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Abstract1

Insight into psychiatric disease and development of therapeutics relies on behavioral tasks that study similar2

cognitive constructs in multiple species. The reversal learning task is one popular paradigm that probes flexible3

behavior, aberrations of which are thought to be important in a number of disease states. Despite widespread4

use, there is a need for a high-throughput primate model that can bridge the genetic, anatomic, and behav-5

ioral gap between rodents and humans. Here, we trained squirrel monkeys, a promising preclinical model, on an6

image-guided deterministic reversal learning task. We found that squirrel monkeys exhibited two key hallmarks7

of behavior found in other species: integration of reward history over many trials and a side-specific bias. We8

adapted a reinforcement learning model and demonstrated that it could simulate monkey-like behavior, capture9

training-related trajectories, and provide insight into the strategies animals employed. These results validate10

squirrel monkeys as a model in which to study behavioral flexibility.11

Keywords: reversal learning, reinforcement learning, squirrel monkeys, decision making, behavioral modeling12
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Introduction13

Psychiatry is in need of fundamental insights both so we may understand the psychological and neural basis of14

disease and so we can develop novel therapeutics. Comparative neuroscience is one approach that has histori-15

cally led to the discovery of safe and effective pharmaceuticals (Markou et al., 2009). One common procedure16

is to combine animal models of psychiatric disease with commonly-used behavioral tasks, such as the forced17

swim test or elevated plus maze. Compounds can then be tested for their ability to ameliorate modeled symp-18

toms (Kaiser and Feng, 2015; Flint and Shifman, 2008; Crawley, 2008; Dawson and Tricklebank, 1995; Nestler19

et al., 2002). While this approach has been fruitful, it has failed to fundamentally change our understanding20

about disease or lead to the discovery of truly novel therapeutics (Pangalos et al., 2007; Fenton et al., 2003).21

This is partly because preclinical behavioral models represent a major bottleneck in drug development (Tallman,22

1999). Since psychiatric diseases affect higher-order cognitive processes, designing tasks that translate drug ef-23

fects from animal models to humans is nontrivial. The standard library of tasks were designed to probe intuitive24

ideas about observable symptoms, not quantitative theories of cognitive processes.25

A promising approach is to design behavioral tasks that probe the same psychological phenomena across species26

(Pike et al., 2021). These tasks may use different stimuli and motor responses, but attempt to isolate the same27

neurocomputational mechanisms. Theories about the relevant cognitive processes are used to form and test ex-28

plicit hypotheses, in the form of models, about behavioral strategies (Wilson and Collins, 2019; Daw et al., 2011;29

Heathcote et al., 2015). From the perspective of computational psychiatry, these models in turn allow us to un-30

derstand and quantify aberrant information processing in disease (Huys et al., 2016; Aylward et al., 2019; Ger-31

shman and Lai, 2020; Mason et al., 2017; Redish, 2004; Radulescu and Niv, 2019), as well as effects of therapy32

(Michely et al., 2020; Frank et al., 2007; Paulus et al., 2016).33

Reversal learning is one popular task that is amenable to theory-based computational modeling (Behrens et al.,34

2007; Soltani and Izquierdo, 2019). In common variants of this task, subjects are presented with a choice be-35

tween two stimuli, one associated with a high-value outcome (e.g. high probability or large volume of reward)36

and the other associated with a low-value outcome. Subjects begin the task with no knowledge about which37

stimulus is the better option. On each trial, subjects select one stimulus, receive the associated outcome, and38

repeat this process. Through trial-and-error, subjects learn the values of each stimulus. After some time, the39

two stimuli reverse in association (hence, reversal learning), so that the previously low-value stimulus becomes40

the high-value stimulus and vice versa. Importantly, these reversals are not cued, necessitating continual trial-41

by-trial learning to maximize reward. This task design is thought to engage mechanisms of flexible and rapid42

learning, impairments of which are implicated in a wide range of psychiatric disease (Swainson et al., 2000; Huys43

et al., 2013; Aylward et al., 2019; Remijnse et al., 2006; Brigman et al., 2009; Leeson et al., 2009; Izquierdo and44

Jentsch, 2012), including addiction (Porter et al., 2011; Ersche et al., 2011).45

Although behavior on these tasks is typically reported using simple summary statistics (average performance,46

trials to reach a criterion, etc.), richer insight can be gleaned with reinforcement learning modeling. Reinforce-47

ment learning is a framework that formalizes learning from environmental feedback (Sutton and Barto, 1998),48

and has provided a number of tractable algorithms that have delineated numerous structure-function relation-49

ships in the nervous system (Schultz et al., 1997; Samejima et al., 2005; Bari et al., 2019; Ottenheimer et al.,50

2020; Grossman et al., 2020; O’Doherty et al., 2004). Among the most commonly-applied algorithms are the51

class that iteratively learn stimulus values over many trials and choose based on the relative values of the stim-52

uli. Reinforcement learning models of reversal learning have been used to explain behavioral data in species as53

diverse as rodents (Harris et al., 2020; Metha et al., 2020), macaques (Costa et al., 2016), and humans (Kanen54

et al., 2019). Importantly, reinforcement learning models are generative models — that is, they are capable of55

simulating behavior, a premise which we capitalize on in this manuscript.56

Here, we trained squirrel monkeys on a deterministic image-based reversal learning task. Squirrel monkeys are57

New World primates widely used in biomedical research, primarily due to their small size (<1kg), ease of han-58
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dling, and adaptation to laboratory conditions (Abee, 2000). From the perspective of comparative neuroscience,59

squirrel monkeys help span the massive genetic, anatomical, and behavioral gap between rodents and humans60

(Boinski, 1999). They may also prove to be a useful preclinical model for development of optogenetic-based in-61

terventions (O’Shea et al., 2018).62

Our objective was to determine if squirrel monkeys solve reversal learning tasks using a strategy compatible63

with trial-by-trial reinforcement learning, and to isolate parameters of cognitive flexibility to employ in future64

studies. First, we demonstrate that squirrel monkeys do not adopt the optimal win-stay/lose-shift strategy re-65

quired to optimize reward accumulation in this task but rather integrate reward over many trials. We fit a num-66

ber of reinforcement learning models and found that a standard Rescorla-Wagner model fit best, similar to re-67

versal learning models in other species. We show that this model simulates realistic behavior, providing a con-68

vincing platform for making inferences about behavioral strategy. Finally, we use the recovered parameters to69

define how the behavioral strategy develops with training.70

Methods71

Subjects72

A total of 13 (9 of which met behavioral criteria) adult male squirrel monkeys (Saimiri sciureus) with less than73

1 year of training on behavioral touchscreen tasks were housed individually under controlled temperature and74

humidity on a 12/12-h light-dark cycle (lights on from 0700 to 1900h). Monkeys weighed 867-1113 g (mean:75

965 g) and were maintained on a diet of primate chow (LabDiet High Protein Monkey Biscuits; PMI Feeds, St.76

