at early stages of the T 222 

cell process provided highly predictive feature combinations of end-product quality. However, 223 

when translating a real-time monitoring strategy to a large-scale manufacturing process, measuring 224 

both cytokine and NMR features from media can be difficult and expensive. To be cost-efficient 225 

and translatable, we demonstrated that either cytokine profiles or NMR media analysis alone is 226 

sufficient to find predictive features without compromising prediction performance.  227 
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 228 

 Multi-omics Day 6 Single-omics NMR Day 4 

Ratio CD4+ to 

CD8+ TN+TCM cells 

a

 

b

 

Total live CD4+ 

TN+TCM cells 

c 

 

d 

 

 229 

Fig.3. ML model consensus of highly predictive for early monitoring of T cell manufacturing. 230 

ML models consensus for a-b ratio CD4+ to CD8+ TN+TCM cells, and c-d total live CD4+ TN+TCM 231 

cells for both multi-omics modeling at day 6 and single-omics with NMR at day 4, respectively. 232 

Feature names are shown for consensus with 5 or more ML models at the highest-ranking standing 233 

(see Methods). 234 

 235 

 236 
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IV. Cytokine media profiles for early prediction 237 

ML models using solely media cytokine profiles at day 6 reached similar or higher R2 than those 238 

of the multi-omics models (CD4+ TN+TCM: 71.4%-99.9%; CD4+/CD8+: 83.4%-99.7%). However, 239 

CD8+ TN+TCM still had variable LOO-R2, 7.8%-93%. Overall, higher cytokine media profiles 240 

showed higher CD4+ TN+TCM and consequently its ratio with CD8+ (Fig.4a). This behavior was 241 

evident, even beyond day 6, for TNFα, IL2R, IL17a, and IL4 which were frequently selected as 242 

predictive features across models (Fig.4b-c;Supp.Fig.S20). A more complex behavior was 243 

detected for CD8+ TN+TCM which cannot be explained by cytokine secretion alone (Fig.4d).  244 

 245 

V. NMR media analysis for early prediction 246 

Models using only NMR media intensities on day 6 revealed an R2 decrease of 8.8% and 11.1%, 247 

on average, compared with the multi-omics and cytokine models, respectively. Yet, SR, GBM, 248 

and PLSR reached high LOO-R2 (92.1%-99%), specifically for CD4+/CD8+ and CD4+ TN+TCM. 249 

Although good prediction was achieved with NMR media analysis on day 6, we obtain slightly 250 

better predictions with NMR media analysis on day 4 (Table.1). From these models, formate, 251 

lactate, DMS concentration were highly ranked to predict both, ratio CD4+/CD8+ and CD4+ 252 

TN+TCM (Fig.3b,d;Supp.Fig.19d). Some variable combinations also contained histidine, ethanol, 253 

dimethylamine, branch chain amino acids (BCAAs), glucose, and glutamine (Supp.Table.S3). 254 

Lower intensity values for BCAAs, dimethylamine, glucose, and glutamine displayed higher CD4+ 255 

TN+TCM cells across the different media monitoring times (Supp.Fig.S25). Inversely, higher 256 

intensities of formate and lactate showed higher CD4+ TN+TCM and its ratio with CD8+ consistently 257 

across time (Fig.5a,b). 258 
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 260 
b261 

 262 
c 263 

 264 
d265 

 266 
Fig.4. General characteristics of cytokine media profiles.  a Heatmap for cytokine profiles from 267 

media samples on day 6. Expression in picograms/milliliter across time points for relevant 268 

cytokine features for b ratio CD4+ to CD8+ TN+TCM cells, c total live CD4+ TN+TCM cells,  and d 269 

total live CD8+ TN+TCM cells.  270 

 271 
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 272 

 273 

 274 

Fig.5. Top-performing features NMR media analysis. NMR intensities in arbitrary units (AU) 275 

across time points for a Ratio CD4+/CD8+ TN+TCM cells, and b total live CD4+ TN+TCM cells. c 276 

Simulation of 1H NMR spectrum shows the potential to detect multiple predictive features at lower 277 

magnetic fields. Overlay of a pooled experimental spectrum of T-cell culture medium (green) and 278 

