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ABSTRACT 39 

No phenotypic trait evolves independently of all other traits, but the cause of trait-trait 40 

coevolution is poorly understood.  While the coevolution could arise simply from pleiotropic 41 

mutations that simultaneously affect the traits concerned, it could also result from multivariate 42 

natural selection favoring certain trait relationships.  To gain a general mechanistic 43 

understanding of trait-trait coevolution, we examine the evolution of 220 cell morphology traits 44 

across 16 natural strains of the yeast Saccharomyces cerevisiae and the evolution of 24 wing 45 

morphology traits across 110 fly species of the family Drosophilidae, along with the variations of 46 

these traits among gene deletion or mutation accumulation lines (a.k.a. mutants).  For numerous 47 

trait pairs, the phenotypic correlation among evolutionary lineages differs significantly from that 48 

among mutants.  Specifically, we find hundreds of cases where the evolutionary correlation 49 

between traits is strengthened or reversed relative to the mutational correlation, which, according 50 

to our population genetic simulation, is likely caused by multivariate selection.  Furthermore, we 51 

detect selection for enhanced modularity of the yeast traits analyzed.  Together, these results 52 

demonstrate that trait-trait coevolution is shaped by natural selection and suggest that the 53 

pleiotropic structure of mutation is not optimal.  Because the morphological traits analyzed here 54 

are chosen largely because of their measurability, our conclusion is likely general. 55 

  56 
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INTRODUCTION 57 

Many phenotypic traits covary during evolution.  For example, the logarithm of brain 58 

weight and that of body weight show a nearly perfect linear relationship across mammals 59 

(Gould, 1966; Huxley, 1972; Lande, 1979).  In theory, three processes may explain such trait-60 

trait coevolution.  First, it could arise simply from pleiotropic mutations that simultaneously 61 

influence these traits with a more or less constant ratio of effects (Lande, 1980; G. P. Wagner, 62 

1989; G. P. Wagner & Zhang, 2011).  Second, trait covariation could arise from the linkage 63 

disequilibrium between genes controlling these traits (Gardner & Latta, 2007; Lande, 2007; 64 

Saltz, Hessel, & Kelly, 2017; G. P. Wagner & Zhang, 2011), but such trait covariation is 65 

expected to be restricted to closely related individuals due to the deterioration of linkage 66 

disequilibrium as a result of recombination.  If the linkage disequilibrium is stably maintained 67 

due to, for example, chromosomal inversion, the involved linked genes can be regarded as a 68 

supergene with mutational pleiotropy (Saltz et al., 2017).  For this reason, linkage disequilibrium 69 

is negligible except for trait covariation among closely related individuals.  Third, trait 70 

covariation could be a result of natural selection for particular trait relationships that are 71 

advantageous (Bolstad et al., 2015; Lande, 1979; Roff, Mostowy, & Fairbairn, 2002; Shoval et 72 

al., 2012; Sinervo & Svensson, 2002; Svensson et al., 2021). 73 

Despite a long-standing interest in trait correlation in evolution (Lande, 1979; Saltz et al., 74 

2017; G. P. Wagner & Altenberg, 1996), which is also referred to as phenotypic integration in 75 

the literature (Olson & Miller, 1999; Pigliucci, 2003), our understanding of the roles of mutation 76 

and selection in trait-trait coevolution remains limited.  Most studies on the subject focused on a 77 

small number of traits that are physiologically or ecologically important (Kingsolver et al., 78 

2001), such as skull anatomy characters (Fabre et al., 2020; Goswami, Smaers, Soligo, & Polly, 79 

2014; Navalon, Marugan-Lobon, Bright, Cooney, & Rayfield, 2020; Porto et al., 2015; Simon, 80 

Machado, & Marroig, 2016; Watanabe et al., 2019), behavioral syndrome (i.e., sets of correlated 81 

behavioral traits) (Dochtermann & Dingemanse, 2013; Sih, Bell, & Johnson, 2004), and 82 

ecological or organismal traits correlated with the metabolic rate (Brown, Gillooly, Allen, 83 

Savage, & West, 2004; Glazier, 2010; Martin, 1981; Pettersen, White, & Marshall, 2016; White 84 

et al., 2019); hence, they may not provide a general, unbiased picture of trait-trait coevolution.  85 

Additionally, it is the trait correlation resulting from standing genetic variation and its effect on 86 

adaptation that have received the most attention (Agrawal & Stinchcombe, 2009; Arnold, 87 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442737
http://creativecommons.org/licenses/by/4.0/


4 
 

Burger, Hohenlohe, Ajie, & Jones, 2008; Blows & Mcguigan, 2015; Schluter, 1996; Steppan, 88 

Phillips, & Houle, 2002; Walsh & Blows, 2009; Walter, Aguirre, Blows, & Ortiz-Barrientos, 89 

2018).  But, because standing genetic variation could have been influenced by selection, the 90 

resulting trait correlation may not inform the correlation produced by mutation.  Not knowing the 91 

mutational correlation hinders a full understanding of the contribution of selection.  92 

Related to trait-trait correlation is the concept of modularity.  It has been hypothesized 93 

that it is beneficial for organisms to have a modular organization such that functionally related 94 

traits belonging to the same module covary (Goswami et al., 2014; G. P. Wagner, 1999; G. P. 95 

Wagner & Altenberg, 1996; G. P. Wagner, Pavlicev, & Cheverud, 2007).  Although modularity 96 

is a well-recognized feature of many trait correlation networks, the relative contribution of 97 

selection and mutational pleiotropy to modularity has not been assessed at the phenome scale (G. 98 