Louis, MO) with continuous access to water in the home chamber. Environmental enrichment, including fresh77

fruits and vegetables, was provided on a daily basis. The maintenance and experimental use of animals was car-78

ried out in accordance with the 2011 Guide for Care and Use of Laboratory Animals. All experimental protocols79

were approved by the Animal Care and Use Committee of the National Institute on Drug Abuse Intramural Re-80

search Program.81

Apparatus82

Experiments were conducted in sound-attenuating chambers equipped with a 15” touchscreen (Elo TouchSys-83

tems, Menlo Park, CA), mounted in a panel 14.25” from the floor of the chamber. Centered 1.5” below the84

touchscreen and extending 2” into the chamber was a well into which measured volumes of 30% sweetened con-85

densed milk (Eagle Foods, Richfield, OH) could be delivered through a line connected to a syringe pump (Har-86

vard Apparatus, South Natick, MA) located outside the chamber. Monkeys were seated in custom-built acrylic87

chairs facing the touchscreen panel. A computer and software program (E-Prime Professional 3.0; Psychology88

Software Tools, Inc., Sharpsburg, PA) controlled the parameters of the experimental program and data collec-89

tion.90

Behavioral task and training91

Prior to introducing the reversal task, monkeys were trained on a task in which they chose between different92

quantities of milk (0.075-0.3 ml/kg) represented by unique stimuli on the touchscreen. Monkeys registered a93

choice by physically touching the display for 100 ms; this was paired with a tone and allocation of the associ-94

ated reward into the well below the touchscreen. A house light and speakers inside the experimental chambers95

provided illumination and white noise. Training sessions were generally carried out five days a week (Monday-96

Friday) and lasted 30-60 min.97
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Following this training task, monkeys conducted an image-based deterministic reversal learning task. These98

sessions began with a Discrimination block, in which monkeys were presented with two novel images selected99

randomly from a large library of images. One image was associated with a big reward (large volume of milk;100

the ‘correct’ choice) and the other image was associated with a small reward (small volume of milk; the ‘incor-101

rect’ choice). Monkeys registered a choice by physically touching one of the visual stimuli on the display and102

received the associated reward from a reward port. Following an 8-12 second intertrial interval, the images were103

presented again on the next trial, with left/right positions randomized between trials. Monkeys made choices104

until they reached a performance threshold of 80% correct in the past 15 trials, after a minimum 20 trial block105

length. Once this threshold was reached, a Reversal block was initiated, in which the two image associations re-106

versed so the image previously associated with big reward was now associated with small reward, and vice versa107

for the other image. Monkeys again performed until they reached the performance threshold, at which point a108

new Discrimination block was initiated and two new images were randomly sampled from the library. Monkeys109

typically performed for 150 trials, although some sessions were shorter due to reduced motivation. The large re-110

ward (0.13-0.24 ml/kg) was four times larger than the small reward (0.03-0.06 ml/kg).111

Data analysis112

All 13 monkeys completed at least 60 sessions and at least 1 block per session on average. Monkeys that reached113

an average performance threshold of 54% across all reward blocks and all sessions were included, yielding 9 mon-114

keys in the final dataset. Monkeys performed an average of 121 sessions (range 66-135).115

All choices that yielded big (small) reward were labeled as correct (incorrect). Performance was defined as the116

fraction of correct choices in a session. To generate reward history regressions, we arbitrarily coded one image117

as “image 0” and the other image as “image 1” for each set of presented images and fit the following random118

effects logistic regression119

log

(
P (c1(t))

1− P (c1(t))

)
=

15∑
i=1

βi(R1(t− i)−R0(t− i)) + βint

where c1(t) = 1 for a choice to “image 1” and 0 for a choice to “image 0”. R(t) = 1 if big reward was delivered120

for that image on trial t and 0 otherwise. We included monkey-level and session-level (nested within monkey)121

random effects for the intercept.122

We generated errorbars for performance within blocks (Figures 2D, 4D) by computing bootstrapped 95% confi-123

dence intervals from 1,000 bootstrap samples of the mean.124

In generating image-based win-stay/lose-shift and mutual information metrics, we excluded the first trial of each125

Discrimination block, as new images were presented on these trials. The mutual information between stay/shift126

(to image) and reward on the previous trial was calculated as127
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I(R,S) = H(S)−H(S|R)

H(S) = −
∑
s∈S

P (s)log2(P (s))

= −(P (switch)log2(P (switch)) + P (stay)log2(P (stay)))

H(S|R) =
∑
r∈R

H(S|r)P (r)

= −(P (switch|win)log2(P (switch|win)) + P (stay|win)log2(P (stay|win)))P (win)+

− (P (switch|lose)log2(P (switch|lose)) + P (stay|lose)log2(P (stay|lose)))P (lose)

where I(R,S) is the mutual information, S = {switch, stay} on the current trial, and R = {win, lose} on the128

previous trial.129

Side bias was defined as 2 · | Nr
Nr+Nl

− 0.5| where Nr and Nl are the total rightward and leftward choices in a130

session, respectively. Side bias = 0 if there are an equal number of leftward/rightward choices and 1 if all choices131

are exclusively to one side. The entropy of the side chosen distribution was calculated as132

H(C) = −
∑
c∈C

P (c)log2(P (c))

= −(P (leftward)log2(P (leftward)) + P (rightward)log2(P (rightward)))

where C = {leftward, rightward}.133

All regressions relating behavioral metrics to sessions number were random effects linear regressions with monkey-134

level random effects for slope and intercept.135

Reinforcement learning models136

We developed a number of reinforcement learning models based on the Rescora-Wagner model. Our chosen137

model took the following form for updating image values138

δ(t) = R(t)− Vchosen(t)

Vchosen(t+ 1) = Vchosen(t) + α · δ(t)
Vunchosen(t+ 1) = Vunchosen(t)

where values were initialized with Vi = 0 at the beginning of each Discrimination block. In this model, the cho-139

sen image’s value is updated based on the discrepancy between prediction and reward (reward prediction error,140

δ(t)). The unchosen image’s value remains unchanged. Image values were fed into a softmax function to gener-141

ate choices according to142

P (c(t) = rightward) =
1

1 + e−β(Vrightward−Vleftward)−bias

P (c(t) = leftward) = 1− P (c(t) = rightward)

6
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We fit a number of model variants. First, we considered a set of noise models testing whether behavior could143

be explained as random, biased, perseverative (1-trial-back choice autocorrelation), or biased + perseverative.144