GISSMO27,28 simulated spectrum (blue), composed of 19 compounds that reasonably approximate 279 

the experimental spectrum acquired at 600 MHz. *indicates an unknown feature of high intensity 280 

that was simulated with 2,3-dimethylamine (blue feature to right). Annotated features in the 281 

spectrum correspond to those identified as being highly predictive of output responses across 282 

computational methods. d GISSMO27,28 simulated spectrum at 80 MHz, corresponding to a field 283 

strength of commercially available benchtop NMR systems. 284 

 285 

 286 
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Discussion 287 

I. Optimization of process parameters  288 

CPPs modeling and understanding are critical to new product development and in cell therapy 289 

development, it can have life-saving implications. The challenges for effective modeling grow 290 

with the increasing complexity of processes due to high dimensionality, and the potential for 291 

process interactions and nonlinear relationships. Another critical challenge is the limited amount 292 

of available data, mostly small DOE datasets. SR has the necessary capabilities to resolve the 293 

issues of process effects modeling and has been applied across multiple industries12. SR discovers 294 

mathematical expressions that fit a given sample and differs from conventional regression 295 

techniques in that a model structure is not defined a priori13. Hence, a key advantage of this 296 

methodology is that transparent, human-interpretable models can be generated from small and 297 

large datasets with no prior assumptions14,15. 298 

Since the model search process lets the data determine the model, diverse and competitive (e.g., 299 

accuracy, complexity) model structures are typically discovered. An ensemble of diverse models 300 

can be formed where its constituent models will tend to agree when constrained by observed data 301 

yet diverge in new regions. Collecting data in these regions helps to ensure that the target system 302 

is accurately modeled, and its optimum is accurately located14,15. Exploiting these features allows 303 

adaptive data collection and interactive modeling. Consequently, this adaptive-DOE approach is 304 

useful in a variety of scenarios, including maximizing model validity for model-based decision 305 

making, optimizing processing parameters to maximize target yields, and developing emulators 306 

for online optimization and human understanding14,15. 307 

 308 

II. Early predictive features  309 
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An in-depth characterization of potential DMS-based T-cell CQAs includes a list of cytokine and 310 

NMR features from media samples that are crucial in many aspects of T cell fate decisions and 311 

effector functions of immune cells. Cytokine features were observed to slightly improve prediction 312 

and dominated the ranking of important features and variable combinations when modeling 313 

together with NMR media analysis and process parameters (Fig.3b,d).  314 

Predictive cytokine features such as TNFα, IL2R, IL4, IL17a, IL13, and IL15 were biologically 315 

assessed in terms of their known functions and activities associated with T cells. T helper cells 316 

secrete more cytokines than T cytotoxic cells, as per their main functions, and activated T cells 317 

secrete more cytokines than resting T cells. It is possible that some cytokines simply reflect the 318 

CD4+/CD8+ ratio and the activation degree by proxy proliferation. However, the exact ratio of 319 

expected cytokine abundance is less clear and depends on the subtypes present, and thus 320 

examination of each relevant cytokine is needed.   321 

IL2R is secreted by activated T cells and binds to IL2, acting as a sink to dampen its effect on T 322 

cells16. Since IL2R was much greater than IL2 in solution, this might reduce the overall effect of 323 

IL2, which could be further investigated by blocking IL2R with an antibody. In T cells, TNF can 324 

increase IL2R, proliferation, and cytokine production18. It may also induce apoptosis depending 325 

on concentration and alter the CD4+ to CD8+ ratio17. Given that TNF has both a soluble and 326 

membrane-bound form, this may either increase or decrease CD4+ ratio and/or memory T cells 327 

depending on the ratio of the membrane to soluble TNF18. Since only soluble TNF was measured, 328 

membrane TNF is needed to understand its impact on both CD4+ ratio and memory T cells. 329 

Furthermore, IL13 is known to be critical for Th2 response and therefore could be secreted if there 330 

are significant Th2 T cells already present in the starting population19. This cytokine has limited 331 

signaling in T cells and is thought to be more of an effector than a differentiation cytokine20. It 332 
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might be emerging as relevant due to an initially large number of Th2 cells or because Th2 cells 333 

were preferentially expanded; indeed, IL4, also found important, is the conical cytokine that 334 

induces Th2 cell differentiation (Fig.3). The role of these cytokines could be investigated by 335 

quantifying the Th1/2/17 subsets both in the starting population and longitudinally. Similar to 336 

