1

Submitted for publication in

Correspondence and proofs to:

PLoS NTD

Isik Unlu Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901 E-mail: isik.unlu@miamidade.gov

Do tigers hunt during the day? Diel Activity of the Asian tiger mosquito, Aedes albopictus

(Diptera: Culicidae), in Urban and Suburban Habitats of North America

Isik Unlu¹, Ary Faraji^{1,2}, Nicholas Indelicato³, James R. McNelly^{4,5}

¹Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901

²Salt Lake City Mosquito Abatement District, Salt Lake City, UT 84116

³Mercer County Mosquito Control, West Trenton, NJ 08628

⁴Department of Entomology, Box 7647, North Carolina State University, Raleigh, NC

27695-7613, U.S.A.

⁵ 99 Red Gate Rd, George Town, Cayman Island

*Corresponding author: Corresponding author: Isik Unlu. Mosquito Control and Habitat Management Division, 8901 NW 58th Street, Miami, Florida, 33178 Phone: 305-592-1187, Email: <u>isikunlu@miamidade.gov</u>

2

1 ABSTRACT

2 Aedes (Stegomyia) albopictus (Skuse) impacts human outdoor activity because of its aggressive biting behavior, and as a major vector of mosquito-borne diseases, it is also of public health 3 4 importance. Although most mosquito species exhibit crepuscular activity by primarily host 5 seeking at dawn and dusk, Ae. albopictus has been traditionally characterized as a diurnal or day-6 biting mosquito. With the global expansion and increased involvement of Ae. albopictus in 7 mosquito-borne diseases, it is imperative to elucidate the diel activity of this species, particularly in newly invaded areas. Human sweep netting and carbon dioxide-baited rotator traps were used 8 to evaluate the diel activity of Ae. albopictus in two study sites. Both trapping methods were 9 used in New Jersey's Mercer County, USA (temperate urban), while only human sweep netting 10 was used in Florida's Volusia County, USA (subtropical suburban). Human sweep netting was 11 performed to determine adult mosquito activity at sunrise, solar noon, sunset, and lunar 12 midnight. Because New Jersey is in a temperate area, diel activity was investigated during the 13 early season (3-19 July), peak season (25 July-19 September), and late season (22 September- 22 14 October). Aedes albopictus showed the highest activity during peak and late seasons at solar 15 16 noon (P < 0.05). At sunrise and sunset during the peak season, Ae. albopictus activity was similar. Lunar midnight activity was significantly lower than sunrise and solar noon (P < 0.05) 17 but was similar to that of sunset. In the late season, the highest activity was observed during solar 18 19 noon while the least activity was observed during sunrise and lunar midnight (P < 0.05). Rotator traps used in conjunction with the human sweep net technique exhibited similar results. Seasonal 20 activity was not differentiated in Florida due to the consistent subtropical weather. The highest 21 22 adult activity was observed at sunrise using human sweep netting but it was not significantly

23	different from solar noon and sunset. The lowest adult activity was observed at lunar midnight;
24	however, it was not significantly different from solar noon and sunset. These results provide
25	evidence that the diel activity of Ae. albopictus, contrary to the common perception of its diurnal
26	activity, is much more varied. Because of the involvement of the species in the transmission of
27	debilitating mosquito-borne pathogens such as chikungunya, dengue, and Zika virus, coupled
28	with its affinity to thrive in human peridomestic environments, our findings have global
29	implications in areas where Ae. albopictus thrives. It also highlights the importance of behavioral
30	studies of vector species which will not only help mosquito control professionals plan the timing
31	of their control efforts but also provide empirical evidence against conventional wisdoms that
32	may unjustly persist within public health stewards.
33	
34	Keywords: Stegomyia, behavior, bottle rotator trap, human sweep netting, field study
35	
36	
37	
37	
38	
39	
40	
41	
42	

4

43 Author Summary

44 The Asian tiger mosquito, Aedes albopictus, is an invasive mosquito which is now established in at least 40 states in the USA. Lack of efficient surveillance and control methods against Ae. 45 46 *albopictus*, in addition to human-aided accidental transportations, have played a great role in its 47 rapid expansion. Although surveillance measures are becoming more systematic and effective, control of this species still poses a great challenge. Aedes albopictus is difficult to control in the 48 larval stage because it primarily develops in artificial containers that are widespread in 49 50 peridomestic habitats. These habitats are not only ubiquitous in these environments, they are also cryptic, inaccessible, and extremely difficult to control. Therefore, control of Ae. albopictus in 51 these environments often relies on adult control measures which utilize insecticides dispersed 52 through ultra-low volume equipment as a cold aerosol space spray. These adulticide applications 53 54 are often conducted at night against endemic mosquito species which are primarily active between dawn and dusk. However, since Ae. albopictus has been traditionally classified as a day-55 biting mosquito, mosquito control specialists have had doubts about the efficacy of a nocturnal 56 application against a diurnally active mosquito. These uncertainties about intervention efforts 57 58 become even more important during public health outbreaks of mosquito-borne pathogens such 59 as chikungunya, dengue, or Zika viruses when protection of public health is of paramount importance in peridomestic habitats. Our investigations provide evidence that Ae. albopictus 60 61 exhibits activity throughout the day and night and that nighttime adulticide applications may indeed be effective against this species, and should not be disregarded. 62