Within the space of Rescorla-Wagner models, we considered models with all possible combinations of the follow-145

ing: one learning rate, two learning rates (separate learning of positive and negative reward prediction errors),146

forgetting of unchosen image values to 0, rewards coded as [0.25 1] (since the small reward was 25% the volume147

of the large reward; only for models with forgetting), and learning of action values (i.e. learning values for left-148

ward/rightward actions). Each of these models also included permutations for nuisance parameters (none, side149

bias, perseveration, or side bias + perseveration). We additionally considered a set of models that augmented150

each model to allow for a mixture of image-based win-stay/lose-shift and reinforcement learning. We consid-151

ered one final model (a variant of our chosen model) that explicitly accounted for a reversal mechanism. In this152

model, reward prediction errors symmetrically updated image values - if one image value was increased by δ(t),153

the other image value was decreased by δ(t), while bounding image values by [0 1]. In all models reward val-154

ues were coded as 0 and 1 for small reward and big reward, respectively (except for the variant where they were155

coded as [0.25 1]). In total, we considered 105 model variants.156

We developed a metric, the maximal trial-by-trial change in P(choice), to capture the interaction between the157

learning rate, α, and the inverse temperature, β (Figure 6F,J, S6C). For a given α and β, we assumed the largest158

reward prediction error, δ(t) = 1. This yields Vchosen(t + 1) = Vchosen(t) + α · δ(t), which can be simplified as159

Vchosen(t+ 1)−Vchosen(t) = α. In other words, the value function is increased by α in response to the largest pos-160

sible reward prediction error in this task. We then calculated the change in P(choice) around the inflection point161

of the softmax function (at P(choice) = 0.5) since the slope is steepest at this point. This yields the maximum162

trial-by-trial change in P(choice).163

∆P (choice) =
1

1 + e−β·α/2
− 1

1 + e−β·−α/2

Model fitting164

Models were fit to individual session data with maximum likelihood estimation, with 10 starting points to avoid165

finding local minima. To determine which models fit the data most parsimoniously, we used the Bayesian infor-166

mation criterion, which penalizes models with additional parameters. The above reinforcement learning model167

fit best for the most monkeys (Table S1).168

This model is notable for several reasons. First, none of the noise models fit best for the monkeys included in169

this dataset. Because Bayesian information criterion, relative to other metrics (like Akaike information crite-170

rion), favors simpler models, this suggests that Rescorla-Wagner-like learning is a key feature of behavior. Sec-171

ond, although reinforcement learning models with two learning rates are often fit to animal and human data,172

we found that none of the models with two learning rates were selected. Third, none of the win-stay/lose-shift173

models provided better fits than the complementary model variants without win-stay/lose-shift. This includes174

four win-stay/lose-shift models that did not include Rescorla-Wagner-style learning (a mixture of the four noise175

models + win-stay/lose-shift).176

Model recovery177

For the best model, we took the parameter estimates for each session and generated fictive data according to the178

same model. We then fit all 105 models to this synthetic dataset and found that the true generative model was179

selected for 9 of the 9 simulated monkeys. This shows that our model recovery procedure could indeed recover180

our chosen model.181
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We also conducted a parameter recovery exercise with these models and found that the difference between ac-182

tual and recovered parameters had a mode of 0 for all three parameters.183

Hierarchical Bayesian model fitting184

To obtain partially-pooled parameter estimates (i.e., less noisy estimates, especially since α and β tend to com-185

pensate for one another (Daw et al., 2011; Ballard and McClure, 2019)), we refit the best reinforcement learn-186

ing model using a hierarchical Bayesian framework. We used MATLAB (Mathworks), the probabilistic pro-187

graming language Stan (https://mc-stan.org), and the MATLAB interface, MatlabStan (https://mc-stan.188

org/users/interfaces/matlab-stan). We constructed hierarchical models separately for each monkey, with189

monkey-level parameters to govern session-level parameters for learning. Priors over monkey-level parameters,190

from which session-level means were drawn, were set as191

α ∼ Beta(1.2, 1.2)

β ∼Gamma(4.82, 0.88)

bias ∼Normal(0, 1)

where the priors for α and β were taken from the literature (Kanen et al., 2019; Den Ouden et al., 2013; Gersh-192

man, 2016). The gamma distribution was parameterized in terms of shape and scale. For all monkey-level vari-193

ances, we used Cauchy+(0, 1). For session-level α and β, we again used beta and gamma distributions, reparam-194

eterized in terms of mean and variance with parameters drawn from monkey-level distributions. Session-level195

bias was normally distributed, with mean and variance drawn from monkey-level distributions. Parameter val-196

ues reported in Figure 6 are the means of the session-level posteriors. Distributions in Figure 6A-C are posteri-197

ors over monkey-level means.198

Results199

Reward history and side bias inform strategy200

We developed a deterministic reversal learning task in which chaired squirrel monkeys chose between two simul-201

taneously presented images for delivery of milk reward. Images were presented in blocks of trials, and in each202

block, one image was associated with big reward and the other was associated with small reward. On each trial,203

monkeys were presented with two images, each on the left/right half of a touchscreen and physically touching204

an image yielded reward (Figure 1A). Selecting the big reward image (which we call the correct choice) for 80%205

of the past 15 trials triggered a block transition, uncued to the monkey. Blocks switched between Discrimina-206

tion blocks and Reversal blocks (Figure 1B). At the beginning of each Discrimination block, two images were207

randomly selected from a large library of images and assigned to big/small reward. At the beginning of each Re-208

versal block, the two images swapped reward contingencies. On average, sessions lasted for 146 (SD 14) trials209

and monkeys completed 4.8 (SD 1.9) blocks.210

The optimal strategy in this task is an image-based win-stay/lose-shift policy: select the same image if it yielded211

big reward on the previous trial, switch if it yielded small reward. After training, monkeys reliably switched212

their choices at block transitions, when contingencies switched (Figure 1C, S1A). However, although animals213

performed significantly better than chance (Wilcoxon signed-rank test, p < 0.01), they performed worse than214

win-stay/lose-shift, a optimal strategy that would yield the large reward on ∼ 96% of trials (Figure 2A). To un-215

derstand how monkeys solved this task, we fit logistic regression models to predict choice as a function of reward216
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Block 4
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B

New image set

Figure 1: Reversal learning task design. (A) Squirrel monkeys chose between two images presented on
the left and right halves of a touchscreen. A choice was registered by physically touching either visual stimu-
lus on the display. One image was deterministically associated with big milk reward, and the other image was
associated with small milk reward. Image locations were randomly displayed on the left and right halves of the
screen on separate trials. (B) Monkeys performed sequences of Discrimination and Reversal blocks. At the be-
ginning of each Discrimination block, two new images were randomly sampled from a large library of images
and each image was randomly assigned to big or small reward. At the beginning of each Reversal block, the
two images switched reward contingencies. Block transitions were triggered by a threshold of 80% correct re-
sponses (response to the big reward image) in the past 15 trials, after a minimum of 20 trials. These transitions
were unsignaled, requiring the animal to use reward feedback to guide decisions. (C) Example choice behav-
ior demonstrates the flexibility of behavior at Discrimination → Reversal and Reversal → Discrimination block
transitions.

history. Unlike the optimal policy, which maintains a memory of reward on just the most recent trial, monkeys217

maintained a recency-weighted memory of reward history up to 10 trials in the past to inform choices (Figure218

2B). We also found that monkeys were faster to transition from Reversal → Discrimination blocks than from219