P. Wagner et al., 2007; Wang, Liao, & Zhang, 2010).  99 

To gain a general mechanistic understanding of trait-trait coevolution, we study the 100 

phenotypic correlations for a large number of trait pairs at the levels of mutation and long-term 101 

evolution; natural selection is inferred when the evolutionary correlation between traits cannot be 102 

fully explained by the mutational correlation.  Our primary data include 220 cell morphology 103 

traits of the budding yeast Saccharomyces cerevisiae that have been measured in 4817 single-104 

gene deletion lines (Ohya et al., 2005), 89 mutation accumulation (MA) lines (for a subset of 187 105 

traits) (Geiler-Samerotte, Zhu, Goulet, Hall, & Siegal, 2016), and 16 natural strains with clear 106 

phylogenetic relationships (Ohya et al., 2005; Yvert et al., 2013).  These traits were quantified 107 

from fluorescent microscopic images of triple-stained cells and were originally chosen for study 108 

because of their measurability regardless of potential roles in evolution and adaptation (Ohya et 109 

al., 2005).  Subsequent studies found that these traits are correlated with the yeast mitotic growth 110 

rate to varying extents (Ho & Zhang, 2014).  Hence, these traits may be considered 111 

representatives of phenotypic traits that have different contributions to fitness.  Previous analyses 112 

of these traits among natural strains unveiled signals of positive selection on individual traits 113 

(Ho, Ohya, & Zhang, 2017), but their potential coevolution has not been studied.  While studying 114 

these trait pairs can offer a general picture of trait-trait coevolution, we recognize that the 115 

selection agent would be hard to identify should selection be detected because the biological 116 

functions of these traits (other than correlations with the growth rate) are generally unknown (Ho 117 

et al., 2017).  To verify the generality of the findings from the yeast traits, we analyze another 118 
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dataset that includes 12 landmark vein intersections on the fly wings that have been measured in 119 

150 MA lines of Drosophila melanogaster (Houle & Fierst, 2013) and 110 Drosophilid species 120 

(Houle, Bolstad, van der Linde, & Hansen, 2017).  Because each intersection is described by two 121 

coordinates, which are counted as two traits, there are 24 traits in this dataset.  In both datasets, 122 

we discover that the evolutionary correlation differs significantly from the mutational correlation 123 

for numerous trait pairs, revealing a role of natural selection in trait-trait coevolution.  We also 124 

provide evidence for selection for enhanced modularity of the yeast traits.  125 

    126 

RESULTS 127 

Evolutionary correlations differ from mutational correlations for many trait pairs 128 

To investigate if trait correlations in evolution can be fully accounted for by the 129 

correlations generated by mutation, we examined all pairs of the 220 yeast cell morphology traits 130 

previously measured.  For each pair of traits, we computed the mutational correlation CORM, 131 

defined as Pearson’s correlation coefficient across 4,817 gene deletion lines (upper triangle in 132 

Fig. 1A, Data S1), and evolutionary correlation CORE, defined as Pearson’s correlation 133 

coefficient across 16 natural strains (lower triangle in Fig. 1A, Data S1) with their phylogenetic 134 

relationships (Fig. S1) taken into account (see Materials and Methods).  Note that the original 135 

data contained 37 natural strains (Yvert et al., 2013), of which 21 belong to the “mosaic” group 136 

(Liti et al., 2009; Peter et al., 2018)—their phylogenetic relationships with other S. cereviase 137 

strains vary among genomic regions—so cannot be included in our analysis that requires 138 

considering phylogenetic relationships (Mendes, Fuentes-Gonzalez, Schraiber, & Hahn, 2018).  139 

For each pair of traits, a neutral distribution of CORE was generated by simulating 1,000 times 140 

the neutral evolution of the traits under a multivariate Brownian motion model with the observed 141 

mutational (co)variance matrix M used as the mutational input, because, under neutrality, the 142 

expected evolutionary divergence along a dimension in the phenotypic space is proportional of 143 

the mutational variance along that dimension (Hohenlohe & Arnold, 2008; Lande, 1979; Lynch 144 

& Hill, 1986).  A significant difference from CORM (P < 0.05) was inferred when the observed 145 

CORE falls in the left or right 2.5% tail of the null distribution of CORE.  Note that the above test 146 

has two limitations.  First, it assumes that M is invariant among the natural strains examined such 147 

that a significant difference between CORE and CORM is caused by selection in trait-trait 148 

coevolution instead of M evolution.  Second, our test cannot detect strain-specific selection on 149 
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trait correlation, because CORE captures only the common pattern of trait correlation across the 150 

natural strains examined.  Before conducting the test, we confirmed that the sampling error of 151 

our estimated M is negligible, likely because of the large number of mutants used in M 152 

estimation (Table S1; see Materials and Methods). 153 

We found that the frequency distribution of 𝐶𝑂𝑅  across all trait pairs differs 154 

significantly from that of 𝐶𝑂𝑅  (Fig. S2A), suggesting the action of selection.  Of the 24,090 155 

trait pairs examined, 1,215 pairs (or 5.04%) showed a significantly different CORE when 156 

compared with its neutral expectation from CORM, at the false discovery rate (FDR) of 5% 157 

(Table 1, Data S1), indicating that natural selection has shaped the coevolution of many trait 158 

pairs.  To investigate whether the above result is biased because of the use of each trait in many 159 

trait pairs, we randomly arranged the 220 traits into 110 non-overlapping pairs and counted the 160 

number of pairs with CORE significantly different from CORM.  This was repeated 1,000 times to 161 

yield 1000 estimates of the proportion of trait pairs with significantly different CORE and CORM.  162 

