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Abstract 

The rate of amino acid substitution has been shown to be correlated to a number of factors 

including the rate of recombination, the age of the gene, the length of the protein, mean 

expression level and gene function. However, the extent to which these correlations are due to 

adaptive and non-adaptive evolution has not been studied in detail, at least not in hominids. We 

find that the rate of adaptive evolution is significantly positively correlated to the rate of 

recombination, protein length and gene expression level, and negatively correlated to gene age. 

The correlations remain significant when each factor is controlled for in turn, except when 

controlling for expression in an analysis of protein length; and they also remain significant, or 

marginally significant, when biased gene conversion is controlled for. However, the positive 

correlations could be an artefact of population size contraction. We also find that the rate of non-

adaptive evolution is negatively correlated to each factor, and all these correlations survive 

controlling for each other and biased gene conversion. Finally, we examine the effect of gene 

function on rates of adaptive and non-adaptive evolution; we confirm that virus interacting 

proteins (VIPs) have higher rates of adaptive and lower rates of non-adaptive evolution, but we 
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also demonstrate that there is significant variation in the rate of adaptive and non-adaptive 

evolution between GO categories when removing VIPs. We estimate that the VIP/non-VIP axis 

explains about 5-8x more of the variance in evolutionary rate than GO categories. 

 

Introduction 

There is substantial variation in the rate of evolution between different genes within a genome; 

some genes, such as those coding for histones, evolve very slowly, whereas many genes 

involved in immunity evolve rapidly (Clark et al. 2003; Chimpanzee Sequencing and Analysis 

Consortium, 2005; Nielsen et al. 2005; Sackton et al. 2007; Obbard et al. 2009). The reasons 

for this variation have been extensively studied and a number of factors appear to influence or 

be correlated to the rate of protein evolution including function (e.g. Proschel et al. 2006; Haerty 

et al. 2007; Obbard et al. 2009), mutation rate (Taddei et al. 1997; Tenaillon et al. 1999; Giraud 

et al. 2001; Denamur & Matic, 2006; Lynch et al. 2016), recombination rate (RR) (Hill & 

Robertson 1966; Marais & Charlesworth, 2003), gene expression (Pal et al. 2001; Subramanian 

& Kumar, 2004; Wright et al. 2004; Lemos et al. 2005) and protein length (Zhang, 2000; Lipman 

et al. 2002; Liao et al. 2006). Correlations with other factors, such as essentiality, appear to be 

less clear (Hurst & Smith, 1999). Any one of these patterns could be due to adaptive or non-

adaptive evolution, but the relative roles of these two different evolutionary processes have 

rarely been studied. 

At the functional level, genes involved in immunity, tumor suppression, apoptosis and 

spermatogenesis have been shown to have higher rates of adaptive evolution in hominids 

(Clark et al. 2003; Nielsen et al. 2005; Chimpanzee Sequencing and Analysis Consortium, 

2005). Particularly striking is the amount of adaptive evolution that appears to occur in virus-

interacting genes, which appear to account for 30% of all adaptive substitutions in hominids, 
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whilst these genes only constitute 13% of the proteome by length (Enard et al. 2016). In 

Drosophila it has been shown that male-biased genes, such as testes specific genes, have 

higher rates of adaptive evolution (Proschel et al. 2006; Haerty et al. 2007), as do genes 

involved in immunity (Sackton et al. 2007; Obbard et al. 2009). The dominant role of VIPs in 

hominid adaptive evolution begs the question of whether there is variation between other 

categories of genes, and how much of the variation in the rate of adaptive evolution is 

partitioned between the VIP and non-VIP categories. The role of gene function in determining 

non-adaptive evolution has not been addressed in detail. 

The rate of protein sequence evolution has been shown to be correlated to gene expression, 

with highly expressed genes having lower rates of protein evolution in both eukaryotes (Pal et 

al. 2001; Subramanian & Kumar, 2004; Wright et al. 2004; Lemos et al. 2005) and prokaryotes 

(Rocha & Danchin, 2004). Moutinho et al. (2019) has shown that this correlation is due to both 

adaptive and non-adaptive evolution in Drosophila suggesting that gene expression constrains 

the rate of adaptive substitution as well as the effect of purifying selection. In Arabidopsis the 

correlation with expression seems to be largely associated with non-adaptive evolution 

(Moutinho et al. 2019). The role of gene length has also been studied, with several studies 

showing that smaller genes evolve more rapidly (Zhang, 2000; Lipman et al. 2002; Liao et al. 

2006). Again, this appears to be due to both adaptive and non-adaptive evolution, in Drosophila 

species, but possibly only due to non-adaptive evolution in Arabidopsis (Moutinho et al. 2019).  