Discrimination → Reversal blocks (Figure 2C,D). A two-way ANOVA (Block Type x Trials) was performed sep-220

arately for trials before and after the block transition. Before the block transition, there was no significant ef-221

fect of Block Type (F1,96 = 1.32, p = 0.25). After the transition, this effect became significant (F1,240 = 270.13,222

p < 0.0001). Performance in Discrimination blocks was better than in Reversal blocks (mean [95%CI], 0.685223

[0.679−0.690] fraction correct in Discrimination blocks, 0.576 [0.568−0.583] fraction correct in Reversal blocks).224

This asymmetry in block performance is consistent with the idea that Reversal blocks, but not Discrimination225

blocks, require unlearning of previously-learned associations in addition to learning new associations.226

Following reward, monkeys can implement two distinctive strategies: choose to repeat choices to the same im-227

age, regardless of side (image-based win-stay) or repeat choices to the same side, regardless of image (side-based228

win-stay). To better define monkeys’ behavioral strategy, we first quantified win-stay and lose-shift tendencies in229

image-based coordinates (Figure 2E). Each point indicates the fraction of trials in which monkeys stayed after230

receiving big reward (x-axis) and shifted after receiving the small reward (y-axis). Plotted this way, points in231

the top-right and bottom-left quadrants indicate reward-sensitive behavior (win-stay/lose-shift and win-shift/lose-232

stay, respectively) and points in the top-left and bottom-right quadrants indicate reward-insensitive behavior233

(shift and stay, respectively, regardless of reward). All monkeys were in the top-right quadrant, indicating that234

they were demonstrating both win-stay and lose-shift behavior following outcomes (Wilcoxon signed-rank test,235

p < 0.01 for each). We quantified reward sensitivity by computing the average win-stay + lose-shift per animal.236

This metric is 1.0 for perfect win-stay/lose-shift behavior, 0.5 for reward-insensitive behavior, and intermediate237
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Figure 2: Behavioral features demonstrate reward sensitivity and side bias (A) Performance was sig-
nificantly better than chance (50%, dashed line). (B) Logistic regression coefficients for choice as a function of
reward history. (C) Performance at block transitions for all blocks, and separately for Discrimination and Rever-
sal blocks. Relative to Reversal blocks, monkeys were faster to improve performance during new Discrimination
blocks. The increase in performance prior to block transitions is because transitions were triggered by good per-
formance. (D) Performance was better in Discrimination blocks relative to Reversal blocks. (E) Image-based
win-stay and lose-shift were both greater than 0.5, demonstrating that animals learned from both wins (big re-
ward) and losses (small reward) to guide decisions. (F) The average win-stay + lose-shift, which can be taken
as a proxy for the strength of reward-guided behavior, was greater than 0.5 (dashed line). Values close to 0.5
are consistent with reward-insensitive behavior and values of 1.0 are consistent with a perfect win-stay lose-shift
strategy. (G) The mutual information between stay/switch and reward on the previous trial. Mutual informa-
tion quantifies how much better we can predict the strategy (stay vs switch) if we know the reward received on
the previous trial (dashed line is from simulated random behavior). (H) Side-based win-stay and lose-shift high-
light a side bias, where animals largely stay. (I) Side bias, which is 1 if choices are exclusively to one side and 0
if they are uniformly split, was widely distributed (dashed line is from simulated non-side-biased behavior). (J)
The entropy of the side chosen distribution showed a similarly wide distribution. Entropy of 1 indicates choices
were uniformly split and entropy of 0 indicates choices were exclusively to one option (dashed line is from simu-
lated non-side-biased behavior). Colors denote individual monkeys and are consistent between figures.

for reward-sensitive behavior. Consistent with prior analyses, animals demonstrated reward-sensitive behavior238

(Wilcoxon signed-rank test, p < 0.01). However, one shortcoming of this metric is it places equal emphasis on239

win-stay and lose-shift. Because P (lose) is fairly low in this task, behavior in response to losses does not impact240

overall performance as strongly as response to reward. To work around this pitfall, we computed the mutual241

information between reward on the previous trial and stay/switch behavior on the current trial, as it accounts242

for the base rate of P (lose) (Figure 2G). Perfect win-stay/lose-shift behavior results in 1 bit of information and243

reward-insensitive behavior results in 0 bits. Consistent with the average win-stay + lose-shift analysis, monkeys244

demonstrated reward-sensitive behavior (Wilcoxon signed-rank test, p < 0.01).245
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One notable behavioral suboptimality we observed was a bias towards a particular side (a rightward side bias246

can be seen in Figure S1A) (Friedman et al., 2017; Bari et al., 2019). To better understand this side bias, we247

quantified win-stay/lose-shift in side-based coordinates (Figure 2H). Most monkeys fell in the bottom-right quad-248

rant, consistent with a reward-insensitive tendency to favor a particular side (win-stay > 0.5 and lose-switch249

< 0.5, Wilcoxon signed-rank test, p < 0.01 for each). We quantified side bias with a side bias metric (0 for250

uniformly split choices, 1 for exclusive choice of one side) and observed a wide distribution, indicating an aver-251

age tendency for side biased behavior (Figure 2I; Wilcoxon signed-rank test, p < 0.01). The entropy of the side252

chosen distribution was similarly wide (1 bit for uniformly split choices, 0 bits for exclusive choice of one side;253

Figure 2J; Wilcoxon signed-rank test, p < 0.01)).254

Taken together, these results argue that monkeys solve this task by integrating reward over many trials to in-255

form choices, and that this strategy is corrupted by a side bias.256

Monkeys develop reward sensitivity and reduce side bias with training257

The wide range of performance allowed us to relate behavioral performance to the behavioral metrics we de-258

fined. First, we found that the average win-stay + lose-shift increased with better performance (linear slope259

0.82, t7 = 28.23, p < 0.0001), consistent with the optimality of image-based win-stay/lose-shift (Figure 3A).260

Similarly, the mutual information between reward and stay/shift increased with performance (Figure 3B; lin-261

ear slope 0.50, t7 = 19.54, p < 0.0001). Next, we focused on the side bias (Figure 3C). We found that for poor262

performance, side bias was generally high and decreased with improved performance (Mean: linear slope −1.98,263

t7 = −3.17, p = 0.016). The entropy of the side chosen distribution increased with improved performance (Fig-264

ure 3D; Mean: linear slope 1.31, t7 = 2.84, p = 0.025).265
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Figure 3: Relationship between performance, reward sensitivity, side bias, and training (A) The
average win-stay + lose-shift increased with increased performance. (B) The mutual information between
stay/shift and reward increased with performance > 0.5. (C) Side bias was higher when performance was closer
to 0.5 and reduced when performance was better. (D) Similarly, the entropy of the side chosen distribution in-
creased (i.e. left/right choices become more random) when performance improved. (E) Performance improved
with more sessions performed. (F) The average win-stay + lose-shift improved with training. (G) The mutual
information between stay/switch and reward increased with training. (H) Side bias decreased with training. (I)
Similarly, the entropy of the side chosen distribution increased with training. Black line shows the fixed effect
and thin colored lines show individual monkey random effects. Colors denote individual monkeys and are consis-
tent between figures.