The middle 95% of these estimates ranged from 1.82% to 9.09%, with the median estimate being 163 

4.55%.  Hence, there is no indication that using overlapping trait pairs has biased the estimate of 164 

the fraction of trait pairs with significantly different CORE and CORM.    165 

We divided the 1,215 cases of significantly different CORE and CORM into three 166 

categories.  In the first category, the trait correlation generated by mutation is strengthened by 167 

natural selection during evolution.  A total of 393 trait pairs are considered to belong to this 168 

“strengthened” category (Table 1) because they satisfy the following criteria: CORE and CORM 169 

have the same sign and |𝐶𝑂𝑅 | |𝐶𝑂𝑅 |, or CORE and CORM have different signs but only 170 

CORE is significantly different from 0 (at the nominal P-value of 0.05) (Fig. 1B).  In the second 171 

category, the trait correlation generated by mutation is weakened by natural selection during 172 

evolution.  One hundred and forty-five trait pairs satisfying the following criteria are classified 173 

into this “weakened” category (Table 1): CORE and CORM have the same sign and |𝐶𝑂𝑅 |174 

|𝐶𝑂𝑅 |, or CORE and CORM have different signs but only CORM is significantly different from 175 

0 (Fig. 1C).  In the last category, the trait correlation generated by mutation is reversed in sign 176 

by natural selection during evolution.  Six hundred and seventy-seven trait pairs satisfying the 177 

following criteria are in this “reversed” category (Table 1): CORE and CORM have different 178 

signs and are both significantly different from 0 (Fig. 1D). 179 
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To assess the robustness of the selection signals detected, we repeated the above analysis 180 

using CORM estimated from 89 mutation accumulation (MA) lines (Geiler-Samerotte et al., 181 

2016) (Fig. S3A, Data S1).  Again, the overall frequency distribution across all trait pairs differs 182 

significantly between 𝐶𝑂𝑅  and 𝐶𝑂𝑅  (Fig. S2B).  We found that 1,718 trait pairs exhibit a 183 

significantly different CORE from its neutral expectation (Table 1, Data S1), supporting a role of 184 

selection in the coevolution of many trait pairs.  When comparing the analysis using CORM from 185 

gene deletion lines and that using CORM from MA lines, we found 429 trait pairs to exhibit 186 

selection signals and fall into the same category in both analyses, including 85 pairs in the 187 

“strengthened” category, 18 pairs in the “weakened” category, and 326 pairs in the “reversed” 188 

category.  All of these numbers substantially exceed the corresponding expected random 189 

overlaps (3.4, 0.1, and 54.9, respectively; P < 0.001 based on 1000 random draws in each case), 190 

suggesting the reliability of both analyses.  Although mutations in MA lines are more natural 191 

than those in gene deletion lines, the number of MA lines is much smaller than the number of 192 

gene deletion lines and only 187 of the original 220 traits were measured in the MA lines.  For 193 

these reasons, we focused on the CORM estimated from the gene deletion lines in subsequent 194 

analyses.  195 

To examine the generality of the above yeast-based findings, we analyzed the 24 wing 196 

morphology traits of Drosophilid flies.  The CORM and CORE have been previously estimated 197 

from 150 MA lines (Houle & Fierst, 2013) and 110 Drosophilid fly species (Houle et al., 2017), 198 

respectively (Fig. S3B, Data S1).  The overall frequency distribution across all trait pairs differs 199 

significantly between 𝐶𝑂𝑅  and 𝐶𝑂𝑅  (Fig. S2C).  Of the 276 pairs of traits, 152 showed a 200 

significantly different CORE from its neutral expectation generated by simulating neutral 201 

evolution with the estimated CORM (Table 1, Data S1), suggesting widespread actions of 202 

selection in the coevolution of fly wing morphology traits.  203 

Together, these results demonstrate that, for many trait pairs, mutational and evolutionary 204 

correlations between morphological traits are more different than expected under neutrality.  205 

This observation suggests an important role of selection in shaping the strength and/or direction 206 

of trait correlation in evolution. 207 

 208 

Effects of different selection regimes on trait-trait coevolution 209 
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The strengthened, weakened, and reversed trait correlations in evolution may have 210 

resulted from different selection regimes.  Below we consider various selection regimes that 211 

could potentially explain these types of difference between CORM and CORE (Fig. 2).  First, 212 

when a specific allometric relationship between two traits is selectively favored, the population 213 

mean trait values are expected to be concentrated near the fitness ridge or the optimal allometric 214 

line, resulting in a strong evolutionary correlation between the traits (i.e., a high |𝐶𝑂𝑅 |) (Fig. 215 

2A).  Unless CORM is already similar to CORE, we expect to see strengthened or reversed CORE 216 

depending on CORM.  Second, if there is a single fitness peak for an optimal combination of trait 217 

values and if there is sufficiently strong stabilizing selection on the optimal phenotype, the 218 

population mean phenotype should be restricted within a small range of the optimal phenotype in 219 

all directions in the phenotypic space regardless of the mutational variance.  Consequently, 220 

𝐶𝑂𝑅  is expected to be close to 0, which could account for a weakened evolutionary correlation 221 

relative to the mutational correlation (Fig. 2B).  Finally, if the fitness optimum varies across 222 

lineages in a random fashion, the steady-state 𝐶𝑂𝑅  will be close to zero, potentially leading to 223 

the weakening of the evolutionary correlation relative to the mutational correlation (Fig. 2C). 224 