IL13, IL17 is an effector cytokine produced by Th17 cells21 thus may reflect the number of Th17 337 

subset of T cells. GM-CSF has been linked with activated T cells, specifically Th17 cells, but it is 338 

not clear if this cytokine is inducing differential expansion of CD8+ T cells or if it is simply a 339 

covariate with another cytokine inducing this expansion22. Finally, IL15 has been shown to be 340 

essential for memory signaling and effective in skewing CAR-T cells toward the Tscm phenotype 341 

when using membrane-bound IL15Ra and IL15R23. Its high predictive behavior goes with its 342 

ability to induce large numbers of memory T cells by functioning in an autocrine/paracrine manner 343 

and could be explored by blocking either the cytokine or its receptor. 344 

Moreover, many predictive metabolites found here are consistent with metabolic 345 

activity associated with T cell activation and differentiation, yet it is not clear how the various 346 

combinations of metabolites relate with each other in a heterogeneous cell population. Formate 347 

and lactate were found to be highly predictive and observed to positively correlate with higher 348 

values of total live CD4+ TN+TCM cells (Fig.5a-b;Supp.Fig.28-S30,S38). Formate is a byproduct 349 

of the one-carbon cycle implicated in promoting T cell activation24. Importantly, this cycle occurs 350 

between the cytosol and mitochondria of cells and formate excreted25. Mitochondrial biogenesis 351 

and function are shown necessary for memory cell persistence26,27. Therefore, increased formate 352 

in media could be an indicator of one-carbon metabolism and mitochondrial activity in the culture. 353 

In addition to formate, lactate was found as a putative CQA of TN+TCM. Lactate is the end-product 354 

of aerobic glycolysis, characteristic of highly proliferating cells and activated T cells28,29. Glucose 355 
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import and glycolytic genes are immediately upregulated in response to T cell stimulation, and 356 

thus generation of lactate. At earlier time-points, this abundance suggests a more robust induction 357 

of glycolysis and higher overall T cell proliferation. Interestingly, our models indicate that higher 358 

lactate predicts higher CD4+, both in total and in proportion to CD8+, seemingly contrary to 359 

previous studies showing that CD8+ T cells rely more on glycolysis for proliferation following 360 

activation30. It may be that glycolytic cells dominate in the culture at the early time points used for 361 

prediction, and higher lactate reflects more cells. 362 

Ethanol patterns are difficult to interpret since its production in mammalian cells is still poorly 363 

understood31. Fresh media analysis indicates ethanol presence in the media used, possibly utilized 364 

as a carrier solvent for certain formula components. However, this does not explain the high 365 

variability and trend of ethanol abundance across time (Supp.Fig.S25-S27). As a volatile chemical, 366 

variation could be introduced by sample handling throughout the analysis process. Nonetheless, it 367 

is also possible that ethanol excreted into media over time, impacting processes regulating redox 368 

and reactive oxygen species which have previously been shown to be crucial in T cell signaling 369 

and differentiation32. 370 

Metabolites that consistently decreased over time are consistent with the primary carbon source 371 

(glucose) and essential amino acids (BCAA, histidine) that must be continually consumed by 372 

proliferating cells. Moreover, the inclusion of glutamine in our predictive models also suggests the 373 

importance of other carbon sources for certain T cell subpopulations. Glutamine can be used for 374 

oxidative energy metabolism in T cells without the need for glycolysis30. Overall, these results are 375 

consistent with existing literature that show different T cell subtypes require different relative 376 

levels of glycolytic and oxidative energy metabolism to sustain the biosynthetic and signaling 377 

needs of their respective phenotypes33,34. It is worth noting that the trends of metabolite abundance 378 
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here are potentially confounded by the partial replacement of media that occurred periodically 379 

during expansion (Methods), thus likely diluting some metabolic byproducts (i.e. formate, lactate) 380 

and elevating depleted precursors (i.e. glucose, amino acids). More definitive conclusions of 381 

metabolic activity across the expanding cell population can be addressed by a closed system, 382 

ideally with on-line process sensors and controls for formate, lactate, along with ethanol and 383 

glucose. 384 

III. Monitoring of T-cell manufacturing with benchtop NMR systems 385 

We demonstrated the ability to identify predictive markers using high-magnetic field NMR 386 

spectrometers. However, these are expensive, require a significant amount of resources to house 387 

and maintain, and would be the unlikely option for routine monitoring in industrial cell-388 

manufacturing. Another common method, liquid chromatography (LC) coupled to mass 389 

spectrometry, has the advantage of a relatively smaller footprint and less upfront cost but it has 390 

other drawbacks such as destruction of the sample and difficulty with components in culture media 391 

that damage LC columns without extraction. Nevertheless, methods like continuous closed-loop 392 

sampling are being developed to address this and might be readily available in the future35. 393 