Genes differ not only in function, expression, and length, but also in age (Lynch, 2002; Daubin & 

Ochman, 2004; Tautz & Domazet-Loso, 2011; Neme & Tautz, 2013). Multiple studies have 

shown that young genes (i.e. those genes whose recognised homologs are only present in 

closely related species (Domazet-Loso et al. 2007) evolve faster than old genes (Thornton & 

Long, 2002; Domazet-Loso & Tautz, 2003; Krylov et al. 2003; Daubin & Ochman, 2004; Alba & 

Castresena, 2005; Wang et al. 2005; Cai et al. 2006; Wolf et al. 2009; Cai & Petrov, 2010; 
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Zhang et al. 2010; Vishnoi et al. 2010; Tautz & Domazet-Loso, 2011; Cui et al. 2015). Cai and 

Petrov (2010) found clear evidence for the role of non-adaptive evolution in this relationship but 

no evidence for adaptive evolution. However, there is an expectation that young genes will be 

further from their evolutionary optimum than old genes, and hence that they should undergo 

rapid adaptive evolution when they are born. There is some limited evidence for this; the jingwei 

gene, which appeared very recently in the Drosophila phylogeny is evolving very rapidly, with 

80% of the amino acid substitutions estimated to have been due to adaptive evolution (Long & 

Langley, 1993).  

Recombination is expected to affect the probability that both advantageous and deleterious 

mutations are fixed, due to its ability to reduce Hill-Robertson interference between selected 

mutations (Hill & Robertson 1966; Marais & Charlesworth, 2003). Rates of adaptation have 

been shown to be strongly positively correlated to recombination rate in Drosophila (Presgraves, 

2005; Betancourt et al. 2009; Arguello et al. 2010; Mackay et al 2012; Campos et al. 2014; 

Castellano et al. 2016; Moutinho et al. 2019) and Arabidopsis (Moutinho et al. 2019), and rates 

of non-adaptive evolution to be negatively correlated in both Drosophila and Arabidopsis 

species (Moutinho et al. 2019). 

In summary, a number of factors have been shown to correlate to rates of protein evolution, and 

in some of these cases the relative roles of adaptive and non-adaptive evolution have been 

disentangled. However, relatively little work has been done on these questions in hominids. We 

addressed these questions by considering the role of gene age, RR, gene expression, protein 

length and gene function in determining rates of both adaptive and non-adaptive evolution. To 

disentangle the effects of adaptive and non-adaptive evolution we use an extension of the 

McDonald-Kreitman test which estimates these quantities taking into account the distribution 

fitness effects of new mutations.  
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Results 

We set out to investigate whether a number of gene-level factors affect the rate of adaptive and 

non-adaptive evolution in hominids – the rate of recombination (RR), gene age, the level of 

gene expression, gene length and gene function. We measure the rates of adaptive and non-

adaptive evolution using the statistics ωa and ωna, which are estimates of the rate of evolution 

relative to the mutation rate. We estimated both statistics using an extension of the McDonald-

Kreitman method, in which the pattern of substitution and polymorphism at neutral and selected 

sites is used to infer the rates of substitution, taking into account the influence of slightly 

deleterious mutations. We use the method implemented in Grapes (Galtier, 2016), which is a 

maximum likelihood implementation of the second method proposed by Eyre-Walker and 

Keightley (2009). Note that genes are grouped together according to the factors analysed, since 

most genes have relatively little polymorphism data, and this makes estimating the rate of 

adaptive evolution for individual genes impractical. 

We estimated ωa and ωna using 16,344 genes for the divergence between humans and 

chimpanzees using African SNPs from the 1000 genomes data (The 1000 Genomes Project 

Consortium, 2015). We find that the average rate of adaptive evolution is approximately five-fold 

lower than the rate of non-adaptive evolution (ωa = 0.037 (95% confidence intervals estimates 

using bootstrapping 0.035 and 0.039) versus ωna = 0.192 (0.190,0.194)). The proportion of 

substitutions that are adaptive, , is estimated to be 0.162, which is close to previous recent 

estimates (Eyre-Walker & Keightley, 2009; Boyko et al. 2008; Messer & Petrov 2013). 
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Adaptive evolution 

The rate of adaptation is expected to be retarded in regions of low recombination because of 

Hill-Robertson interference, and we do indeed find that the rate of adaptive evolution is 

significantly positively correlated to the rate of recombination in hominids (Figure 1a; (r=0.737, 

p<0.001)). A similar positive correlation has previously been observed in Drosophila 

(Presgraves, 2005; Betancourt et al. 2009; Arguello et al. 2010; Mackay et al. 2012; Campos et 

al. 2014; Castellano et al. 2016). In the most detailed study of this relationship in Drosophila, 

Castellano et al. (2016) found that the rate of adaptive evolution increases with RR, but that it 

asymptotes, suggesting that above a certain level of recombination, Hill-Robertson interference 

has little effect. However, we do not observe an asymptote in hominids (figure 1a). Since there 

is a large difference in average recombination between the two groups with the highest 

recombination rate, we repeated the analysis with 50 recombination bins; although we still 

observe a significant positive correlation between ωa and RR (r=0.582, p<0.001), the analysis 

failed to reveal any signal of an asymptote (figure S1).  
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Figure 1: Estimates of ωa and ωna plotted against the mean recombination rate (a), gene age 

(b), mean gene expression (c) and mean protein length (d). The respective significance of each 

correlation is shown in the plot legend, (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for 

ωa and ωna). Also shown is the line of best fit through the data. An unweighted regression is 

fitted to the estimates of ωa and ωna.   
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Young genes have been shown to evolve faster than old genes (Thornton & Long, 2002; 

Domazet-Loso & Tautz, 2003; Krylov et al. 2003; Daubin & Ochman, 2004; Alba & Castresena, 

2005; Wang et al. 2005; Cai et al. 2006; Wolf et al. 2009; Cai & Petrov, 2010; Zhang et al. 2010; 

Vishnoi et al. 2010; Tautz & Domazet-Loso, 2011; Cui et al. 2015). There is an expectation that 

young genes will undergo faster rates of adaptive evolution because they are further from their 

adaptive optima (Wright, 1931, 1932), and we do indeed find a significant negative correlation 

between ωa and gene age (r=-0.404, p=0.012) in hominids (figure 1b). 