To verify these predictions, we simulated the evolution of two traits.  Under each 225 

parameter set, we simulated 50 independent replicate lineages and computed the correlation 226 

coefficient, or CORE, between the traits across the replicate lineages at the end of the simulated 227 

evolution.  This was repeated 200 times to obtain an empirical distribution of CORE.  To evaluate 228 

the difference between CORM and CORE, we examined the location of CORM in the distribution 229 

of CORE; a significant (P < 0.05) difference is inferred if CORM is in the left or right 2.5% tail of 230 

the CORE distribution. 231 

As expected, in the absence of selection, the distribution of CORE is centered around 232 

CORM (first block in Table 2).  When a specific allometric relationship is selectively favored, a 233 

high |CORE| always emerges regardless of the CORM used, resulting in either strengthened or 234 

reversed evolutionary correlations (P < 0.005 for all parameter sets examined; the second to fifth 235 

blocks in Table 2).  By contrast, stabilizing selection of an optimal phenotype leads to weakened 236 

correlation across replicate lineages when |𝐶𝑂𝑅 | is not small (sixth block in Table 2).  Finally, 237 

when different lineages have different phenotypic optima that are randomly picked from the 238 

standard bivariate normal distribution, weakened evolutionary correlations are generally 239 

observed except when CORM is close to zero (bottom block in Table 2).  These results suggest 240 
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that the strengthened and reversed evolutionary correlations of yeast and fly morphological traits 241 

are likely caused by selections of allometric relationships, while the weakened correlations are 242 

likely caused by selections of individual traits either when there is a single optimal phenotype or 243 

when the optimal phenotype randomly varies among lineages.  244 

 245 

Selection for enhanced modularity of yeast morphological traits 246 

While all of the above analyses focused on individual trait pairs, here we ask whether the 247 

overall trait correlation across divergent lineages is stronger or weaker than that created by 248 

mutation.  As a measure of the overall level of trait correlation (i.e., overall integration), we 249 

calculated the variance of eigenvalues (Veigen) of the correlation matrix from divergent lineages 250 

and mutants, respectively.  A greater Veigen corresponds to a stronger overall correlation between 251 

traits because the eigenvalues become less evenly distributed as the absolute values of the 252 

correlation coefficients become larger (Pavlicev, Cheverud, & Wagner, 2009).  However, the 253 

sample size (i.e., the number of strains) in the estimation of the correlation matrix also has an 254 

effect on Veigen; a matrix estimated from a smaller sample naturally tends to have fewer positive 255 

eigenvalues and greater Veigen.  To control this factor, we used 1,000 control datasets generated 256 

by simulating neutral evolution to derive an empirical null distribution of Veigen and examined the 257 

location of the observed Veigen in this distribution (see Materials and Methods).   258 

For the yeast traits, Veigen of the observed evolutionary correlation matrix exceeds that in 259 

90.8% of simulated datasets (P = 0.184 in a two-tailed test; Table 3), meaning that the overall 260 

evolutionary correlation between traits is not significantly different from the overall mutational 261 

correlation.  For the fly traits, Veigen of the evolutionary correlation matrix exceeds that in 99% of 262 

simulated datasets (P = 0.02 in a two-tailed test; Table 3), suggesting that the overall 263 

evolutionary correlation between traits is stronger than the overall mutational correlation.  We 264 

also compared the overall integration between yeast and flies using Veigen/(n-1), where n is the 265 

number of traits examined.  Veigen/(n-1) equals 0.204 and 0.268 for the yeast mutational and 266 

evolutionary matrices, respectively, whereas the corresponding values in flies are 0.153 and 267 

0.190, respectively.  Hence, the overall integration is substantially lower in flies than in yeast for 268 

both mutational and evolutionary matrices.  269 

In addition to the overall level of trait correlation, we also asked whether the correlational 270 

structure of traits exhibit different levels of modularity among divergent lineages when compared 271 
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with that among mutants.  To this end, we used a covariance ratio (CR) test (Adams, 2016) that 272 

compares covariance within and between pre-defined modules (see Materials and Methods).  273 

Specifically, we calculated CR for the evolutionary covariance matrix and compared it to the CR 274 

distribution based on 1,000 covariance matrices generated through simulations of neutral 275 

evolution.  We treated the three non-overlapping categories of the yeast traits—actin traits, 276 

nucleus traits, and cell wall traits (Ohya et al., 2005)—as three modules (Data S1).  We found 277 

that the CR of the evolutionary covariance matrix exceeded that of every control dataset (P < 278 

0.001; Table 3), suggesting natural selection for increased modularity in evolution.  Consistent 279 

with this result is the observation that trait pairs with significantly strengthened CORE are 280 

enriched within modules (P = 0.036, randomization test), and this enrichment is particularly 281 

strong for the nucleus module (P < 0.001, randomization test).  We did not analyze the fly data 282 

here because of the unknown modular structure of this relatively small set of traits that are all 283 

about the wing shape. 284 

 285 

DISCUSSION 286 

By comparing the trait-trait correlation across mutants (CORM) with that across divergent 287 

lineages (CORE) for 24,090 pairs of yeast cell morphology traits and 276 pairs of fly wing 288 

morphology traits, we detected the action of natural selection in trait-trait coevolution.  The 289 

fraction of trait pairs showing evidence for selection is substantially higher in the fly (55.07%) 290 

than yeast (5.04%) data (P < 10-4, chi-squared test).  This is at least in part caused by a difference 291 

in statistical power, because the number of strains/species used for estimating CORE is much 292 

greater for the fly (110) than yeast (16) data.  It is likely that a much higher fraction than 5% of 293 

the yeast trait pairs are subject to selection in their coevolution.  Furthermore, as mentioned, our 294 

comparison between CORE and CORM intends to test selection on trait correlations common 295 

among the evolutionary lineages considered.  If different evolutionary lineages have different 296 

trait correlations, the CORE estimated from all lineages may not be significantly different from 297 