Recently, permanent magnet-based NMR spectrometers (benchtop-size) have become available at 394 

a lower cost. Many of these are readily configured for flow-through reaction monitoring, which 395 

can be leveraged in a closed-cell manufacturing process. To explore the feasibility of such system, 396 

we utilized a spectral simulation to evaluate if putative CQAs identified here could theoretically 397 

be observed and quantified at a magnetic field strength of 80 MHz (benchtop systems). First, the 398 

experimental data acquired at 600 MHz was approximated by creating a simulated mixture of 399 

identified metabolites (Fig.5c) and then simulated at 80 MHz (Fig.5d). While the spectral 400 

resolution is significantly reduced compared to a spectrum at high-field, there are still numerous 401 
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features that can be attributed to unique metabolites, including those identified as highly predictive 402 

(Fig.5c,d). Although this is promising, there will be challenges to acquiring high-quality data in a 403 

closed bioreactor system, i.e. cells/DMS-particles in suspension, media formulation dictated by 404 

spectral complexity/overlap, and accurate quantitation of features with high overlap from other 405 

signals. However, a dedicated benchtop NMR coupled to a bioreactor could provide a simple 406 

system for real-time monitoring of CQAs.  407 

Henceforth, this two-phase approach enabled in-depth characterization and identification of 408 

potential CQAs and CPPs for T cells. More sampling is needed to explore aspects like donor-to-409 

donor variability, when available it can be incorporated into this workflow which will be enriched 410 

due to its data-driven iterative design that fine-tunes model parameters as more data fits back into 411 

it. Providing a powerful framework to optimize a complex experimental space during the cell-412 

manufacturing process, and to facilitate the identification of CPPs and early predictive CQAs from 413 

multi-omics, that can be used broadly in the cell therapy and regenerative medicine field to 414 

accurately predict end-of-manufacturing quality at early stages. 415 

 416 

Methods 417 

I. Overall multi-omics study design and development: More details 418 

The first DOE resulted in a randomized 18-run I-optimal custom design where each DMS 419 

parameter was evaluated at three levels: IL2 concentration (10, 20, and 30 U/L), DMS 420 

concentration (500, 1500, 2500 carrier/L), and functionalized antibody percent (60%, 80%, 421 

100%). These 18 runs consisted of 14 unique parameter combinations where 4 of them were 422 

replicated twice to assess prediction error. Process parameters for the ADOE were evaluated at 423 

multiple levels: IL2 concentration (30, 35, and 40 U/L), DMS concentration (500, 1000, 1500, 424 
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2000, 2500, 3000, 3500 carrier/L), and functionalized antibody percent (100%) as depicted in 425 

Fig.1b. To further optimize the initial region explored (DOE) in terms of total live CD4+ TN+TCM 426 

cells, a sequential adaptive design-of-experiment (ADOE) was designed with 10 unique parameter 427 

combinations, two of these replicated twice for a total of 12 additional samples (Fig.1b). The fusion 428 

of cytokine and NMR profiles from media to model these responses included 30 cytokines from a 429 

custom Thermo Fisher ProcartaPlex Luminex kit and 20 NMR features. These 20 spectral features 430 

from NMR media analysis were selected out of approximately 250 peaks through the 431 

implementation of a variance-based feature selection approach and some manual inspection steps. 432 

