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ABSTRACT

Precision healthcare treats disease at its source, maximizing treatment efficacy while minimizing side
effects. Transcranial focused ultrasound brings this methodology to the human brain, delivering focal
interventions to deep brain sites without the need for surgeries. Depending on stimulus duration,
ultrasound modulates neural activity—which is useful for systematic diagnoses of disease sources—or
induces plastic changes and so a durable reset of the sources. In addition, ultrasound can be applied
to selectively deliver drugs into specific targets, thus increasing treatment efficacy while sparing other
tissues and organs from potential side effects. The agents can be delivered either across an intact blood
brain barrier (small drugs) or across a blood brain barrier that is transiently opened by ultrasound (large
drugs, genes, stem cells). Clinical translation of these groundbreaking approaches requires a practical
system that can deliver ultrasound into specific brain targets on command. We developed a platform
with these features and validated its function in nonhuman primates. In particular, we used the platform
to modulate two deep brain nuclei—the left and the right lateral geniculate nucleus–during visual choice
behavior. We found that specific stimulation parameters reliably yet reversibly modulated the choice
behavior. This platform is being used to systematically investigate the space of effective stimulation
parameters for transient and durable neuromodulation in nonhuman primates. This noninvasive system
can also be applied to subjects with neurological and psychiatric disorders, to modulate specific deep
brain targets with the precision and flexibility not previously possible.

Introduction
Nearly one in four people lives with a significant neurological or psychiatric disorder1, 2. The economic
cost to society will reach $ 6.0 trillion by 2030; more than cancer, cardiovascular diseases, and diabetes
combined3. Approximately one in three patients across neurological and psychiatric conditions does not
respond to drugs or has intolerable side effects4–13.

Precision medicine provides these patients with new treatment options. With respect to disorders
of brain function, precision medicine aims to selectively treat the neural source, thus improving the
efficacy and curbing the side effects associated with current systemic therapies. A recently developed
approach based on noninvasive and focal form of energy has laid a path toward such treatments. In
particular, transcranial focused ultrasound offers noninvasive, focal, and flexible treatments of specific
brain sites14–16. Depending on stimulus duration, ultrasound modulates neural activity17–23 or induces
changes in functional connectivity24–26 (Figure 1, top). In addition, when combined with nanoparticles or
microbubbles, ultrasound can be used to deliver drugs, genes, or stem cells selectively into the specified
target/s. This can be achieved by releasing drugs from nanoparticle carriers,15, 27–30 or using microbubbles
to temporarily disrupt the blood brain barrier31, 32 and so deliver large agents that would not pass otherwise
(Figure 1, bottom). Thus, this form of energy provides novel therapeutic options for the millions of patients
who are currently not adequately treated.
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Figure 1. Treatment options enabled by low-intensity transcranial ultrasound.
Brief, millisecond-second ultrasound stimuli modulate neural activity in a transient fashion. This effect, when
coupled with successive targeting of individual circuit candidates, provides a tool to dissect circuit function and
dysfunction (top left). Ultrasound delivered into a target for minutes induces neuroplastic changes in the target. This
could be used for durable reset of the malfunctioning circuits (top right). To further increase the specificity of these
effects, ultrasound can be combined with drug-carrying nanoparticles that release their cargo specifically at the
ultrasound target (bottom left). If agents that do not naturally cross the blood-brain barrier (BBB) are to be delivered
into a target, ultrasound can be combined with microbbubles that—upon sonication—transiently permeate the BBB
(bottom right).
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However, these applications are limited by technological challenges. A key requirement for the
success of the ultrasound-based therapies is the ability to target a specified site flexibly and reproducibly.
This flexibility is critical given that the neural sources of many psychiatric and neurological disorders
are poorly understood and vary from individual to individual33–39. The systems that could provide this
functionality—phased arrays—are currently only designed for ablative treatments. However, ablative
systems are expensive, require continuous MR-imaging, and have a limited treatment envelope in the
center of the brain14.

We developed a system that provides both noninvasive and flexible targeting of deep brain circuits. The
platform enables an operator to specify one or more targets, together with the desired timing and ultrasonic
waveform, in software. The design is MR-compatible, which enables researchers and clinicians to confirm
precise targeting. The system features imaging functionality that ensures reproducible positioning of
the device and validates the quality of the ultrasound coupling to subject’s head. We validated these
capabilities in nonhuman primates (NHPs). The system can be used to systematically study the effects
of specific ultrasonic protocols in NHPs or other large animals. Ultimately, the system will be used to
provide precision treatments to patients who are currently out of options.