CORM even when selection occurs in some or all of the lineages.  In other words, our test is 298 

expected to underestimate the proportion of trait pairs subject to selection.  In our test, a null 299 

distribution of CORE under neutrality was generated by simulating a Brownian motion with the 300 

observed M matrix used as mutational input.  Although it is theoretically possible for non-neutral 301 

evolution to behave like a Brownian motion, this should not impact our test because it is 302 
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extremely unlikely for the non-neutral Brownian motion to follow M.  Even under this unlikely 303 

scenario, a significant difference between CORE and CORM still signals selection while an 304 

equality between CORE and CORM may not prove neutrality.  In other words, the potential non-305 

neutral Brownian motion at most renders our test more conservative. 306 

We demonstrated by population genetic simulation that various selection regimes can 307 

explain differences between CORM and CORE.  In particular, strengthened or reversed CORE 308 

relative to CORM can occur when a specific allometric relationship is preferred, while weakened 309 

CORE can occur under directional or stabilizing selection of individual traits.  A notable 310 

difference between the simulation results and empirical observations is that the simulations tend 311 

to end up with extreme values of |𝐶𝑂𝑅 | (i.e., close to either 1 or 0) except in the case of 312 

neutrality, whereas the empirically observed |𝐶𝑂𝑅 | is usually less extreme even when CORM 313 

and CORE are significantly different.  This is due to the fact that the simulation results usually 314 

represent steady-state correlations across lineages.  That is, the mean phenotype of each lineage 315 

is at or near the corresponding optimum (if any); consequently, |𝐶𝑂𝑅 | is close to 1 when the 316 

optimum is a line and close to 0 when the optimum is a single combination of two trait values.  317 

However, the population mean phenotypes may not be close to their optima in some strains 318 

because of recent changes of the optima or the sparsity of mutations toward the optima, the latter 319 

of which is well known as a potential hindrance to adaptation (Agrawal & Stinchcombe, 2009; 320 

Blows & Mcguigan, 2015; Hansen & Houle, 2008; Schluter, 1996).  Another possibility is the 321 

existence of a wide range of preferred allometry such that there is no strong selection for extreme 322 

|𝐶𝑂𝑅 |.  Finally, selection may not result in the preferred allometry between two traits because 323 

of the constraints from unconsidered traits (Houle, Jones, Fortune, & Sztepanacz, 2019).    324 

While selection was detected for many trait pairs, a large fraction of trait pairs, especially 325 

in the yeast data, do not show a significant difference between CORE and CORM.  These trait 326 

pairs may be divided into two groups.  In the first group, CORE and CORM are actually different, 327 

but the difference is not found significant due to the limited statistical power.  As mentioned, we 328 

believe that a substantial fraction of yeast trait pairs fit this category due to the relatively low 329 

statistical power for detecting the difference between CORE and CORM in the yeast data.  In the 330 

second group, CORE truly equals CORM, which could result from one of the following three 331 

scenarios.  First, the specific trait-trait correlation does not impact fitness so evolves neutrally.  332 

Second, the two traits have an intrinsic, immutable relationship (such as the hypothetical traits of 333 
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body size and twice the body size), so will yield equal CORE and CORM; this possibility can be 334 

tested by examining the correlation of the two traits across isogenic individuals that show non-335 

heritable phenotypic variations (Geiler-Samerotte et al., 2020).  The last and perhaps the most 336 

interesting scenario is that the trait-trait correlation impacts fitness and hence has driven the 337 

optimization of CORM via a second-order selection (Hansen & Houle, 2008; Ho & Zhang, 2014; 338 

A. Wagner, 2005), such that the first-order selection of mutations that affect the two traits is no 339 

longer needed.  However, the relative frequencies of these three scenarios are unknown.   340 

In addition to pairwise trait correlations, we tested hypotheses regarding the evolution of 341 

overall phenotypic integration and modularity.  In the yeast data, we observed a higher 342 

modularity across natural strains than across mutants but did not find evidence for a change of 343 

overall phenotypic integration in evolution.  These results support the view of increasing 344 

modularity during evolution (Clune, Mouret, & Lipson, 2013; Goswami et al., 2014; G. P. 345 

Wagner, 1999; G. P. Wagner & Altenberg, 1996; G. P. Wagner et al., 2007) but also suggest that 346 

modularity is enhanced by both strengthening trait-trait correlations within modules and 347 

weakening trait-trait correlations across modules.  As mentioned, we indeed observed an 348 

enrichment of strengthened CORE relative to CORM within modules.  However, no enrichment of 349 

weakened CORE between modules was detected, which may be because |CORM| between 350 

modules is already quite small, making a further reduction in correlation relatively difficult to 351 

detect statistically.  In the fly data, we found evidence that natural selection has strengthened 352 

overall morphological integration, contrasting the hypothesis of a reduced integration over time 353 