 433 

II. Microcarrier fabrication 434 

Degradable microscaffolds were fabricated as previously described36. Briefly, gelatin 435 

microcarriers (CuS, GE Healthcare DG-2001-OO) were suspended at 20 mg/mL in 1X phosphate-436 

buffered saline (PBS). Sulfo-NHS-biotin (SNB) (Thermo Fisher 21217 or Apex Bio A8001) was 437 

dissolved at 10 µM in ultrapure water and 7.5 µL SNB/mL PBS was added to carrier suspension 438 

and allowed to react for 60 min. After washing the carriers three times in PBS, 40 µg/mL 439 

streptavidin (Jackson Immunoresearch 016-000-114) was added and allowed to react for 60 min. 440 

Biotinylated mAbs against human CD3 and CD28 were combined in a 1:1 mass ratio and added 441 

to the carriers at 2 µg mAbs/mg carriers. To vary the surface concentration of the antibodies, the 442 

anti-CD3/anti-CD28 mAb mixture was further combined with a biotinylated isotype control to 443 

reduce the overall fraction of targeted mAbs. mAbs were allowed to bind to the carriers for 60 444 

min. All mAbs were low endotoxin azide-free (Biolegend custom, LEAF specification). Fully 445 

functionalized DMSs were washed in sterile PBS and washed once again in the cell culture media 446 
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to be used for the T cell expansion. The surface concentration of the antibodies was quantified as 447 

previously described using a bicinchoninic acid assay (BCA) kit (Thermo Fisher 23227)36.  448 

 449 

III. T cell culture (including sample collection) 450 

Cryopreserved primary human T cells were obtained as sorted CD3 subpopulations (Astarte 451 

Biotech). T cells were activated by adding DMSs (amount specified by the DOE) at day 0 of culture 452 

immediately after thaw. DMSs were not added or removed during the culture and had antibodies 453 

that were conjugated in proportions specified by the DOE. Initial cell density was 2.0*106 cells/mL 454 

in a 96 well plate with 300 µL volume. Media was serum-free TexMACS (Miltentyi Biotech 170-455 

076-307) supplemented with recombinant human IL2 in concentrations specified by the DOE 456 

(Peprotech 200-02). Cell cultures were expanded for 14 days as counted from the time of initial 457 

seeding and activation. Cell counts and viability were assessed using acridine orange/propidium 458 

iodide (AO/PI) and a Countess Automated Cell Counter (Thermo Fisher). Media was added to 459 

cultures every 2 days to 3 days in a 3:1 ratio (new volume: old volume) or based on a 300 mg/dL 460 

glucose threshold. The ADOE was done using the same feeding schedule as the initial DOE to 461 

maintain consistency for validation. Media glucose was measured using a ChemGlass glucometer 462 

to confirm cell growth and activation.   463 

 464 

IV. Flow cytometry 465 

At the end of culture, at least 1e5 T cells from each run were washed with PBS once, resuspended 466 

in PBS, and stained with Zombie UV (Biolegend, 423107) for 30 minutes at room temperature in 467 

the dark at a 1:1000 dilution. Cells were spun and resuspended in FACS buffer (1X PBS, 2% 468 

bovine serum albumin, 5 mM EDTA) and were stained with antibodies according to Table M1 for 469 
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60 minutes in the dark at 4C. Cells were then resuspended in fresh FACS buffer, after which they 470 

were run on a BD LSR ortessa. All stained was performed in a 96 well v-bottom plate. 471 

Table M1: Flow cytometry antibodies 472 

Antigen Fluorophore Vendor Cat Number 

CD3 APC-Fire Biolegend 34839 

CD4 PerCP-Cy5.5 BD 561438 

CCR7 AF647 BD 561438 

CD62L PE BD 341012 

 473 

V. Cytokine measurements 474 

Cytokines were measured using a custom ProcartaPlex Luminex kit (Thermo Fisher). The assay 475 

was performed using media samples taken at various time points throughout the T cell culture 476 

according to the manufacturer's instructions with modifications to half the reagent requirements. 477 

Briefly, an 8 point standard curve was created with all included standards. 25 L magnetic beads 478 

were added to all required wells and washed three times. 25 L of each standard or sample was 479 

added to the wells and the plate was sealed and spun at 850 rpm for 120 minutes followed by three 480 

washes. 12.5 L detection antibody was added followed by sealing the plate and spinning for 60 481 

minutes at 850 rpm and three washes. 25 L streptavidin PE was added followed by the same spin 482 

and wash steps. 120 L of reading buffer was added to the plate, the plate was analyzed on a 483 