Highly expressed genes have been shown to exhibit lower rates of protein evolution in both 

eukaryotes (Pal et al. 2001; Subramanian & Kumar, 2004; Wright et al. 2004; Lemos et al. 

2005) and prokaryotes (Rocha & Danchin, 2004). Moutinho, et al. (2019) found significant 

negative correlations in Drosophila species between ωa and both gene expression and protein 

length. Intriguingly, the correlations are reversed in hominids, with both correlations being 

significantly positive (gene expression: r=0.642, p=0.002; protein length: r=0.597, p=0.005) 

(figures 1c & 1d).   

 

Independent effects 

Our measure of adaptive evolution, ωa, is significantly positively correlated to RR, expression 

and protein length, and negatively to gene age. However, the rate of recombination, gene age, 

gene expression and protein length are all significantly, or marginally significantly, correlated to 

each other (Table 1) so it is important to determine whether each factor has an independent 

effect on the rate of adaptive evolution; i.e. the correlation between Y and X, might be due to the 

fact that each is correlated to a third factor Z, and with no variation in Z there is no correlation 

between Y and X. To investigate this, we conducted two analyses. In the first instance, we 

repeated our analyses controlling for each factor in turn by taking the values of the co-correlate 
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around the modal value. We took the modal value and 0.5 standard deviations either side; this 

significantly reduced the standard deviation of the co-correlate within each analysis, largely 

controlling for this factor (Table 1). However, controlling for each factor this way reduces the 

data set considerably, so we also ran an analysis in which we calculated the expected 

correlation between two variables under the assumption that they are correlated solely because 

of their correlation to a third variable. It can be shown that if the correlation between Y and Z is 

rYZ and that between X and Z is rXZ, then expected correlation between Y and X due to the 

covariation with Z is 𝑟𝑌𝑋 = 𝑆𝑖𝑔𝑛 √𝑟𝑌𝑍
2 + 𝑟𝑋𝑍

2 , where Sign is positive if both rYZ and rXZ are positive 

or negative, and negative otherwise. In both analyses, we investigate factors that could 

generate an artefactual correlation – e.g. the correlation between Y and X cannot be due to 

covariation with Z, if Y and X are positively correlated, but the correlation between Y and Z is 

positive but the correlation between X and Z is negative. 

 

 

gene 

expression gene length 

recombination 

rate CV 

CV of near 

modal values 

gene age 0.868 (***) 0.860 (***) -0.621 (**) 1.385 0.381 

gene 

expression  0.437 (***) -0.035 (***) 1.451 0.411 

gene length   0.101 (***) 1.727 0.496 

recombination 

rate    1.143 0.325 

Table 1: The correlation between the gene age, gene expression, gene length and 

recombination rate; logs were taken of all variables. The CV column is the coefficient of 

variation of the factor for all the data. The final column is the CV of the restricted data (i.e. when 

we control for the factor in question by restricting the analysis to genes with the modal value +/- 

0.5 standard deviations). 
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Our two analyses suggest that there is a direct association between ωa and RR; when we 

control for age and length, we find that although the correlation is no longer significant when we 

control for either variable, the correlation does remain positive, and the observed correlations 

are significantly greater than the predicted correlation (Table 2). The analysis also suggests that 

there is a direct association between ωa and age, because the correlation remains significantly 

negative when we control for RR, and the predicted correlation is significantly smaller in 

magnitude than the observed correlation. However, the results with gene expression and length 

are less clear; when each variable is controlled for in the analysis of the other, the correlation 

becomes non-significant (Table 2). The observed correlation between ωa and expression is 

significantly greater than the predicted correlation, using length as the covariate, whereas the 

opposite is not true; this would seem to suggest that there is a direct correlation between ωa and 

expression, and that the correlation between ωa and length may be due to the fact that both are 

correlated to expression. However, the evidence is not strong in support of this hypothesis.  