Results
We developed a practical and affordable platform that delivers focused ultrasound into specified deep
brain targets remotely, with the skull and skin intact (Figure 2, top). The targets of the ultrasound are
specified in software. The software can flexibly target individual sites in sequence (Figure 2, bottom) or
simultaneously.

We validated the function of this platform in a scenario that approximates the ultimate applications in
awake patients. Specifically, we used the platform to programmatically deliver focused ultrasound of spe-
cific parameters into the left and right LGN while we assessed the effects of the ensuing neuromodulation
on behavior. Previous studies have shown that continuous stimuli tend to excite neurons whereas pulsed
stimuli, at low duty cycle values, tend to inhibit neurons40. In this study, we therefore tested the effects of
two values of duty cycle, 10% and 100%.

We found that brief, 300 ms pulses of ultrasound directed into the left and right LGN transiently
modulated choice behavior in a NHP. The animal was asked to look at a left or a right target, whichever
appeared first. We quantified effects of neuromodulation in the controlled condition in which both targets
appeared at the same time. We quantified the proportion of choices of each target when the left LGN was
stimulated, when the right LGN was stimulated, and plot the proportion of choices of the contralateral
target for these conditions pooled (Figure 3).

In line with the previous suggestion40, we found that the stimulus pulsed at 10% duty cycle induces a
significant (p = 0.011, two-sided t-test, n = 106) ipsilateral bias, consistent with an inhibition or disruption
of the neural activity in the target circuit. The continuous stimulus, for the relatively low pressure used in
this initial evaluation, failed to produce a significant effect (p = 0.52, two-sided t-test, n = 285).

Notably, in this analysis, we only compare effects for trials in which there always was an ultrasound
stimulus (either a left or the right LGN was sonicated). This controls for potential generic artifacts that can
be associated with ultrasound41, 42. In addition, we found a significant difference between the two stimulus
kinds (blue vs. red in Figure 3; p = 0.012; two-sided t-test). This provides additional control—there is
a double dissociation of the behavioral bias through the stimulus kind. Interestingly, the stimulus that
delivered 10 times less energy into the target (10% duty) produced much stronger effect compared to the
more potent 100% duty stimulus. This corroborates the notion that duty cycle constitutes a critical variable
in the neuromodulatory effects of ultrasound, and the growing consensus that the effects of low-intensity
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Figure 2. Platform for Incisionless, Targeted and Flexible Brain Interventions.
Top: The platform is attached to the head of a NHP to provide reproducible targeting of deep brain circuits while
the subject engages in behavioral tasks.
Bottom: The targets of the ultrasound are specified programmatically. This figure shows selective targeting of the
left and right lateral geniculate nucleus (LGN). The platform can be used to target multiple sites in rapid sequence or
simultaneously. The images were acquired using MRI thermometry (see Methods).
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Figure 3. Application of the platform to modulate deep brain nuclei in awake NHPs. Brief, low-intensity
ultrasound (300 ms, 650 kHz, 750 kPa pressure at target) was delivered into the left or right LGN every 6-14 s. The
side of the stimulation was randomized. The animal was deciding whether to look at a left or a right target. When
both targets appeared at the same time, the animal chose both targets at approximately equal proportion. The brief,
low-intensity ultrasonic pulses were able to change that choice proportion. Specifically, the stimulus of 10% duty
induced an ipsilateral bias, suggesting an inhibition or perturbation of neural activity within the LGN. This effect
was significant (see figure; two-sided t-test). Reversely, a continuous stimulus (100%) duty produced a
non-significant trend toward an excitation. The difference between the two effects was also significant (two-sided
t-test).
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Figure 4. Validation of positioning and coupling. Prior to each session, the platform is operated in imaging mode.
Top: The imaging reliably detects the location of the scalp and the skull. Bottom: The timing of the echoes
received from the skull provide information on the position of the device with respect to the skull; their magnitude
evaluates the quality of ultrasound coupling to the subject’s head.

ultrasound are of mechanical, as opposed to thermal, nature16, 43–45.
Repeated delivery of ultrasound into the brain rests on reproducible positioning of the stimulation

device and on good coupling of the transducer face to the subject’s skin. To address these critical aspects
of ultrasound delivery, we equipped the platform with imaging functionality that ensures reproducible
positioning with respect to the skull and quality coupling (Figure 4). In particular, the device also has
a receive capability that together with the transmit function can be used for pulse-echo imaging. The
ultrasound images acquired during each session are compared with a standard taken during an MRI
imaging session that validated the targeting. This way, the operator can confirm an accurate placement of
the array from session to session. In addition, the magnitude of the received echoes (Figure 4, bottom)
provides information on the quality of the coupling.