BioPlex 200 (BioRad). Any samples that were majority over-range (denoted as “OOR >” in the 484 

output spreadsheet) were deemed too concentrated at run at 1/10th their original concentration to 485 

put them within range. All samples were run without technical replicates. 486 

Luminex data was preprocessed using R for inclusion in the analysis pipeline as follows. Any 487 

cytokine level that was over-range (“OOR >” in output) was set to the maximum value of the 488 
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standard curve for that cytokine. Any value that was under-range (“OOR <” in output spreadsheet) 489 

was set to zero. All values that were extrapolated from the standard curve were left unchanged. 490 

 491 

VI.  NMR metabolomics 492 

A. Sample preparation 493 

50 L of media was collected from each culture at each time point (before media exchange, if 494 

applicable), flash-frozen in liquid nitrogen, and stored at -80°C. Samples were shipped to CCRC 495 

on dry ice for NMR analysis. Run order of samples was randomized. Samples were prepared in 496 

two batches for each rack of NMR samples to be run. For each rack, samples were pulled and 497 

sorted on dry ice, then thawed at 4°C for 1 hour. Samples were then centrifuged at 2,990 x g at 498 

4°C for 20 minutes to pellet any cells or debris that may have been collected with the media. 5 499 

L of 100/3 mM DSS-D6 in deuterium oxide (Cambridge Isotope Laboratories) were added to 500 

1.7 mm NMR tubes (Bruker BioSpin), followed by 45 L of media from each sample that was 501 

added and mixed, for a final volume of 50 L in each tube. Samples were prepared on ice and in 502 

predetermined, randomized order. The remaining volume from each sample in the rack (~4 L) 503 

was combined to create an internal pool. This material was used for internal controls within each 504 

rack as well as metabolite annotation.  505 

B. Data collection 506 

NMR spectra were collected on a Bruker Avance III HD spectrometer at 600 MHz using a 5-mm 507 

TXI cryogenic probe and TopSpin software (Bruker BioSpin). One-dimensional spectra were 508 

collected on all samples using the noesypr1d pulse sequence under automation using ICON NMR 509 
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software. Two-dimensional HSQC and TOCSY spectra were collected on internal pooled control 510 

samples for metabolite annotation.  511 

C. Data processing 512 

One-dimensional spectra were manually phased and baseline corrected in TopSpin. Two-513 

dimensional spectra were processed in NMRpipe37. One dimensional spectra were referenced, 514 

water/end regions removed, and normalized with the PQN algorithm38 using an in-house 515 

MATLAB (The MathWorks, Inc.) toolbox 516 

(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA). 517 

D. Feature selection 518 

To reduce the total number of spectral features from approximately 250 peaks and enrich for those 519 

that would be most useful for statistical modeling, a variance-based feature selection was 520 

performed within MATLAB. For each digitized point on the spectrum, the variance was 521 

calculated across all experimental samples and plotted. Clearly-resolved features corresponding 522 

to peaks in the variance spectrum were manually binned and integrated to obtain quantitative 523 

feature intensities across all samples (Supp.Fig.S24). In addition to highly variable features, 524 

several other clearly resolved and easily identifiable features were selected (glucose, BCAA 525 

region, etc). Some features were later discovered to belong to the same metabolite but were 526 

included in further analysis.  527 

E. Metabolite annotation 528 

Two-dimensional spectra collected on pooled samples were uploaded to COLMARm web 529 

server10, where HSQC peaks were automatically matched to database peaks. HSQC matches were 530 

manually reviewed with additional 2D and proton spectra to confirm the match. Annotations were 531 
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assigned a confidence score based upon the levels of spectral data supporting the match as 532 

previously described11. Annotated metabolites were matched to previously selected features used 533 

for statistical analysis. 534 

F. Low-field spectrum simulation  535 

Using the list of annotated metabolites obtained above, an approximation of a representative 536 

experimental spectrum was generated using the GISSMO mixture simulation tool.39,40 With the 537 

simulated mixture of compounds, generated at 600 MHz to match the experimental data, a new 538 

simulation was generated at 80 MHz to match the field strength of commercially available 539 

benchtop NMR spectrometers. The GISSMO tool allows visualization of signals contributed from 540 

each individual compound as well as the mixture, which allows annotation of features in the 541 

mixture belonging to specific compounds. 542 

G. Unknown identification 543 

Several low abundance features selected for analysis did not have database matches and were not 544 

annotated. Statistical total correlation spectroscopy41 suggested that some of these unknown 545 

features belonged to the same molecules (not shown). Additional multidimensional NMR 546 

experiments will be required to determine their identity. 547 

 548 

VII. Machine learning techniques & statistical analysis 549 

A. Machine learning modeling  550 

Seven machine learning (ML) techniques were implemented to predict three responses related to 551 

the memory phenotype of the cultured T cells under different process parameters conditions (i.e. 552 