The large number of sessions per monkey additionally allowed us to quantify the effects of training. First, we266

found that performance increased with the number of sessions (Figure 3E; linear slope 1.3 × 10−3, t1091 = 7.85,267
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p < 0.0001). This was partly due to increased reward-sensitivity to images. The average win-stay + lose-shift268

increased with training (Figure 3F; linear slope 1.1 × 10−3, t1091 = 11.04, p < 0.0001). Similarly, the mutual269

information between reward and stay/switch increased (Figure 3G; linear slope 4.86 × 10−4, t1091 = 5.58, p270

< 0.0001). The improvement in performance was also partly due to a decrease in side bias. The side bias de-271

creased with training (Figure 3H; linear slope −1.5 × 10−3, t1091 = −8.51, p < 0.0001). Similarly, the entropy of272

the side chosen distribution increased with training (Figure 3I; linear slope 9.17 × −4, t1091 = 6.64, p < 0.0001).273

In summary, monkeys improve with training, partly due to increased reward sensitivity to images, and partly274

due to a decrease in side bias.275

Reinforcement learning modeling captures key features of behavior276

Since we found that monkeys integrated rewards over many trials, we adapted the Rescorla-Wagner model, a277

commonly-used model in reinforcement learning (Rescorla, 1972). This model maintains a running estimate of278

the values of images and chooses based on the relative values of the presented images. Image values are learned279

by recency-weighted reward history, which allows the model to adapt behavior flexibly when reward contingen-280

cies change. We considered a number of model variants: equivalent vs differential learning from better-than-281

expected and worse-than-expected outcomes, forgetting of unchosen image values, learning the values of actions282

(e.g. if leftward choices were recently rewarded, then increase probability of leftward choices), mixtures of re-283

inforcement learning and win-stay/lose-shift strategies, and nuisance parameters, like side bias and choice au-284

tocorrelation. We fit individual sessions using maximum likelihood estimation and selected the best model us-285

ing Bayesian information criteria, which selects the best-fit model while penalizing overly complex models. The286

best model was among the simplest — learning of image values with equivalent learning from better/worse out-287

comes and a side bias mechanism (Table S1). Importantly, this model was strongly preferred over noise models288

(which include nuisance parameters but no learning of image values), suggesting that learning image values was289

consistent with real behavior. Armed with a simple and tractable model, we sought to determine how well it de-290

scribed real behavior.291

First, we observed that the model fit behavioral data well (data not shown). However, model fits run the risk of292

overfitting to data (Palminteri et al., 2017). A stronger approach is to take advantage of the generative model-293

ing framework: simulate fictive data, and assess how well simulated data matches real behavioral data. Visually,294

we observed a correspondence between raw behavior and simulations (Figure S1B). Across all simulated mon-295

keys, we observed that simulated behavior performed better than chance, similar to real behavior (Figure 4A;296

Wilcoxon signed-rank test, p < 0.01). Simulated behavior exhibited a dependence on reward history many tri-297

als into the past (Figure 4B). Like real monkeys, simulated monkeys were faster to transition to new Discrim-298

ination blocks than to new Reversal blocks (Figure 4C). There was no significant effect of Block Type prior299

to block transitions (F1,96 = 0.50, p= 0.48), which became significant after the transition (F1,240 = 274.78, p300

< 0.0001). Performance for Discrimination and Reversal blocks were comparable to real behavior (Figure 4D;301

Mean [95%CI], Discrimination: 0.685 [0.679− 0.691], Reversal: 0.576 [0.568− 0.584]).302

Simulated behavior exhibited features of reward-sensitivity to images, with image-based win-stay and lose-shift303

both > 0.5 (Figure 4E; Wilcoxon signed-rank test, p < 0.01 for each). The average win-stay + lose-shift was304

> 0.5, indicating reward-sensitive behavior (Wilcoxon signed-rank test, p < 0.01) and mutual information be-305

tween reward and stay/switch was similarly skewed away from 0 bits, indicating reward sensitivity (Wilcoxon306

signed-rank test, p < 0.01; Figure 4F,G). Simulated behavior also exhibited suboptimal features of side bias307

(Figure 4H; win-stay > 0.5 and lose-switch < 0.5, p < 0.01 for each). Side bias and the entropy of the side308

chosen distributions were similarly wide (Figure 4I,J). On a monkey-by-monkey basis, there was a strong corre-309

spondence between each of these metrics for real and simulated data (Figure S2).310

We addressed the relationship between simulated behavioral metrics and performance. We observed a strong lin-311

ear dependence between performance and average win-stay + lose-shift (Figure 5A; linear slope 0.91, t7 = 47.85,312

p < 0.0001). There was likewise a strong association between performance and mutual information between re-313
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Figure 4: Simulated behavioral features demonstrate monkey-like reward sensitivity and side bias
(A) Distribution of performance was better than chance. (B) Logistic regression coefficients for choice as a func-
tion of reward history shows dependence for many trials in the past. (C) Performance at block transitions for all
blocks, and separately for Discrimination and Reversal blocks. Like actual performance, pre-transition simulated
data had no significant effect of Block Type which became significant after the transition. (D) Simulated perfor-
mance was better in Discrimination blocks relative to Reversal blocks. (E) Image-based win-stay and lose-shift
were both greater than 0.5. (F) The average win-stay + lose-shift was greater than 0.5. (G) The mutual infor-
mation between stay/switch and reward on the previous trial is greater than random behavior. (H) Side-based
win-stay and lose-shift demonstrates a side bias. (I) Side bias distribution. (J) The entropy of the side chosen
distribution. Colors denote individual monkeys and are consistent between figures.

ward and stay/switch (Figure 5B; linear slope 0.57, t7 = 23.63, p < 0.0001). Side bias decreased with perfor-314

mance (Figure 5C;linear slope −1.99, t7 = −3.06, p = 0.18). Entropy of the side chosen distribution similarly315

increased with performance (Figure 5D; linear slope 1.33, t7 = 2.68, p = 0.03).316

We also addressed the relationship between behavioral metrics and training. Simulated behavior exhibited an317

increase in performance with training (Figure 5E; linear slope 1.12×10−3, t1091 = 8.00, p < 0.0001). The average318

win-stay + lose-shift improved with training (Figure 5F; linear slope 1.05 × 10−3, t1091 = 8.56, p < 0.0001)319

and the mutual information between reward and stay/switch improved with training (Figure 5G; linear slope320