Discussion
We developed and validated a practical, affordable, and MRI-compatible platform that delivers ultrasound
through the intact skull and skin on command into single or multiple brain targets in awake subjects. The
platform unleashes the full potential of ultrasound: targeted noninvasive interventions deep in the brain.
No other approach can offer this desirable intersection of strengths (Figure 5).

Our platform can power the novel treatments afforded by focused ultrasound (Figure 1). The
programmatic targeting provides the sorely needed tool to determine which neural circuits should be
treated in a given patient. Such functionality requires that brief ultrasonic pulses modulate the desired
targets reliably and reversibly. We have indeed demonstrated, in an awake NHP, that ultrasound can be
used to robustly and reversibly modulate deep brain targets and the associated behavior (Figure 3). We
will use the platform, which can deliver a large number of ultrasonic stimuli into the same target/s day
by day, to determine which parameters inhibit and excite neurons most effectively (Figure 3). We will
now systematically vary not only the duty cycle, but also the frequency and the intensity of the ultrasound.
The data in Figure 3, collected over 17 days, demonstrates that the platform can be used to reproducibly
deliver ultrasound into the target/s each day.

Besides the tremendous opportunity to dissect circuit function and dysfunction, the platform enables
researchers to systematically investigate the neuroplastic effets that have been associated with appreciable
ultrasound exposures25, 46–51. Specifically, we will measure effects on behavior before, during, and after
sustained stimulation protocols. This way, we will answer, in the primate brain, two key questions
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Figure 5. Ultrasound Uniquely Combines Noninvasiveness, Focus, and Depth Penetration.
Abbreviations: DBS: deep brain stimulus; ECT: electro-convulsive therapy; PDT: photodynamic therapy; PCI:
photochemical internalization; TMS: transcranial magnetic stimulation; TDCS/TACS: transcranial direct/alternating
current stimulation.

regarding this approach—the effect duration and long-term safety of sustained exposure.
The platform provides sufficient pressure output to release drugs into a specified neural circuit during

awake behavior. The awake setup enables investigators to quantify the efficacy and duration of the
neuromodulatory effects induced by specific neuromodulatory drugs, such as propofol27, 52 or ketamine.
In addition, the behavioral readout can be used to assess the safety of the release at the functional level.
For instance, damage of the LGN would result in profound degradation of the animal’s discrimination
ability53, 54.

These protocols can similarly be used to assess the efficacy and safety of cargo delivery across the
blood-brain barrier (BBB). To achieve robust therapeutic effects, agents, such as chemotherapy, will likely
need to be delivered across the BBB repeatedly and over many sessions. This may raise safety concerns55.
Our reproducible targeting platform opens doors to systematic investigation of the effects of repeated BBB
opening.

Together, the platform described here provides the capacity to implement several, if not all, of the
novel ultrasound-based approaches to targeted yet noninvasive brain intervention (Figure 1). The platform,
along with the research outlined in this section, has the potential to bring these precision treatments to the
millions of people with treatment-resistant neurological and psychiatric conditions.

Methods
Animals
One subject participated in this study (male macaca mulatta, age 6 years, weight 8 kg). The procedures
were approved by the Institutional Animal Care and Use Committee of the University of Utah.

Platform positioning and Head Fixation
We developed an apparatus that ensures reproducible positioning of the platform with respect to the head
from session to session, and at the same time allows us to head-fix NHPs and engage them in behavioral
tasks. To achieve that, we developed a custom head frame that is attached to the skull via four titanium
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pins (Gray Matter Research, Bozeman, MT). Each pin is attached to the skull using three screws. The
frame is attached to a primate chair using two steel bars, mounted into the left and right side of the frame.
Coupling of the transducer to the skull is achieved using a 6% polyvinyl alcohol (PVA) gel56. The subject’s
hair is shaved prior to each session. Shaving may not be necessary in the ultimate human applications; the
platform detect the quality of the coupling and aberration due to the hair, and adjust the emitted ultrasound
amplitude accordingly.