Total Live CD4+ TN and TCM, Total Live CD8+ TN+TCM, and Ratio CD4+/CD8+ TN+TCM). The 553 

ML methods executed were Random Forest (RF), Gradient Boosted Machine (GBM), Conditional 554 
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Inference Forest (CIF), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least-555 

Squares Regression (PLSR), Support Vector Machine (SVM), and DataModeler’s Symbolic 556 

Regression (SR). Primarily, SR models were used to optimize process parameter values based on 557 

TN+TCM phenotype and to extract early predictive variable combinations from the multi-omics 558 

experiments. Furthermore, all regression methods were executed, and the high-performing models 559 

were used to perform a consensus analysis of the important variables to extract potential critical 560 

quality attributes and critical process parameters predictive of T-cell potency, safety, and 561 

consistency at the early stages of the manufacturing process. 562 

Symbolic regression (SR) was done using Evolved Analytics’ DataModeler software (Evolved 563 

Analytics LLC, Midland, MI). DataModeler utilizes genetic programming to evolve symbolic 564 

regression models (both linear and non-linear) rewarding simplicity and accuracy. Using the 565 

selection criteria of highest accuracy (R2>90% or noise-power) and lowest complexity, the top-566 

performing models were identified. Driving variables, variable combinations, and model 567 

dimensionality tables were generated. The top-performing variable combinations were used to 568 

generate model ensembles. In this analysis, DataModeler’s SymbolicRegression function was used 569 

to develop explicit algebraic (linear and nonlinear) models. The fittest models were analyzed to 570 

identify the dominant variables using the VariablePresence function, the dominant variable 571 

combinations using the VariableCombinations function, and the model dimensionality (number of 572 

unique variables) using the ModelDimensionality function. CreateModelEnsemble was used to 573 

define trustable model ensembles using selected variable combinations and these were summarized 574 

(model expressions, model phenotype, model tree plot, ensemble quality, model quality, variable 575 

presence map, ANOVA tables, model prediction plot, exportable model forms) using the 576 

ModelSummaryTable function. Ensemble prediction and residual performance were respectively 577 
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assessed via the EnsemblePredictionPlot and EnsembleResidualPlot subroutines. Model maxima 578 

(ModelMaximum function) and model minima (ModelMinimum function) were calculated and 579 

displayed using the ResponsePlotExplorer function. Trade-off performance of multiple responses 580 

was explored using the MultiTargetResponseExplorer and ResponseComparisonExplorer with 581 

additional insights derived from the ResponseContourPlotExplorer. Graphics and tables were 582 

generated by DataModeler. These model ensembles were used to identify predicted response 583 

values, potential optima in the responses, and regions of parameter values where the predictions 584 

diverge the most.  585 

Non-parametric tree-based ensembles were done through the randomForest, gbm, and cforest 586 

regression functions in R, for random forest, gradient boosted trees, and conditional inference 587 

forest models, respectively. Both random forest and conditional inference forest construct multiple 588 

decision trees in parallel, by randomly choosing a subset of features at each decision tree split, in 589 

the training stage. Random forest individual decision trees are split using the Gini Index, while 590 

conditional inference forest uses a statistical significance test procedure to select the variables at 591 

each split, reducing correlation bias. In contrast, gradient boosted trees construct regression trees 592 

in series through an iterative procedure that adapts over the training set. This model learns from 593 

the mistakes of previous regression trees in an iterative fashion to correct errors from its precursors' 594 

trees (i.e. minimize mean squared errors). Prediction performance was evaluated using leave-one-595 

out cross-validation (LOO)-R2 and permutation-based variable importance scores assessing % 596 

increase of mean squared errors (MSE), relative influence based on the increase of prediction error, 597 