5.44 × 10−4, t1091 = 4.65, p < 0.0001). Side bias decreased with training (Figure 5H; linear slope −1.25 × 10−3,321

t1091 = −6.35, p < 0.0001) and the entropy of the side chosen distribution similarly increased (Figure 5I; linear322

slope 8.10×−4, t1091 = 6.90, p < 0.0001).323

Taken together, these results argue that our reinforcement learning model with two core features — learning of324

image values, and a side bias — is sufficient to capture key features of real behavior.325
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Figure 5: Simulations show similar relationships between performance, reward sensitivity, side
bias, and training (A) Average win-stay + lose-shift showed a positive relationship with performance. (B)
Mutual information between stay/shift and reward as a function of performance. (C) Side bias as a function of
performance. (D) Entropy of side chosen as a function of performance. (E) Performance improved with training.
(F) Average win-stay + lose-shift improved with training. (G) Mutual information between stay/switch and re-
ward increased with training. (H) Side bias decreased with training. (I) Entropy of the side chosen distribution
increased with training. Black line shows the fixed effect and thin colored lines show individual monkey random
effects. Colors depict individual monkeys and are consistent across figures

Model parameters provide interpretable insight into behavioral strategy326

A key advantage of our generative modeling approach, beyond traditional summary statistics (e.g. mean per-327

formance, block lengths, etc), is the ability to provide intuitive explanations for how behavior was generated.328

Our model has two key components - a learning component and a decision component. The learning component329

determines the image values and the decision component turns the relative image values into a decision. The330

model has three parameters, which we detail below: learning rate (α), inverse temperature (β), and side bias331

(Figure S3A).332

The learning rate, which affects the learning component, determines how quickly image values are updated fol-333

lowing an outcome (Figure S3B). At its extremes, a learning rate closer to 1 means learning from only the most334

recent trials and a learning rate closer to 0 means learning from many previous trials. In this task, higher learn-335

ing rates are adaptive, and correspond with faster block transitions and better performance. The inverse tem-336

perature determines choice stochasticity, or how deterministically the model acts (Figure S3C). High values of337

inverse temperature correspond to more deterministic choice functions — the agent will opt to choose the image338

with a higher value, even if the difference is small. Small values of inverse temperature correspond to more ran-339

dom behavior — the agent will still choose the image with lower value with reasonable probability. In this task,340

there is a more complex correspondence between inverse temperature and performance. High values of inverse341

temperature correspond to behavior that better maximizes reward when the better option is known, but tends342

to perseverate at block transitions. In general, higher values of inverse temperature correspond with better per-343

formance. The side bias determines the model’s preference for a stimulus location, regardless of relative image344

values (Figure S3D). Nonzero values of side bias are strictly maladaptive in this task and correspond to poorer345

performance.346

To better estimate model parameters, we adopted a hierarchical Bayesian strategy to fit the reinforcement learn-347

ing model and obtain monkey- and session-level parameter estimates (Figure 6A-C, S4). We related these pa-348

rameter estimates to performance to gain better insight. We found that the learning rate improved with in-349

creased performance (Figure 6D; linear slope 2.47, t7 = 7.70, p < 0.0001). In contrast, the inverse temper-350
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ature showed no significant linear association with performance (Figure 6E; linear slope −3.23, t7 = −2.00,351

p = 0.086). Because changes in learning rates and inverse temperatures can partially compensate for one an-352

other (small increase in learning rate can be compensated for by a small decrease in inverse temperature; (Daw353

et al., 2011)), we sought to measure their combined effect on P(choice). The maximal trial-by-trial change in354

P(choice), which partially accounts for this interaction, showed an increase with performance (Figure 6F; linear355

slope 1.00, t7 = 5.99, p = 5.5×10−4). Finally, the absolute value of side bias showed no change with performance356

(Figure 6G; linear slope −5.91, t7 = −1.80, p = 0.11; see Discussion).357

0.00

0.25

0.50

Le
ar

ni
ng

 ra
te

 (α
)

0.50 0.75

D

Performance (fraction correct)

1

2

3

In
ve

rs
e 

te
m

pe
ra

tu
re

 (β
)

Performance (fraction correct)

E

0.00

0.05

0.10

0.15

0.25

M
ax

im
al

 tr
ia

l-b
y-

tri
al

ch
an

ge
 in

 P
(c

ho
ic

e)
Performance (fraction correct)

F

0

1

2

3

4

5

|S
id

e 
bi

as
|

Performance (fraction correct)

G

0.00

0.25

0.50

0.75

1.00

Le
ar

ni
ng

 ra
te

 (α
)

0 50 150100
Session

H

0 50 100 150
Session

0

5

10

15

In
ve

rs
e 

te
m

pe
ra

tu
re

 (β
)

I

0 10050 150
Session

0.00

0.25

0.50

0.75

1.00

M
ax

im
al

 tr
ia

l-b
y-

tri
al

ch
an

ge
 in

 P
(c

ho
ic

e)

0 10050 150
Session

0

1

2

3

4

5

|S
id

e 
bi

as
|

KJ

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.06

0 1 2 3 4

0.00

0.03

-3 -2 -1 0 1 2 3

0.00

0.06

Pr
ob

ab
ilit

y

Learning rate (α) Inverse temperature (β) Side bias

A B C

0.50 0.75 0.50 0.75 0.50 0.75

0.20

Parameter Estimates

Figure 6: Relationship between model parameters, performance, and training (A) Estimate learn-
ing rates for all monkeys. (B) Estimated inverse temperatures for all monkeys. (C) Estimated side biases for all
monkeys. (D) As performance improved, the learning rate increased. (E) Inverse temperature showed no signif-
icant linear association with performance. (F) The maximal trial-by-trial change in P(choice), which partially
accounts for the interaction of both the learning rate and the inverse temperature, increased as performance
improved. (G) The absolute side bias showed no significant relationship with performance. (H) Learning rates
improved with training. (I) The inverse temperature did not change throughout training. (J) The maximal trial-
by-trial change in P(choice) increased with training. (K) Side bias decreased with training. Black line shows the
fixed effect and thin colored lines show individual monkey random effects. Colors denote individual monkeys
and are consistent between figures.

We next sought to estimate how these parameters changed with training. Learning rates increased with train-358

ing, which yields better performance (Figure 6H; linear slope 2.22 × 10−3, t1091 = 3.78, p = 1.7 × 10−4). In359

contrast, inverse temperature showed no significant change with training (Figure 6I; linear slope −4.02 × 10−3,360

t1091 = −1.86, p = 0.06). This is noteworthy since animals consistently adopted suboptimal inverse tempera-361

tures and would have benefited from increased β values (Figure S4; see Discussion). The maximal trial-by-trial362

change in P(choice) improved with training (Figure 6J; linear slope 9.79 × 10−4, t1091 = 3.53, p = 4.7 × 10−4).363

Finally, side bias decreased with training, which permitted better performance (Figure 6K; linear slope −3.10 ×364

10−3, t1091 = −5.62, p < 0.0001). We obtained similar results after within-animal normalization by z-scoring,365

though with a small decrease in inverse temperature with training (Figure S6).366

In summary, the reinforcement modeling approach provides a simple and compelling model for understanding367

how squirrel monkeys solve a reversal learning task and provides a tool for interpreting how the inner mecha-368

nisms relate to performance and how they change with training.369
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Discussion370