63

5

65 **INTRODUCTION**

85

Most terrestrial organisms are exposed to daily changes in light, dark, and temperature cycles. 66 They have adapted to these changes and express specific behaviors which are genetically 67 68 controlled. Aedes albopictus (Skuse), the Asian tiger mosquito, is a competent vector of many 69 mosquito-borne viruses such as dengue (DENV) and chikungunya (CHIKV) [1,2]. It is also a major pest species that can drive children indoors and detrimentally impact human quality of life 70 71 [3,4]. Understanding the diel activity of *Ae. albopictus*, specifically the times when it may be 72 host seeking, is essential because of its vectorial status as well as the need for effective control 73 measures. The need for successful and sustainable Ae. albopictus control programs became more evident 74 due to the recent outbreak of arboviral diseases globally, particularly with the expansion of Zika 75 76 virus (ZIKV) [5]. Additionally, outbreaks of DENV in locations such as the Seychelles Islands, China, La Réunion, Hawaii, Mauritius, and Europe have implicated *Ae. albopictus* as the primary 77 vector [6,7]. Autochthonous transmission of CHIKV implicating Ae. albopictus as the main 78 79 vector, has also been documented both in France [8] and Italy [9]. In Gabon, central Africa, epidemiological surveillance has determined that Ae. albopictus was the principal vector of 80 81 ZIKV during an urban outbreak in 2007 [10]. The species has also drawn the attention of vector control and public health professionals, particularly in expanding and newly invaded areas [11-82 83 13]. When an invasive species becomes endemic in a new area, it may display different biological 84

86 pose new challenges for vector control specialists. The first detection of *Ae. albopictus* in the

5

behaviors, including host preference, diel activity, and vector competence [10,14-16], which all

6

87 continental United States in 1985 and its subsequent spread displayed that mosquito control districts were not equipped with effective methods to conduct surveillance and control for this 88 peridomestic species. For example, the establishment of Ae. albopictus in New Jersey was first 89 recorded in 1995 from a trap collection in Keyport, Monmouth County [17], however it wasn't 90 until 2008 that all 21 mosquito control districts in New Jersey finally obtained an effective trap 91 to conduct surveillance for this species [18,19]. Prior to this, the presence of Ae. albopictus was 92 only detected using New Jersey light traps, which are poor devices in gauging the presence or 93 abundance of this species [20]. In the late 2000's, after numerous field evaluations, the newly 94 created Biogents Sentinel (BGS) (Biogents AG, Regensburg, Germany) traps were recognized as 95 the standard surveillance tool for Ae. albopictus and Aedes aegypti L. [20-22]. Even though the 96 BGS traps are generally operated over a 24-hour period, they do not provide information about 97 the diel host seeking periods of invasive *Aedes* mosquitoes such as *Ae. aegypti* and *Ae.* 98 *albopictus.* Elucidating the diel activity of these species is crucial to understanding their 99 behavior, which helps vector control and public health professionals better focus their 100 surveillance and control efforts to maintain quality of life and prevent disease outbreaks. 101 102 In Hawley's (1988) review of Ae. albopictus biology, field studies on diel activity patterns conducted in several countries in Asia reported peak blood feeding during daylight but rarely 103 during the night hours [23]. Almeida et al. (2005) reported from the Chinese Territory of Macao, 104 that Ae. albopictus displayed a bimodal biting peak activity during the morning and later 105 afternoon [24]. Similar results were reported on La Reunión Island where bimodal blood feeding 106 activity for Ae. albopictus females was higher in the morning and afternoon peaks [25]. Hassan 107 (1996) found morning and evening twilight peaks for both sexes of Ae. albopictus in Malaysia 108