coefficient values for RF, GBM, and CID, respectively. Partial least squares regression was 598 

executed using the plsr function from the pls package in R while LASSO regression was performed 599 
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using the cv.glmnet R package, both using leave-one-out cross-validation. Finally, the kernlab R 600 

package was used to construct the Support Vector Machine regression models. 601 

Parameter tuning was done for all models in a grid search manner using the train function from 602 

the caret R package using LOO-R2 as the optimization criteria. Specifically, the number of features 603 

randomly sampled as candidates at each split (mtry) and the number of trees to grow (ntree) were 604 

tuned parameters for random forest and conditional inference forest. In particular, minimum sum 605 

of weights in a node to be considered for splitting and the minimum sum of weights in a terminal 606 

node were manually tuned for building the CIF models. Moreover, GBM parameters such as the 607 

number of trees to grow, maximum depth of each tree, learning rate, and the minimal number of 608 

observations at the terminal node, were tuned for optimum LOO-R2 performance as well. For 609 

PLSR, the optimal number of components to be used in the model was assessed based on the 610 

standard error of the cross-validation residuals using the function selectNcomp from the pls 611 

package. Moreover, LASSO regression was performed using the cv.glmnet package with alpha = 612 

1. The best lambda for each response was chosen using the minimum error criteria. Lastly, a fixed 613 

linear kernel (i.e. svmLinear) was used to build the SVM regression models evaluating the cost 614 

parameter value with best LOO-R2. Prediction performance was measured for all models using the 615 

final model with LOO-R2 tuned parameters. Table M2 shows the parameter values evaluated per 616 

model at the final stages of results reporting.  617 

 618 

Table M2: ML parameter values evaluated 619 

ML Model Tuned Parameter Values 

RF ntree=c(500,1000,1500,2000,2500) 

mtry=all possibilities 

GBM interaction.depth=c(1:4) 

n.trees = (1:20)*10 

shrinkage=c(0.1,0.01, 0.02) 

n.minobsinnode=c(2:6) 

bag.fraction=0.5 
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CIF mtry=all possibilities  

ntree*=100 

minsplit* = 6 

minbucket* = 3 

LASSO alpha=1 

lambda=seq(0.001,0.05,by = 0.001) 

PLSR ncomp = 1:15 

SVM svmLinear 

cost=seq(0.05,2,.05) 

 *other values besides the ones shown were optimized manually 

 620 

B. Consensus analysis 621 

Consensus analysis of the relevant variables extracted from each machine learning model was done 622 

to identify consistent predictive features of quality at the early stages of manufacturing. First 623 

importance scores for all features were measured across all ML models using varImp with caret R 624 

package except for scores for SVM which rminer R package was used. These importance scores 625 

were percent increase in mean squared error (MSE), relative importance through average increase 626 

in prediction error when a given predictor is permuted, permuted coefficients values, absolute 627 

coefficient values, weighted sum of absolute coefficients values, and relative importance from 628 

sensitivity analysis determined for RF, GBM, CIF, LASSO, PLSR, and SVM, respectively. Using 629 

these scores, key predictive variables were selected if their importance scores were within the 80th 630 

percentile ranking for the following ML methods: RF, GBM, CIF, LASSO, PLSR, SVM while for 631 

SR variables present in >30% of the top-performing SR models from DataModeler (R2≥ 90%, 632 

Complexity ≤ 100) were chosen to investigate consensus except for NMR media models at day 4 633 

which considered a combination of the top-performing results of models excluding lactate ppms, 634 

and included those variables which were in > 40% of the best performing models. Only variables 635 

with those high percentile scoring values were evaluated in terms of their logical relation 636 

(intersection across ML models) and depicted using a Venn diagram from the venn R package. 637 

 638 
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Data availability 639 

The pre-processed set of the data used in this work is available in Supplementary Methods. All 640 

NMR data are available at the Metabolomics Workbench42 with DOI: 641 

http://dx.doi.org/10.21228/M8F982. 642 

Code availability 643 

Machine learning implementation codes used in this work are available at GitHub 644 

(https://github.com/wandaliz/CMaT_TCell_MachineLearning/). DataModeler information can be 645 

requested at http://www.evolved-analytics.com/.   646 

  647 
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