The power of comparative neuroscience to dissect cognition relies on the use of behavioral tasks that engage371

similar cognitive mechanisms in different species. Here, we show that squirrel monkeys solve a reversal learning372

task, a frequently-used behavioral paradigm, similarly to other species. We found that these animals integrate373

reward history over many trials to dictate choices, a commonly-observed reinforcement learning motif across374

species.375

Using generative modeling, we explicitly tested a number of hypotheses about the strategies animals applied to376

harvest reward. We found that animal behavior was consistent with a remarkably simple strategy: reward his-377

tory integration over many trials ( ∼ 5-10) and a bias for a particular side. This model outperformed a number378

of other reasonable hypotheses. In particular, we found that a one learning rate model outperformed models379

with two learning rates. This is notable since models with two learning rates, which allow for separate learn-380

ing from positive and negative reward prediction errors, are commonly found to better explain behavioral data381

(Frank et al., 2004; Grossman et al., 2020; Taswell et al., 2018; Averbeck, 2017; Dorfman et al., 2019; Gershman,382

2015; Niv et al., 2012), although these tasks often have different reward statistics than what we used here.383

We found that animals did not implement a pure or noisy win-stay/lose-shift strategy, either in isolation or384

mixed with a reinforcement learning strategy. Why didn’t animals approximate the optimal strategy in this385

task? Although win-stay/lose-shift is optimal on this particular task variant, it may not be adaptive across task386

variants in general. Reward probabilities vary drastically and dynamically in natural environments and, pre-387

sumably, by integrating reward history, animals would continue to perform well if reward probabilities changed.388

Reward could be optimized by tweaking parameters (e.g. adjusting learning rates), rather than changing the389

entire behavioral strategy (Doya, 2002). Another potential reason is that incorrect choices still yielded reward,390

allowing animals to perform well enough despite using a suboptimal strategy.391

Monkeys did not adopt optimal combinations of learning rates and inverse temperatures to maximize reward392

(Figure S5). Although animals had some exposure to the basics of the task (data not included), early in train-393

ing, we would not expect animals to implement optimal parameter combinations. With training, they may ap-394

proximate ideal parameter combinations with greater knowledge of task statistics. Indeed, we found that learn-395

ing rates increased with training, which allows for better performance. Inverse temperatures, however, did not396

increase, which would be expected to optimize reward. Lower inverse temperatures meant monkeys made choices397

more randomly. This finding is consistent with the notion that monkeys maintained a high level of exploratory398

behavior, which may be a ubiquitous feature of behavior even when task demands encourage more deterministic399

choice behavior (Pisupati et al., 2021; Ebitz et al., 2019). Limited attention may also contribute to suboptimal400

exploratory behavior.401

Side-specific biases were a key feature of behavior in this task. These low-level idiosyncratic tendencies are of-402

ten ubiquitous features of animal behavior. These side biases are likely not controlled by the same brain regions403

that engender flexible behavior (Balleine and O’doherty, 2010; Bari et al., 2019). The reduction in side bias and404

increase in learning rate were correlated during training (Figure 6H-K), likely because both processes yield an405

improvement in performance, but would likely be independent following neural manipulation (Bari et al., 2019).406

One potentially inconsistent finding is that the side bias metric decreased with performance (Figure 3C, 5C),407

while the bias parameter from the reinforcement learning model did not show a statistically-significant change408

(Figure 6G). This is likely because this particular analysis was underpowered. When we analyzed data at the409

session level, we observed a significant decrease in both the mean and variance of the bias parameter (data not410

shown). For poor performance, side bias was highly variable. This is because poor performance could be the411

result of a strong bias to one side, or it could be the result of random, reward-insensitive behavior with no side412

bias. With better performance, side bias decreased in mean and variance, because a strong bias places an upper413

bound on performance, no matter how reward-sensitive animals are.414
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Generative modeling allows us to test hypotheses that may be beyond the reach of simple summary statistics.415

For example, it is reasonable that animals could have computed action values in addition to a side bias (e.g.416

in a task variant where computing action values may be adaptive). It’s not clear how the choice-based win-417

stay/lose-shift analyses we used (Figure 2H), which can test whether animals implement reward sensitivity to418

choices vs side bias, would help if animals implemented a mixture of the two. With the generative modeling ap-419

proach, as long as the model is recoverable, then this hypothesis would be simple to test (Wilson and Collins,420

2019).421

Our modeling approach, while generally successful, did not perfectly recapitulate all behavioral features. One422

notable failure was the inability to capture the slight recovery of performance in the one trial immediately after423

a Reversal block began (compare Figures 2C, 4C). Interestingly, we found that simulated data with a mixture424

of reinforcement learning and win-stay/lose-shift was able to partially recapitulate this phenotype. However, the425

fact that none of these models fit animal behavior well (Table S1) argues that win-stay/lose-shift is not a car-426

dinal feature of behavior, at least given our model selection pipeline. Interestingly, win-stay/lose-shift may only427

be a strategy animals implement on particular trials (Iigaya et al., 2017), which may disfavor a model that as-428

sumes win-stay/lose-shift is implemented on every trial. Perhaps squirrel monkeys implement win-stay/lose-shift429

only following large magnitude negative reward prediction errors, accounting for behavior in the trials immedi-430

ately after a block change, and otherwise implement reinforcement learning. Learning rates might also change as431

a function of recent reward statistics, yielding non-stationary behavioral strategies (Behrens et al., 2007; Nassar432

et al., 2012; Grossman et al., 2020).433

One strength of generative modeling is that it allows for interpretable insights into manipulations, particularly434

across species. Parameter estimates (Figure S4) may be compared across groups to gain insight into the effects435

of disease or manipulations (Kanen et al., 2021; Aylward et al., 2019; Huys et al., 2013). A complementary ap-436

proach is to extract the latent variables governed by these parameters and correlate them with neural activity437

(Samejima et al., 2005; Bari et al., 2019; Findling et al., 2019). Insights at the level of parameters or latent438

variables may aid the development of novel therapies, since the development pipeline for nervous system ther-439

apeutics often stalls due to lack of objective biomarkers of success (Kola, 2008; Paulus et al., 2016). Since these440

types of models have theoretical underpinnings, parameter changes may be interpreted through the lens of the-441

ory. For example, the volatility of the environment should modulate learning rates (Behrens et al., 2007), beliefs442

about the causal structure of the environment should modulate asymmetric learning from good and bad out-443

comes (Dorfman et al., 2019), and the complexity of action space should govern the inverse temperature and444

perseveration (Gershman, 2020).445

The reinforcement learning model we chose is a fairly general algorithm that is not specific to the task the mon-446

keys performed. In fact, to best study the cognitive mechanisms underlying this algorithm across species, we447

may need to adjust the task across species to account for species-specific differences. Humans performing a de-448

terministic reversal learning task would almost certainly discover that win-stay/lose-shift was the optimal policy449

and exploit it. Rhesus macaques overtrained on a deterministic reversal learning paradigm eventually learn ex-450