There is another factor that needs to be controlled for in any analysis of age - fast evolving 

genes are harder to identify in more distant species, and this can lead to an artefactual 

correlation between the age of a gene and the rate of evolution. The distribution of non-

synonymous substitution rates is bimodal, with many genes having dN = 0. We took genes 

around the second mode, those with rates between 0.002 and 0.007. This reduces our dataset 

from 15,439 to 4,961 genes, and as a consequence we had to combine multiple age categories 

together. We find no significant correlation between ωa and age when we do this (r=0.413, 

p=0.270), suggesting that the correlation between ωa and age might be an artifact of the 

problems in identifying fast evolving genes in older taxa. 
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Y variate X variate Observed 
r 

Z variate Observed r - 
controlling 

for Z 

Predicted r Predicted/
observed 

> 1 

ωa RR 0.74*** Age 0.25 0.15 0 

ωa RR 0.74*** Length 0.43 0.086 0 

ωa Age -0.40* RR -0.58* -0.093 0.02 

ωa Expression 0.64** Length 0.00 0.38 0.03 

ωa Length 0.60** RR 0.64** 0.091 0 

ωa Length 0.60** Expression 0.25 0.37 0.13 

       

ωna RR -0.73*** Length -0.54* -0.34 0 

ωna Age -0.91*** Expression -0.76** -0.76 0 

ωna Age -0.91*** Length -0.87*** -0.75 0 

ωna Expression -0.98*** Age -0.74*** -0.90 0 

ωna Expression -0.98*** Length -0.61** -0.95 0.01 

ωna Length -0.94*** RR -0.91*** -0.42 0 

ωna Length -0.94*** Age -0.49* -0.88 0 

ωna Length -0.94*** Expression -0.71*** -0.89 0 

Table 2. The observed correlation between Y and X controlling for a covariate, Z, and the 

observed and predicted correlation between Y and X assuming the relationship is solely due to 

the correlation between each variable and a third factor Z. The final column gives the proportion 

of 100 botstrap replicates in which the predicted correlation divided by the observed correlation 

is greater than one – i.e. the predicted correlation is larger in magnitude. 
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Controlling for biased gene conversion 

Biased gene conversion (BGC) can potentially impact estimates of the rate of adaptive 

evolution, either by increasing the fixation probability of S over W neutral alleles (Galtier & 

Duret, 2007; Berglund et al. 2009; Ratnakumar et al. 2010; Rousselle et al. 2020), or by 

promoting the fixation of slightly deleterious S alleles (Duret & Galtier, 2009; Glemin, 2010; 

Necsulea et al. 2011; Lachance & Tishkoff, 2014; Rousselle et al. 2019). To investigate whether 

BGC affects our results we can leverage some of the results above. The correlation between ωa 

and either age and protein length remains significant if we control for RR (Table 2) 

(supplementary figures, S3a and S6a respectively), so it seems that BGC is unlikely to be 

responsible for these correlations. If we control for RR in the regression between ωa and 

expression, we find that the correlation remains, suggesting that this correlation is also not due 

to BGC (r=0.780, p<0.001) (supplementary figure S5a). 

To investigate whether the correlation between ωa and RR is due to BGC we performed a 

different analysis restricting the analysis to those polymorphisms and substitutions that are 

unaffected by BGC – i.e. A<>T and G<>C changes. This reduces our dataset to about 20% of 

its previous size. We find that there is still a positive correlation, although this is only marginally 

significant (r=0.102, p=0.093) (Supplementary figure, S2).  

In conclusion, ωa is positively correlated to RR, protein length and gene expression level, and to 

a large extent these correlations survive controlling for each other and BGC; the exceptions are 

protein length when expression is controlled for, and the positive relationship between ωa and 

RR when BGC is controlled for; this latter correlation remains marginally significant.  
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Non-adaptive evolution 

We repeated the analysis above for the rate of non-adaptive evolution. We find that ωna is highly 

significantly negatively correlated to RR, gene age, length and expression (Table 2; Figure 1). 

All of these correlations remain significant when controlling for potentially confounding factors, 

and the observed correlation is significantly greater in magnitude than the predicted correlation 

(Table 2). Hence, we can conclude that all four factors have significant independent effects on 

ωna. As with the analysis of ωa it is possible that these correlations are due to BGC. However, if 

we control for RR in our analyses we find that all the negative correlations persist (gene age: r=-

0.886, p<0.001; gene length: r=-0.910 p<0.001; gene expression: r=0.989, p<0.001). In the 

case of the correlation between ωna and RR, if we restrict the analysis to G<>C and A<>T 

mutations we find that ωna remains significantly positively correlated to RR (r=-0.648, p<0.001). 

 

Gene function 

In the second part of our analysis, we consider the effect of gene function on the rate of 

adaptive and non-adaptive evolution. It has previously been demonstrated that genes whose 

products interact with viruses – viral interacting proteins (VIPs) – have higher rates of adaptive 

evolution than other genes in primates (Enard et al. 2016). We confirm this pattern. In our 

analysis, in which we have used a different method and statistic to estimate the rate of adaptive 

evolution, we find that the rate of adaptive evolution amongst VIPs is approximately 40% greater 

than in non-VIPs (ωa = 0.052 versus 0.032), a difference that is highly significant (p<0.001). This 

pattern is consistent across almost all GO categories that have at least 100 genes, supporting 

the results of Enard et al. (2016) (figure 2).  
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It is evident however, that there is substantial variation between GO categories for non-VIP 

genes, and this variation is significant, taking into account that individual genes can contribute to 

multiple GO categories (p=0.0012). This pattern is replicated if we include GO categories which 

do not include VIP proteins (p=0.0010). The GO categories which have the highest rate of 

adaptive evolution are ubiquitin protein ligase binding, and protein kinase binding (table 3). 