In each session, the system verifies the device placement with respect to the head and the quality of
the acoustic coupling using ultrasound imaging. Specifically, the system measures the distance between
the transducer and the skull at six distinct locations. A pulse-echo measurement, performed on a 3x3
grid of elements, provides an estimate of the location of the skull relative to the transducer. Using this
measurement, we perform data collection only when maximum error is less than one wavelength (2.3 mm
at 650 kHz), and when the average error is smaller than half the wavelength (1.15 mm). The coupling
is verified visually (Figure 4, top) and by measuring the intensity of the echo integrated across the array
(Figure 4, bottom). Coupling is considered poor if the intensity of the echo falls bellow 30% of the
standard. This system provided highly reliable placement of the transducer and the coupling gel. Only two
out of 36 sessions were rejected due to poor placement of the transducer or inadequate coupling.

MR Imaging
The system is fully MRI-compatible. Accurate targeting of specific deep brain regions can therefore be
validated using MRI, such as MR thermometry or MRI ARFI. We used MR thermometry. In this approach,
a continuous, 5-second sonication is sufficient to increase temperature at the focal spot by about 2◦C,
enabling visualization of the focus without inducing long-term changes in the neural tissue.

All scans were performed using a 3T MRI scanner (Trio, Siemens Medical Solutions, Erlangen,
Germany) with a 4-channel flex coil wrapped underneath the animal’s head. High resolution 3D T1-
weighted images were used for anatomical imaging and target identification; Magnetization Prepared
Rapid Acquisition Gradient Echo (MPRAGE), TR=1900 ms, TE=3.39 ms, TI-900 ms, BW=180 Hz/pixel,
flip angle 9◦, FOV = 192x192x120 mm, resolution 1x1x1 mm, acquisition time 5:12 min. MR thermometry
was performed with a 3D gradient recalled segmented echo planar imaging pulse sequence; TR=24 ms,
TE=11 ms, BW=592 Hz/pixel, flip angle 12◦, echo train length = 5 with monopolar readout, FOV =
144x117x36 mm, resolution 1.5x1.5x3.0 mm, acquisition time 4.6 s per dynamic image.

Acoustic Intensity at Target
The MRI thermometry additionally allowed us to compute the ultrasound pressure delivered in the target.
Assuming negligible conduction and perfusion and a continuous sonication, the acoustic intensity, I, is
related to the temperature rise, ∆T , by57

I =
ρC∆T
∆tα

, (1)

where ρ , C, and α are the density, specific heat capacity, and acoustic absorption of the tissue and ∆t is
the time in which the temperature increase occurs. To minimize the effects of conduction and perfusion
∆T is assumed to be the maximum temperature measured in the seventh dynamic (the first dynamic in
which the ultrasound is on). The center of k-space is acquired 2.3 seconds into each acquisition. Thus,
∆t was set to 2.3 s. We assumed a density of 1046 kg/m3, a specific heat capacity of 3630 J/K, and an
acoustic absorption of 3.9 Np/m.
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Stimulation Parameters
The transducer (Doppler Electronic Technologies, Guangzhou, China) can produce focal pressures greater
than 3 MPa at its 650 kHz center frequency. All stimuli used 650 kHz. The pulsed stimulus (10%
duty) used a 500 Hz pulse repetition frequency. The peak focal pressure was 770 and 650 kPa in the
right and left LGN respectively. The half power beam width for the right LGN was 1, 3.75, and 3.75
mm in the left/right, anterior/posterior, and superior/inferior dimensions, respectively. The free field
pressure, measured using a hydrophone, is 2.4 MPa at the location of the left and right LGN. Thus,
the MR thermometry measurements suggest that about 30% of the pressure reaches the target through
the individual layers. It is worth noting, nonetheless, that this estimate likely underestimates the actual
pressure at target. In particular, the temperature measured by the MR is averaged within a voxel; the
actual peak temperature within the voxel is higher than the average. In addition, a portion of the energy is
distributed to the thermal conduction and vascular convection.

Task
We trained one NHP to perform a visual choice task. This task was used in many previous studies
(e.g.,18, 58). Briefly, the subject was seated in a comfortable primate chair and was presented with visual
stimuli shown on a monitor. In the task, the subject first fixates a central target. Following its offset, one
target appears on the left and one target on the right side of the screen. There is a brief, controllable delay
between the onset of the two targets, which can range from -40 to 40 ms. We varied the location of the
targets within 2.5 visual degrees to circumvent adaptation. The sonication of the left and right LGN Was
randomly interspersed with trials in which no ultrasound was delivered. In an ultrasound trial, a 300 ms
stimulus was delivered 150 ms before the fixation point offset. The subject receives a liquid reward if he
looks at the target that appeared first within 2 s. In the key condition in which both targets appear at the
same time and during which we quantify the effect of ultrasound, the subject is rewarded for either choice.
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