7

109 [26]. On the contrary in Japan, researchers determined active Ae, albopictus behavior through night time nectar feeding between 2100 and 2130 hours [27]. In addition, although researchers 110 observed bimodal activity in Macao, they also detected some activity during all 24 hours of the 111 day for Ae. albopictus [24]. However, the vast majority of previously published investigations all 112 incriminate Ae. albopictus as primarily diurnal [24-26,28]. This has led to the acceptance of 113 certain fallacies that have permeated vector control communities, particularly in the USA. For 114 example, adult mosquito suppression methods generally utilize adulticides which are applied as 115 ultra-low volume (ULV) cold aerosol sprays during the night. But because ULV applications 116 have not been efficacious or long lasting in controlling diurnally active urban mosquitoes, they 117 have been declared ineffective, particularly for reduction of disease transmission, as reviewed in 118 [29]. One reason for failure of control has been attributed to the nocturnal resting behavior of 119 120 day-biting mosquitoes in natural and artificial places that are sheltered from the insecticide plume. The ineffectiveness of nighttime ULV applications against diurnal mosquitoes has 121 unfortunately become the conventional wisdom within the modern vector control community and 122 many vector control programs simply do not attempt to adulticide against *Ae. albopictus* because 123 they are under the assumption that this species may not be active at all during the nighttime ULV 124 application periods. 125

However, during a variety of field investigations aimed at elucidating the biology, ecology, and effective control methods against *Ae. albopictus* in temperate central New Jersey [30-32], it has been observed that this species may also be active even during the nighttime hours [29,33]. As a result, the goal of this study was to investigate the diel activity of *Ae. albopictus* in New Jersey and Florida, in order to further elucidate the biology of this important vector mosquito. Our

8

primary objective was to provide empirical data to prove that invasive *Aedes* mosquitoes, such as *Ae. albopictus*, are indeed active throughout the 24 hr diel period and to challenge conventional
wisdoms that night time applications of adulticides may indeed be effective during those periods
because of the continuous activity of the target species around the clock.

136 Materials and Methods

137 Site Selection

138 All study sites in New Jersey were highly urbanized, residential sites within the City of Trenton

and were comparable to the field site descriptions provided by Unlu et al. (2011) and Farajollahi

140 et al. (2012). The study area encompassed a mix of two-story row homes or duplexes and

141 occasionally, abandoned homes subject to occupation by transients. Study sites in Florida were

selected in suburban neighborhoods in the City of Edgewater. Edgewater is located along the

143 Indian River, adjacent to the Mosquito Lagoon.

144 Human Sweep Net Collections

Human sweep net collections were made using a standard 30.5 cm diameter sweep net purchased 145 from Fisher Scientific (Atlanta, GA, USA). In both locations, the same individuals conducted 146 human sweep netting for the duration of the experiment. With two collectors per residential 147 properties, the collectors took turns walking around the perimeter of the parcel, as the geography 148 allowed, and ending at the pre-determined sampling location which was a shaded or partially 149 150 shaded area free of obstruction. At the sampling location, each collector stood still and moved the sweep net in a figure eight pattern (Fig. 1) for five minutes to collect mosquitoes. On each 151 minute mark, the collector rotated 90° degrees, such that in the final minute the individual was in 152

9

153 the original (first minute) position. After completing the sampling process, the first collector returned to the vehicle to place the net in a cooler with dry ice and after 15 minutes, the second 154 collector repeated the process with a second net. A single collector performed all sampling in 155 Florida following the same experimental protocol used in New Jersey. All mosquito specimens 156 collected were counted and identified to species. Weekly collections were made between 8 157 August and 22 October in New Jersey and between 16 July and 9 September 2013 in Florida. For 158 analysis of New Jersey data, the study was divided into two seasonal periods: 1) peak (8 - 29 159 August), and 2) late (5 September - 3 October). 160 161 **Sampling Time – Diel Periods** A 24 h day was divided into four discrete sampling periods: Sunrise, Solar Noon, Sunset, and 162 Lunar Midnight. Solar Noon was identified using the National Oceanic & Atmospheric 163 164 Administration solar calculator (http://www.esrl.noaa.gov/gmd/grad/solcalc/) and Lunar Midnight was defined as 12 h post Solar Noon. Sunrise and Sunset were delineated using 165 Weather Underground's regional times for sunrise and sunset 166 (https://www.wunderground.com/). Ten and six residential properties were chosen in New Jersev 167 and Florida, respectively, which required that the human sweep netting be initiated 30 mins prior 168 and ending no more than 30 mins post the determined sampling periods. 169 **Carbon Dioxide-baited Bottle Rotator Trap Collection** 170 In New Jersey the diel activity of Ae. albopictus was also measured using a collection bottle 171 rotator (CBR) equipped with a CDC miniature light trap (model 1512 and 512 respectively, John 172 W. Hock Company, Gainesville, FL, USA). The CBR consists of a programmable timer powered 173

by a 12-volt, ten-amp rechargeable DC battery which allows for the collection of adult