(Goswami et al., 2014).  One possible explanation is that the fly traits studied here are all 354 

characters of the same organ (wing) and their evolution does not represent that of the whole 355 

phenome but only one module.  Another possibility is that the yeast cell morphology traits are 356 

not comparable with the fly wing morphology traits if they belong to different levels of 357 

biological organization (Zhang, 2018).  However, for unicellular organisms like yeast, cellular 358 

traits are also organismal traits, so there is no strong evidence that these two sets of traits are not 359 

comparable.  We did, however, found the overall integration lower for the fly than yeast traits, 360 

but whether this observation indicates a lower integration for multicellular than unicellular 361 

organisms requires analyzing more species and traits.  362 

In this study, we compared CORM estimated from one yeast strain (BY) with CORE 363 

estimated from 16 different strains, under the assumption of a constant CORM across different 364 
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strains.  While it is a common practice to assume that the mutational architecture is more or less 365 

constant during evolution and to study phenotypic evolution by comparing mutational or genetic 366 

(co)variances in one species with those among different species (Ackermann & Cheverud, 2004; 367 

Houle et al., 2017; Lynch, 1990), genetic variations affecting the genetic (co)variances of 368 

phenotypic traits have been reported (Jerison et al., 2017; Jones, Burger, & Arnold, 2014; 369 

Pavlicev et al., 2008).  As discussed earlier, such genetic variations may allow second-order 370 

selection of CORM.  For instance, it has been hypothesized that the optimization of mutational 371 

(co)variances driven by selection for mutational robustness and/or adaptability can lead to 372 

modularity (G. P. Wagner & Altenberg, 1996; G. P. Wagner et al., 2007), but this process 373 

presumably takes a much longer time than is relevant to the present study.  Even without second-374 

order selection, CORM may still vary across strains merely because the pleiotropic effects of a 375 

mutation may vary with the genetic background (Pavlicev & Cheverud, 2015; Svensson et al., 376 

2021).  Regardless, in the future, it would be desirable to measure mutant phenotypes from 377 

multiple lineages to investigate whether CORM evolves, how rapidly it evolves, and whether its 378 

evolution is largely neutral or adaptive.  379 

In summary, we detected the action of natural selection in shaping trait-trait coevolution.  380 

Because the traits analyzed here, especially the yeast traits, were chosen almost exclusively due 381 

to their measurability, our results likely reflect a general picture of trait-trait coevolution.  382 

Measuring these yeast traits in additional divergent natural strains with clear phylogenetic 383 

positions could improve the statistical power and clarify whether the fraction of trait pairs whose 384 

coevolution is shaped by selection is much greater than detected here.  Finally, the detection of 385 

selection for enhanced modularity of the yeast traits analyzed supports the hypothesis that 386 

modularity is beneficial (Goswami et al., 2014; G. P. Wagner & Altenberg, 1996).  The detection 387 

of selection in trait-trait coevolution and selection for enhanced modularity suggests that the 388 

current pleiotropic structure of mutation is not optimal.  This nonoptimality could be due to the 389 

weakness of the second-order selection on mutational structure and/or a high dependence of the 390 

optimal mutational structure on the environment, which presumably changes frequently.  Future 391 

studies on how the mutational structure evolves will likely further enlighten the mechanism of 392 

trait-trait coevolution.  393 

  394 

MATERIALS AND METHODS 395 
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Phenotypic data 396 

The S. cerevisiae cell morphology traits were previously measured by analyzing 397 

fluorescent microscopic images.  Three phenotypic datasets were compiled and analyzed in this 398 

study, including (i) 220 traits measured in 4718 gene deletion lines that each lack an nonessential 399 

gene (Ohya et al., 2005), (ii) the same 220 traits measured in 37 natural strains (Yvert et al., 400 

2013), and (iii) 187 of the 220 traits measured in 89 mutation accumulation (MA) lines (Geiler-401 

Samerotte et al., 2016).  When comparing patterns of trait correlation between two datasets, we 402 

used traits available in both datasets. 403 

Before the analyses, we first standardized all trait values by converting each trait value to 404 

the natural log of the ratio of the original trait value to a reference.  The standardized value of the 405 

ith trait in the jth strain is 𝑋 , ln ,

,
, where 𝑋 ,  is the original trait value and 𝑋 ,  is the trait 406 

value of the reference.  For the gene deletion lines, the reference is the wild-type BY strain.  For 407 

the MA lines, the reference is the progenitor strain used in MA.  For natural strains, the reference 408 

is the same as the reference of the mutant strains to be compared with (i.e., wild-type BY or 409 

progenitor of the MA lines). 410 

The locations of 12 vein intersections on the fly wing were previously measured in 150 411 

MA lines of Drosophila melanogaster and a mutational covariance matrix was estimated (Houle 412 

& Fierst, 2013).  These traits were also measured in 110 Drosophilid species and an evolutionary 413 

covariance matrix was estimated with species phylogeny taken into account (Houle et al., 2017).  414 

Both matrices are based on log-scale trait values. 415 

 416 

Influence of the sampling error on the M matrix 417 

To evaluate the influence of sampling error on the estimated M matrix of yeast or fly, we 418 

took samples (vectors of phenotypes) from the multivariate distribution of M (4,817 samples for 419 

yeast gene deletion data and 150 samples for fly MA data), estimated a covariance matrix (𝑀) 420 

from these samples, and calculated Pearson’s correlation coefficient between the eigenvalues of 421 

M and 𝑀.  This was repeated 1,000 times and the distribution of the correlation coefficient was 422 

used to evaluate the potential impact of sampling error on M. 423 

 424 

Comparison of mutational and evolutionary correlations 425 
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To take into account the phylogenetic relationships among yeast strains in estimating 426 