GO category ωa ωa 95% confidence 

intervals 

ubiquitin protein ligase 

binding 

0.0843 0.0702 - 0.0995 

protein kinase binding 0.0804 0.0698 - 0.0914 

sequence-specific DNA 

binding 

0.0735 0.0633 - 0.0842 

DNA-binding transcription 

factor activity 

0.0719 0.0628 - 0.0812 

transcription factor complex 0.0682 0.0496 - 0.0883 

transcription by RNA 

polymerase II 

0.0673 0.0518 - 0.0836 

negative regulation of 

apoptotic process 

0.0671 0.0552 - 0.0796 

chromatin organization 0.0669 0.0567 - 0.0775 

DNA-binding transcription 

activator activity 

0.0649 0.0524 - 0.078 

transcription coactivator 

activity 

0.0648 0.0519 - 0.0786 

 Table 3: Top 10 GO categories, ranked by rate of adaptive substitution. 
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Figure 2: Estimates of ωa (top) and ωna (bottom) for GO categories that contain >100 viable VIP 

and non-VIP genes. 

  

What are the relative contributions of GO category and VIP status to the variation in the rate of 

adaptive evolution – i.e. is most of the variation in the rate of adaptive evolution due to whether 

the gene encodes a VIP or not, or is most of the variation due to other functional 

considerations? To investigate this, we performed a two-way analysis of variance on ωa and 

estimated the variance components. We find that the distinction between VIP and non-VIP 

contributes approximately 5x the variance in ωa as the variation between GO categories, 

suggesting that whether a gene encodes a VIP has a major effect on its rate of adaptation 

(supplementary table, S1). 
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But what of non-adaptive evolution? If we divide our data into genes that interact with viruses 

and those that do not, we find that rates of non-adaptive evolution are substantially higher in 

non-VIP genes (ωna = 0.198 vs 0.101). As Enard et al. (2016) found, this pattern is replicated 

across GO categories (Figure 2). There is substantial and significant variation in ωna across GO 

categories excluding VIP genes, taking into account that individual genes can contribute to 

multiple GO categories (p<0.001). This pattern is replicated if we include GO categories which 

do not include VIP proteins (p<0.001). The GO categories that have the highest non-VIP rates 

of non-adaptive evolution are both related to immune system response (table 4). If we partition 

the variance between VIP/non-VIP and GO categories we find that the distinction between VIP 

and non-VIP contributes over 8x the variance in ωna as the variation between GO categories, 

suggesting that whether a gene encodes a VIP has a major effect on its rate of non-adaptive 

evolution (supplementary table, S2) as well as its rate of adaptation. 

GO category ωna ωna 95% confidence 

intervals  

immune system process 0.297 0.283 - 0.310 

innate immune response 0.264 0.248 - 0.279 

chromosome 0.262 0.249 - 0.274 

protein C-terminus binding 0.246 0.228 - 0.264 

centrosome 0.243 0.232 - 0.253 

DNA repair 0.236 0.223 - 0.249 

signal transduction 0.225 0.219 - 0.231 

neutrophil degranulation 0.218 0.206 - 0.229 

extracellular region 0.217 0.211 - 0.223 

proteolysis 0.204 0.195 - 0.214 

Table 4: Top 10 GO categories, ranked by rate of non-adaptive substitution 
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Discussion 

It has been previously shown that the rate of evolution correlates to a number of factors 

including RR (Presgraves, 2005; Betancourt et al. 2009; Arguello et al. 2010; Mackay et al 

2012; Campos et al. 2014; Castellano et al. 2016; Moutinho et al. 2019), gene age (Thornton & 

Long, 2002; Domazet-Loso & Tautz, 2003; Krylov et al. 2003; Daubin & Ochman, 2004; Alba & 

Castresena, 2005; Wang, et al., 2005; Cai, et al., 2006; Wolf, et al., 2009; Cai & Petrov, 2010; 

Zhang et al. 2010; Vishnoi et al. 2010; Tautz & Domazet-Loso, 2011; Cui, et al., 2015), 

expression level (Pal et al. 2001; Rocha & Danchin, 2004; Subramanian & Kumar, 2004; Wright 

et al. 2004; Lemos et al. 2005; Moutinho et al. 2019) and protein length (Zhang, 2000; Lipman 

et al. 2002; Liao et al. 2006; Moutinho et al. 2019). In addition, the rate of evolution has been 

shown to vary with gene function (Clark et al. 2003; Nielsen et al. 2005; Chimpanzee 

Sequencing and Analysis Consortium, 2005). In this study we have correlated each of these 

factors to ωa and ωna in hominids, allowing us to disentangle the effects of adaptive and non-

adaptive evolution. We find that ωa is correlated to all four factors, and that when we control for 

each factor in turn, there is evidence for an independent influence of RR, gene age and gene 

expression. These correlations remain when controlling for the effects of biased gene 

conversion, although the relationship with RR is only marginally significant. However, the 

correlation with gene age could be an artefact of fast evolving genes having higher rates of 

adaptive evolution and being more difficult to identify in older taxa; when we control for the rate 

at which a protein evolves the negative correlation between ωa and gene age becomes non-

significant suggesting that this pattern might be an artefact.  