pected block lengths (Jang et al., 2015). Therefore, to best study this algorithm in humans and macaques may451

require a probabilistic reversal learning task without overtraining (to avoid win-stay/lose-shift policies), or a452

task where the probabilities drift slowly across time, without clear reversals (to avoid learning expected block453

lengths; (Daw et al., 2006)).454

The behavior of squirrel monkeys is notable for the larger number of within-session reversals compared to ro-455

dents and marmosets, which is more comparable to macaques and humans (Izquierdo et al., 2017). This means456

that well-trained squirrel monkeys may more readily approximate human strategies, which would significantly457

aid the ability to translate insights. Our results highlight the utility of reinforcement learning modeling and vali-458

dates squirrel monkeys as a useful behavioral neuroscience model.459
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Figure S1: Raw behavior for actual and simulated sessions (A) Top panel: Correct choices as a function
of trial. Large dots indicate a big reward choice and small dots indicate a small reward choice. The black line
shows the fraction correct in the past 15 trials. The dashed line is the performance threshold (80% correct) used
to trigger block transitions. Vertical grey lines indicate block transitions. Middle panel: Choices to images as a
function of trial in the same format as 1C. Black dots indicate a choice to a respective image. Bottom: Choices
to a side as a function of trial. Rightward (leftward) choices are indicated with a black dot on the top (bottom)
of the figure. This session demonstrates a slight rightward side bias. (B) Behavior from the same session was fit
to the reinforcement learning model to estimate parameters. These parameters were used to simulate an entirely
new, synthetic data session.
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Figure S2: Comparison of behavioral features for actual and simulated behavior. To compare how
well actual and simulated behavioral features match, we compute the mean difference between actual and sim-
ulated behavioral features [Mean (actual minus simulated) 95% CI] for each panel. (A) Average performance
for each session. [−0.0015 − 0.0042] (B) Image-based win-stay [−0.0070 − 0.0130] (C) Image-based lose-shift
[−0.0303 − 0.0015] (D) Image-based average win-stay + lose-shift [−0.0043 − 0.0064] (E) Mutual information of
stay/shift and reward on the previous trial [−0.0082−−0.0021] (F) Side-based win-stay [−0.0265−−0.0062] (G)
Side-based lose-shift [−0.0632−−0.0367] (H) Side bias [−0.0097− 0.0015] (I) Entropy of side chosen distribution
[−0.0012− 0.0052]. Colors denote individual monkeys and are consistent between figures.
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Figure S3: Model illustration and effects of varying parameters (A) Illustration of reinforcement
learning model. Image values are updated by feedback via reward prediction errors (the discrepancy between
predicted and actual rewards). This process is governed by the learning rate (α). The relative image value is
mapped through a softmax function to produce a choice. This process is governed by the inverse temperature
(β) and a side bias parameter. (B) Increasing the learning rate results in faster accumulation of reward value in-
formation. This results in faster block transitions and better overall performance. Decreasing the learning rate
has the opposite effect. (C) Increasing the inverse temperature results in more deterministic choice behavior.
Decreasing the inverse temperature makes choices more random. In this example, increasing the inverse temper-
ature results in slower block transitions but more deterministic behavior after enough trials have elapsed, result-
ing in improved performance. Decreasing the inverse temperature has the opposite effect. Unlike the learning
rate, the optimal inverse temperature is not at an extreme value but depends on the trials to criterion. Greater
trials to criterion will favor a larger β. (D) Side bias results in increased choices of one particular side. Side bias
is purely maladaptive and results in poorer overall performance.
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Figure S4: Parameter estimates for each monkey. Estimated learning rates, inverse temperatures, and
side biases for all monkeys included in this study. Colors indicate the color used for that monkey throughout
figures.
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Figure S5: Performance as a function of learning rate (α) and inverse temperature (β). Each simu-
lation was run for 66 sessions, each 2000 trials long, over 50 α values, 100 β values, and side bias fixed at 0. (A)
Heatmap of performance for combinations of learning rates and inverse temperatures, with side bias fixed at 0.
Performance is poor at low learning rates (regardless of the inverse temperature) and low inverse temperatures
(regardless of the learning rate). In general, there is a large range of learning rates and inverse temperatures
that permits adaptive behavior. Individual monkeys are shown with colored dots. Monkeys consistently main-
tain a suboptimal α/β combination. (B) Performance as a function of inverse temperature for the best learning
rate and side bias = 0. Optimal performance is achieved at β & 4. (C) Performance as a function of learning
rate for the best inverse temperature and side bias = 0. Optimal performance is achieved at α = 1. Colors de-
note individual monkeys and are consistent between figures.
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Figure S6: Within-subject normalization of parameters results in similar changes with training
(A) Normalized learning rates improved with training (linear slope 1.44 × 10−2, t1091 = 17.33, p < 0.0001). (B)
Normalized inverse temperatures decreased with training (linear slope −3.46× 10−3, t1091 = −4.05, p < 0.0001).
(C) Normalized maximal change in P(choice) increased with training (linear slope 1.36 × 10−2, t1091 = 11.13, p
< 0.0001). (D) Normalized absolute side bias decreased throughout training (linear slope −5.61 × 10−3, t1091 =
−7.11, p < 0.0001). Colors denote individual monkeys and are consistent between figures.
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Model

Monkey
RW +

Side bias
(3 parameters)

RW +
Side bias +

Reversal
mechanism

(3 parameters)

RW +
Side bias +

Forget unchosen
(4 parameters)

RW +
Side bias +

Forget unchosen +
reward coded as

[0.25 1]
(4 parameters)

Side bias
(1 parameter)

LH BIC LH BIC LH BIC LH BIC LH BIC

SQ5713 3685 8363 3756 8505 3639 8601 3638 8598 4586 9503
SQ5762 6271 14198 6366 14389 6152 14513 6114 14438 7288 15129
SQ5794 9139 20186 9239 20385 8833 20211 8791 20127 10595 21826
SQ5821 11387 24796 11512 25046 11310 25315 11272 25240 12446 25566
SQ5824 9588 21135 9522 21003 9260 21132 9285 21181 13089 26831
SQ6205 10776 23475 10801 23525 10583 23728 10585 23732 12573 25786
SQ6210 9483 20988 9559 21140 9199 21093 9223 21141 11835 24344
SQ6213 9341 20675 9313 20619 8750 20157 8777 20212 12556 25777
SQ6214 8535 18925 8591 19037 8091 18655 8085 18645 11073 22764

Table S1: Model comparison. Comparison of negative log likelihood (LH) and Bayesian information cri-
terion (BIC) values for the four models best fit to at least one monkey, and one noise model. The four best-fit
models are variations of the Rescorla-Wagner (RW) model with a side bias. The noise model is a side bias only
model. LH and BIC values are sums across all sessions for individual monkeys. Colors in the Monkey column
indicate the color used for that monkey throughout figures. Gray highlights the best model (smallest BIC) for
each monkey.
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