CORE, we utilized a distance-based tree previously inferred (Peter et al., 2018) (Fig. S1).  Strains 427 

with mosaic origins inferred in the same study (Peter et al., 2018) were removed before analysis, 428 

resulting in 16 remaining natural strains.  Because the BY strain was not included in the data file 429 

in that study (Peter et al., 2018), W303, a laboratory strain closely related to BY, was chosen to 430 

represent BY.  We obtained the evolutionary covariance matrix using the ratematrix function 431 

from the R package geiger (Pennell et al., 2014; Revell, Harmon, Langerhans, & Kolbe, 2007), 432 

which calculates evolutionary covariances using the independent contrast method (Felsenstein, 433 

1985).  The evolutionary covariance matrix was then converted to the corresponding correlation 434 

matrix. 435 

To test whether there exists a significant modular structure among traits, we performed 436 

the covariance ratio (CR) test.  For each pair of predefined modules, traits were first re-ordered 437 

such that traits belonging to each module were located in the upper-left and lower-right corners 438 

of the covariance matrix, respectively, and  𝐶𝑅  ∗ ∗ ∗ ∗ , where 𝑀  and 439 

𝑀  are the upper-right and lower-left sections of the original covariance matrix, respectively, 440 

containing all between-module covariances, 𝑀∗  is the upper-left section with diagonal elements 441 

replaced by zeros, 𝑀∗  is the lower-right section with diagonal elements replaced by zeros, and 442 

𝑡𝑟𝑎𝑐𝑒 𝑀  denotes the trace, or the sum of diagonal elements, of matrix M (Adams, 2016).  443 

Because three modules were defined in the yeast data, the average of all pairwise CR values was 444 

used to represent the overall modularity. 445 

To test whether the observed pairwise trait correlations, overall phenotypic integration, or 446 

modularity at the level of evolutionary divergence are significantly different from those expected 447 

by mutation alone, we simulated neutral evolution along the phylogenetic tree that had been used 448 

in estimating CORE.  A Brownian motion model was used to simulate phenotypic evolution such 449 

that the amount of evolution in branch i is 𝑀 𝑙, where 𝑀  is a vector sampled from the 450 

multivariate normal distribution of the mutational covariance matrix M and 𝑙 is the branch 451 

length.  Sampling was performed using the rmvnorm function in the R package mvtnorm (Genz, 452 

2020).  The starting value of each trait is 0 in all simulations.  The phenotypic value of each 453 

strain was obtained by adding up the amount of evolution on all branches ancestral to the strain.  454 

This was repeated 1,000 times to obtain an empirical null distribution of CORE.  The null 455 
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distributions of Veigen and CR were similarly obtained.  In each two-tailed test, the 𝑃-value was 456 

calculated by 𝑃  ,
, where 𝑛  is the number of simulated values of the test statistic 457 

that are higher than the observed value, 𝑛  is the number of those that are lower than the 458 

observed value, and min 𝑛 ,𝑛  is the smaller of 𝑛  and 𝑛 .  The P-values for pairwise trait 459 

correlations were converted to adjusted P-values following the Benjamini-Hochberg procedure 460 

(Benjamini & Hochberg, 1995) and an adjusted P-value below 0.05 indicates selection. 461 

 462 

Computer simulation of trait-trait coevolution under selection 463 

In each simulation, we considered a pair of traits with equal amounts of mutational 464 

variance VM, which is set to be 0.01.  The mutational covariance matrix is thus 𝑀465 

𝑉 𝐶𝑂𝑉
𝐶𝑂𝑉 𝑉

𝑉 𝑉 𝐶𝑂𝑅
𝑉 𝐶𝑂𝑅 𝑉 , where COVM is the mutational covariance.  The 466 

number of mutations is a random Poisson variable with the mean equal to 1.  The phenotypic 467 

effect of a mutation is drawn from the multivariate normal distribution of M using the rmvnorm 468 

function in the R package mvtnorm (Genz, 2020).  The starting phenotype is (0, 0) in all 469 

simulations. 470 

We considered a Gaussian fitness function 𝑓 exp , where f is the fitness and D is 471 

the distance between the current phenotype and the optimal phenotype.  When there is a single 472 

fitness peak (i.e., the fitness optimum is a single point), D is the Euclidean distance defined by 473 

𝑑 𝑑 , where d1 and d2 are the distances between the current phenotypic values of the two 474 

traits and their corresponding optima, respectively.  When there is a fitness ridge (i.e., the fitness 475 

optimum is a line), D is the shortest distance from the current phenotype to the fitness ridge.  The 476 

selection coefficient s equals 1, where f and 𝑓a are the fitness values of the mutant and wild-477 

type, respectively.  The fixation probability of a newly arisen mutant is 𝑃  

 
 in a 478 

haploid population (Kimura, 1962), where the effective population size Ne was set at 104.  After 479 

each unit time, the phenotypic effect of each mutation is added to the population mean at a 480 

probability of 𝑁 𝑃 ; this probability is treated as 1 when 𝑁 𝑃 1 or when there is no selection.  481 

Combinations of parameters used in the simulations are listed in Table 2. 482 
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In simulations where different lineages are assigned different optima, each lineage’s 483 

optimum was obtained by independently drawing the optimal values of the two traits from the 484 

standard normal distribution.  Before conducting simulations, we confirmed that the optima of 485 

the two traits are not correlated (correlation coefficient = 0.0882, P = 0.5423, t-test). 486 

All analyses in this study were conducted in R (R Core Development Team, 2010). 487 

 488 
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Table 1. Number of trait pairs with significantly different CORE and CORM. 698 
                                     Yeast        Fly 

(276 trait pairs)  CORM from gene deletion 
lines (24,090 trait pairs) 

CORM from MA lines 
(17,391 trait pairs) 