In contrast, we find that all four factors have significant independent effects on ωna, and that all 

of these remain significant when we control for each in turn, and control for BGC. Several 

studies on both eukaryotes (Pal et al. 2001; Subramanian & Kumar 2004; Wright et al. 2004; 

Lemos et al. 2005; Moutinho et al. 2019) and prokaryotes (Rocha & Danchin 2004) have 
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demonstrated that more highly expressed genes have lower rates of protein sequence 

evolution. Our results support these previous findings, with the negative correlation between ωna 

and gene expression suggesting that more highly expressed genes are under greater constraint 

in hominids. Drummond et al. (2005) suggest a general hypothesis that more highly expressed 

genes evolve slowly (i.e. are under higher selective constraint) because of the selection against 

the expression level cost of protein misfolding, wherein selection acts by favoring protein 

sequences that accumulate less translational missense errors. We also find a significant 

negative correlation between ωna and gene length. This supports former studies that have 

shown that smaller genes evolve more rapidly (Zhang 2000; Lipman et al. 2002; Liao et al. 

2006; Moutinho et al. 2019), suggesting that smaller protein-coding regions are under more 

relaxed purifying selection.  

 

Gene function analyses 

Our analyses of VIP and non-VIP genes show that a high proportion of the variance in protein 

evolution in hominids is accounted for by whether or not a gene interacts with viruses, a result 

that corroborates Enard et al.’s (2016) findings. By disentangling the rates of adaptive and non-

adaptive evolution, we find that VIP genes are under less constraint than non-VIPs, and that 

VIPs exhibit a higher rate of adaptive evolution. We also estimate the variance components 

using two-way analyses of variance, finding that the distinction between VIP and non-VIP 

contributes about 5x the variance in ωa, and 8x the variance in ωna as the variation between GO 

categories, suggesting that whether a gene encodes a VIP has a major effect on its rate of 

adaptation and non-adaptation (supplementary table, S1). These results could explain why 

there appears to be little variation in the rate of adaptive evolution across biological functions 
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categorised using Gene Ontology (Bierne & Eyre-Walker, 2004), with viruses acting across a 

range of biological functions likely to be a key factor in these estimates. 

Our study is likely to underestimate the amount of adaptive evolution attributable to viruses, for 

reasons outlined by Enard et al (2016). Briefly, we used the categorisation of VIPs and non-

VIPs provided by Enard et al (2016). However new VIPs are being discovered regularly, 

suggesting there are some VIPs that were not included in our analysis. Secondly, the 

categorisation of VIP and non-VIP necessarily cannot account for proteins that adapt to viruses 

but do not physically interact with them (e.g. in proteins that are upstream or downstream of 

VIPs in signaling cascades).   

 

No asymptote in the correlation between ωa and RR 

Both Campos et al. (2014) and Castellano et al. (2016) found that there is a positive relationship 

between the rate of adaptive evolution and RR in Drosophila. However, Castellano et al. (2016) 

showed that the positive correlation between RR and ωa asymptotes in Drosophila, suggesting 

that above a certain level of recombination Hill-Robertson interference has little effect. In this 

study we find no evidence of this asymptote in hominids for either the rate of adaptive or non-

adaptive evolution, suggesting that most coding sequences may experience some level of HRi. 

This is perhaps not unexpected. The level of HRi will depend on several factors - the 

effectiveness of recombination in breaking down associations, the density of selected sites and 

the mutation rate to alleles that are subject to selection; if weakly selected mutations are 

responsible for HRi then the effective population size and the level of nearly neutral genetic 

diversity will also be important. Recombination is a considerably more effective force in 

Drosophila; linkage disequilibrium (LD) decays over a scale of 10s of base pairs (Mackay et al. 

2012) rather than the 10,000s that we observe in humans (The 1000 Genomes Project 
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Consortium, 2015). This 1000-fold difference in the effectiveness of recombination is likely to 

more than compensate for the fact that humans have ~20-fold greater genome size, and a 

higher rate of deleterious mutation (2.1 in humans (Lesecque et al. 2012) to 1.2 in Drosophila 

(Haag-Liautard et al. 2007) respectively). 

 

Gene age 

Cai and Petrov (2010) found that older genes exhibit a lower rate of protein evolution (as 

measured by the Ka/Ks ratio) than younger genes. The authors demonstrated that this was at 

least in part due to stronger purifying selection acting on older genes than on younger ones, by 

showing that levels of non-synonymous to synonymous polymorphism were lower in older 

genes. Our findings corroborate these results, with the strong negative correlation between ωna 

and gene age showing that older genes are under a lower rate of protein evolution than younger 

genes. However, we also find a significant negative correlation between gene age and the rate 

of adaptive evolution, ωa, whilst Cai and Petrov found no such correlation. There are two 

potential causes of this discrepancy. Firstly, for this analysis Cai and Petrov group genes by 

their age based on lineage specificity (LS), that is, how specifically a gene and orthologs of a 

gene are distributed on a given phylogeny (Cai et al. 2006), whilst we group our genes by 

phylostratigraphic category (PL), that is, where genes are ranked by phylostratigraphic category 

based on their earliest ortholog (Domazet-Loso et al. 2007). Each method has its limitations. 