Strengthened 393 578 57 
Weakened 145 281 59 
Reversed 677 859 36 
Total 1215 1718 152 

 699 
 700 
  701 
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Table 2. Parameters and results of simulations of trait-trait coevolution. 702 
Optimum CORM Median CORE at the end 

of simulation 
Fraction of simulations with 
CORE > CORM 

CORE compared 
with CORM 

No optimum 0.9 0.900 49.5% No difference 
0.5 0.495 47.5% No difference 
0.1 0.113 55.5% No difference 

     
y = x * 0.9 1.000 100% Strengthened 

0.5 1.000 100% Strengthened 
0.1 1.000 100% Strengthened 

     
y = 0.5x 0.9 1.000 100% Strengthened 

0.5 1.000 100% Strengthened 
0.1 1.000 100% Strengthened 

     
y = -0.5x 0.9 -0.995 0% Reversed 

0.5 -0.999 0% Reversed 
0.1 -1.000 0% Reversed 

     
y = - x 0.9 -0.997 0% Reversed 

0.5 -0.999 0% Reversed 
0.1 -1.000 0% Reversed 

     
(0, 0) 0.9 0.0213 0% Weakened 
 0.5 0.00142 0.5% Weakened 
 0.1 -0.0109 24% No difference 
     
Drawn from 
𝓝 𝟎,𝟏  

0.9 0.0895 0% Weakened 
0.5 0.0874 0% Weakened 
0.1 0.0866 6% No difference 

*x and y respectively represent the values of the two traits considered.  703 
 704 
 705 
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Table 3. Overall phenotypic integration (Veigen) and modularity (CR) at the levels of mutation 707 
and evolutionary divergence. Values at the level of mutation are medians from 1,000 control 708 
sets. 709 

Statistic Taxon Mutation Divergence P-value 
Veigen Yeast 44.814  58.656  0.186 

Fly 3.530 4.359 0.02 
CR Yeast 0.759  0.997  < 0.001 

 710 
 711 
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A 713 

 714 
 715 
 716 

 717 
 718 
Figure 1.  Detecting selection in yeast cell morphology trait-trait coevolution.  (A) Mutational 719 
(CORM, upper triangle) and evolutionary (CORE, lower triangle) correlation matrices for the 220 720 
yeast traits, which are ordered according to their IDs.  (B) An example of evolutionarily 721 
strengthened correlation.  (C) An example of evolutionarily weakened correlation.  (D) An 722 
example of evolutionarily reversed correlation.  In (B)-(D), each blue dot represents a gene 723 
deletion line (a.k.a. mutant) while each red dot represents an independent contrast derived from 724 
natural strains.  Blue and red lines are linear regressions between the standardized values of the 725 
two traits in mutants and independent contrasts, respectively, while the dotted blackline shows 726 
the diagonal (y = x).  Trait IDs are shown along the axes.  All CORM and CORE values shown are 727 
significantly different from 0 except when indicated by “NS” in the parentheses.  728 
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B 733 

 734 
C 735 

  736 
Figure 2.  Schematic illustration of predictions made by models of trait-trait coevolution.  Each 737 
circle represents the equilibrium mean phenotype of two hypothetical traits (trait 1 and trait 2) of 738 
a diverging lineage.  (A) When a specific allometric relationship is selectively favored, the 739 
population mean phenotypes are distributed along the fitness ridge (i.e., the optimal allometric 740 
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line shown in red), resulting in a strong trait correlation across lineages.  (B) When a specific 741 
value is selectively favored for each trait, the population mean phenotypes are concentrated near 742 
the optimal phenotype (marked by the red cross) and the trait correlation across lineages is weak.  743 
(C) When different lineages have different optimal phenotypes (marked by red crosses) that are 744 
randomly distributed, the trait correlation across lineages is weak. 745 
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Supplementary materials for “Detecting natural selection in trait-trait coevolution”  

D. Jiang & J. Zhang 

 

 

The supplementary materials include: 

Table S1 

Figures S1-S3 

Data S1 (in a separate Excel file)  
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Table S1. Pearson’s correlation between eigenvalues of M and those of the covariance matrix estimated from 
samples from M (𝑀).  Results from 1000 replicates are shown.  

Taxon Sample size Minimum correlation coefficient Median correlation coefficient 
Yeast 4,817 0.9993745 0.9999503 
Fly 150 0.9698937 0.9967839 
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Fig. S1.  Neighbor-joining tree of the 16 natural yeast strains used in this study, based on 
1,544,489 biallelic single nucleotide polymorphism (SNP) sites.  Scale bar indicates genomic 
divergence level.  The tree was based on the distance matrix downloaded from 
http://1002genomes.u-strasbg.fr/files/1011DistanceMatrixBasedOnSNPs.tab.gz.  The inset at the 
top left coner shows the tree topology but the branch lengths are not drawn to scale. 
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Fig. S2.  Frequency distributions of multional (CORM) and evolutionary (CORE) correlations 
across all examined trait pairs.  (A) Distributions for yeast when CORM is based on gene deletion 
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lines.  (B) Distributions for yeast when CORM is based on MA lines.  (C) Distributions for fly 
when CORM is based on MA lines.  The distributions for CORM and CORE are significantly 
different in each panel (P < 10-10 in A and B and P = 0.0015 in C, Kolmogorov–Smirnov test).   
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Fig. S3.  Mutational (upper triangle) and evolutionary (lower triangle) correlation matrices for 
(A) the 187 yeast traits measured in MA lines, which are ordered according to their IDs, and (B) 
the 24 fly traits, which are ordered in the same way as in the original dataset.  
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