Because the LS method relies on the phylogenetic profiles of individual genes, Cai and Petrov 

removed genes with patchy distributions (Cai et al. 2006), resulting in 10,032 of 20,150 genes 

being removed from the dataset for having irregular phylogenetic profiles. The PL method relies 

on parsimony and assumes that a gene family can be lost, but cannot re-evolve in different 

lineages (Domazet-Loso et al. 2007), meaning that those genes that would be removed using 
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the LS method are maintained in the PL method. By using the PL method, our dataset 

contained 15,439 grouped into 19 phylostratigraphic bins. Secondly, Cai and Petrov obtained 

divergence and polymorphism data from the compiled Applera dataset (Bustamante et al. 2005; 

Lohmueller, et al., 2008) of 39 humans (19 African Americans and 20 European Americans), 

whilst we have used data from the 661 African samples within the 1000 genomes dataset (The 

1000 Genomes Project Consortium, 2015). Notably, the African population has undergone a 

more stable demographic history than Europeans, who carry proportionally more deleterious 

genetic variation, which Lohmueller et al (2008) ascribe to the bottleneck encountered by the 

Eurasian population at the time of the migration out of Africa. This higher proportion of 

segregating deleterious alleles will inevitably affect estimates of the rate of adaptive evolution, 

but not the ratio of non-synonymous and synonymous substitution rates (the latter of which 

yields a strong correlation with gene age using both the PL and LS methods in Cai and Petrov’s 

study). 

 

The effect of population contraction 

It has been shown previously that the MK test can generate artifactual evidence of adaptive 

evolution if some nonsynonymous mutations are slightly deleterious and the population in 

question has undergone recent expansion, because selection is more effective during the 

polymorphism phase than during the divergence phase (McDonald & Kreitman, 1991; Eyre-

Walker, 2002). Although, the effective population size in humans has increased recently, the 

effective population size is considerably reduced from that in the human-chimpanzee ancestor 

(Hobolth et al. 2007; Burgess and Yang 2008; Prado-Martinez et al. 2013; Schrago, 2014). This 

population contraction can depress the signal of adaptive evolution in humans. Furthermore, we 

will show elsewhere that if a factor, for example gene age, is correlated to the mean strength of 
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selection against deleterious mutations, population size change will generate an artifactual 

correlation between that factor and the rate of adaptive evolution. The direction of this 

correlation depends on the direction of the correlation between the mean strength of selection 

acting against deleterious mutations and the factor in question and whether the population has 

expanded or contracted; for example, if factor X is positively correlated to the mean strength of 

selection (i.e. selection is stronger against genes with larger values of X), then population 

contraction will induce an artifactual positive correlation between ωa and X.  

Figure 3 shows that all four factors are positively correlated to the log mean strength of selection 

against deleterious mutations, estimated from the site frequency spectrum (gene age: r=0.916, 

p<0.001; RR: r=0.828, p<0.001; gene length: r=0.818, p<0.001; gene expression: r=0.948, 

p<0.001). Population contraction undergone by humans should therefore tend to induce a 

positive correlation between ωa and each factor in our analysis. This artifactual positive 

correlation is contrary to the negative correlation that we observe between ωa and age (Figure 

1). This may be one reason why we observe a weaker correlation between gene age and the 

rate of adaptive evolution in hominids compared with Drosophila and Arabidopsis species 

(Moutinho et al. unpublished).  However, population contraction might also be responsible for 

the positive correlation between ωa, RR, protein length and expression. Because ωna is 

estimated exclusively from polymorphism phase data, we do not expect the correlations 

between ωna and our four factors to be affected by the population contraction. 
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Figure 3: Correlation between the log of the mean strength of selection against deleterious 

mutations and gene age (top left), RR (top right), gene length (bottom left), gene expression 

(bottom right). A linear regression has been fitted to each dataset.  

 

In summary, we observe a significant correlation between the rate of adaptive evolution, RR, 

protein length and gene expression, and a negative correlation between the rate of adaptive 

evolution and gene age. However, we cannot be very confident that any of these correlations 

are genuine; the positive correlation between ωa, RR, protein length and gene expression might 

be due to an artifact of population size contraction, and the correlation between ωa and age 

might be due to the problems of identifying rapidly evolving genes, with high values of ωa, in 
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more distant taxa. In contrast, the rate of non-adaptive evolution is independently negatively 

correlated to all factors. We have confirmed that whether a protein interacts with viruses is an 

important factor in determining whether a gene undergoes high rates of adaptive and non-

adaptive evolution, however we also demonstrate that there is significant variation between GO 

categrories, even when this factor is controlled for.  
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Materials and methods 

Data 

We obtained orthologous human and chimpanzee gene sequences from the Ensembl biomart 

(Yates et al. 2019) for the human GRCh38 and Pan_tro_3.0 genome builds. We aligned these 

orthologs using MUSCLE (Edgar, 2004). After filtering out genes with gaps that were not a 

multiple of 3 we were left with 16,344 pairwise alignments. Proportions of synonymous and non-

synonymous substitutions were estimated using codeml from the PAML package (Yang, 2007) 

program. We used polymorphism data from the African superpopulation of the 1000 genomes 

dataset (The 1000 Genomes Consortium, 2015) to construct our site frequency spectra, with 

rates of adaptive (ωa) and non-adaptive (ωna) evolution estimated using Grapes (Galtier, 2016), 

under the “GammaZero” model. We used African SNPs because the African population has 

been subject to relatively simple demographic processes (Gravel et al. 2011). Confidence 

intervals on our estimates of ωa and ωna were generated by bootstrapping the dataset by gene. 

Gene ages were obtained from Litman and Stein (2019). In this dataset genes are ranked by 

phylostratigraphic category based on their earliest ortholog. Gene lengths were obtained by 

taking the total coding sequence length of the longest transcript of each protein, whilst gene 

expression data was obtained from the Expression Atlas database (Papatheodorou et al. 2019), 

wherein the baseline experiment E-MTAB-5214 was used. This data is from the GTEx 

genotype-tissue expression analysis of 53 tissue samples (GTEx Consortium, 2015). We 

estimated the arithmetic mean expression value across tissues for each gene, and binned gene 

by mean gene expression of 20 roughly equally sized bins (each containing 808-811 genes). 

Recombination rate maps were obtained from Spence and Song (2019), and the mean 

recombination rate was calculated between the start and end of the largest transcript for each 

gene. GO category information was obtained from Ensembl’s Biomart (Ashburner et al. 2000; 

The Gene Ontology Consortium, 2021; Yates et al. 2019). 
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Correlating factors with rates of adaptive and non-adaptive evolution 

To correlate the rates of adaptive and non-adaptive evolution with each of recombination rate, 

protein length and gene expression we binned our genes into 20 roughly equal sized bins. For 

gene age we binned data by phylostratigraphic category, of which there were 19. To control for 

biased gene conversion in our recombination rate analysis we restricted the analysis to those 

polymorphisms and substitutions that are unaffected by biased gene conversion – i.e. A<>T and 

G<>C changes. This reduced our dataset to about 20% of its previous size. 

To investigate whether factors were independently correlated to ωa and ωna we ran the analysis 

controlling for each of the other three factors in turn.  We controlled for each factor by taking the 

values of the co-correlate close to the modal value. We took the modal value and 0.5 standard 

deviations either side which reduces the standard deviation of the co-correlate within each 

analysis. Because this reduces the data set considerably, we also ran an analysis in which we 

predicted the correlation coefficient between Y and X under the assumption that they are only 

correlated to each other because they are both correlated to Z. If rYZ is the correlation between 

Y and Z, then rYZ
2 is the proportion of variance in Y explained by Z, and vice versa. Hence, the 

proportion of variance explained in Y by X, because of their mutual correlation to Z is rYZ
2 rXZ

2. 

Hence the expected correlation coefficient between Y and X is 𝑟𝑌𝑋 = 𝑆𝑖𝑔𝑛 √𝑟𝑌𝑍
2 + 𝑟𝑋𝑍

2 , where 

Sign is positive if both rYZ and rXZ are positive or negative, and negative otherwise. To assess 

significance, we grouped genes according to X variable, and then within each group we 

generated a bootstrap dataset. We estimated ωa, ωna, the mean value of X and Z for each group 

and the observed and predicted correlations between ωa, ωna, mean X and mean Z. We 

tabulated the number of bootstrap replicates in which predicted rYX /observed rYX > 1. We 

performed 100 bootstrap replicates for each analysis. 

Gene function analysis 
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Genes were divided by GO category and rates of adaptive and non-adaptive evolution were 

estimated for each category (note genes can contribute to multiple categories). For the VIP 

analysis we split each GO category into two groups – VIP and non-VIP genes, as per (Enard et 

al. 2016). To test whether there was significant variation in ωa and ωna across GO categories we 

shuffled data between gene labels; i.e. for each gene we have its synonymous and non-

synonymous site frequency spectra and numbers of synonymous and non-synonymous 

substitutions. This data was randomly assigned to gene labels, hence preserving the covariance 

structure of the data - i.e. the fact that a gene can contribute to multiple GO categories. This 

shuffling was performed 100 times, each time recalculating ωa and ωna. 

We are interested in the extent to which the rate of adaptive and non-adaptive evolution is 

determined by whether it is a VIP gene versus other GO categorisations. We can quantify this 

by partitioning the variance in a two-way analysis of variance where the dimensions are 

VIP/non-VIP, and GO category. However, to estimate the variances we need to balance the 

data so that the error variance is the same for all cells in the two-way ANOVA. We did this by 

downsampling the data using a hypergeometric distribution, such that each cell had 200,000 

combined non-synonymous and synonymous sites. To estimate the error variance we split the 

SFS and substitution data into two halves using a hypergeometric distribution and estimated ωa 

and ωna for each set; hence we have for each combination of VIP/non-VIP and GO category two 

estimates of the rate of adaptive and non-adaptive evolution, where the error variances for 

these estimates should be approximately equal. 
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