175	mosquitoes at eight different times during a 24 h period. A voltage regulator (BioQuip Products
176	Inc., Ranco Dominguez, CA, USA) was added to allow the use of the 6-volt CDC miniature trap
177	on the 12-volt CBR system. A CBR with eight jars was used to segregate collections into eight
178	time periods, each lasting three hours. The periods were defined as: 0700-1000, 1000-1300,
179	1300-1600, 1600-1900, 1900-2200, 2200-0100, 0100-0400, and 0400-0700. Traps were re-
180	programmed weekly to compensate for seasonal changes according to Solar Noon. The CBR
181	traps were baited with CO2 and BG Lures (Biogents AG, Regensburg, Germany). Traps were
182	held in place using a cast-concrete base and positioned 0.5 m above ground level. Adult
183	mosquito collections took place between 3 July and 22 October 2013. At the end of 24 h
184	sampling period, traps and trap contents were transported to the laboratory, identified to species,
185	and counted. Female and male Ae. albopictus were recorded separately. For data analysis, the
186	study was divided into three seasonal periods: 1) early (3-19 July), 2), peak (25 July-19
187	September), and 3) late (22 September- 22 October).
188	Comparison of Biogents Sentinel Trap Catches with Human Sweep Net Collection
189	Biogents Sentinel traps were deployed in conjunction with human sweep net surveillance in
190	order to investigate the correlation between the two. Biogents Sentinel traps were baited with a
191	BG-Lure, and deployed for a 24 h sampling period. Traps were deployed in the same parcels
192	where human sweep netting was performed. The traps were placed no closer than 7.5 m and no
193	more than 10.5 m away from the location of the human sweep netting. At the end of 24 hours,
194	traps and trap contents were transported to the respective laboratories in New Jersey and Florida,
195	identified to species, and counted. Female and male Ae. albopictus were recorded separately.
196	

11

197 Data Analysis

198 Analysis of HSN Data

To determine the peak activity for Ae. albopictus, we compared the number of adults, female and 199 200 male, collected during four time periods using a generalized linear model [34]. Overdispersion was detected via the Poisson model (value/df = 1.986), and the model was refit using negative 201 binomial distribution (PROC GENMOD, SAS version 9.3; SAS Institute 2011) with site, season, 202 time and interaction term season*time all used as predictors. The model was determined to fit the 203 data adequately ($\chi^2 = 76.62$, df = 63, P = 0.116) in New Jersey and the interaction term was 204 significant ($\chi^2 = 65.20$, df = 3, P < 0.001). The association between Florida human sweep netting 205 counts and time were investigated using Poisson regression adjusted for overdispersion (PROC 206 GENMOD, SAS version 9.3; SAS Institute 2011), with site and time as predictors. The model fit 207 adequately ($\chi^2 = 20.61$, df =15, P = 0.150) and the main effect of time was significant (($\chi^2 = 9.94$, 208 df = 3, P = 0.020). The P values between comparisons were adjusted using Holm's test, which 209 adjusts the calculation of probability in line with the number of comparisons made to avoid type 210 I errors (Holm 1979). 211

212 Collection Bottle Rotator Trap Analysis

In order to compare the peak activity for *Ae. albopictus* using both human sweep netting and
CBR trapping, two consecutive time periods from the CBR trapping collections were combined
as follows: Sunrise collection was comprised of 05:00-11:00 collections; 11:00-17:00 collections
formed Solar Noon; Sunset was comprised of 17:00-23:00; and 23:00-05:00 collections formed
Lunar Midnight. The analysis was performed using the generalized linear model (PROC
GENMOD, SAS version 9.3; SAS Institute 2011). Overdispersion was detected in Poisson and

12

219	negative binomial models. Therefore, an ANOVA model was fit to the bottle rotator trap data.
220	The association between season and time were investigated using ANOVA (PROC GLM, SAS
221	version 9.3 for Windows). Since normality and equal variances assumptions were violated, the
222	Box-Cox transformation [35] was used to achieve approximate normality and the eighth root
223	transformation was used to normalize the data. The main effects of site, season and time were
224	used as predictors of the transformed adult counts. The P values between comparisons were
225	adjusted by using Tukey's tests.
226	Comparison Between HSN and BGS Trap Collections
227	Linear correlations (Pearson's correlation) were calculated between the numbers of Ae.
228	albopictus collected for human sweep netting and BGS traps for each state. Each human sweep
229	netting session for each trapping location was 10 min while BGS traps deployed for 24 hrs,
230	therefore a linear correlation test was appropriate to investigate the concordance of the two
231	sampling methods.
232	
233	RESULTS
234	Human Sweep Net
235	A total of 808 Ae. albopictus adults were collected in New Jersey, with 374 (46.3%), specimens
236	collected during Solar Noon followed by 172 (21.3%) at Sunrise, and 156 (19.3%) and 106
237	(13.1%) during Sunset and Lunar Midnight, respectively. Of the total number captured, 508 were
238	females (62.9%) along with 300 males (37.1%). The association between human sweep netting

counts, season, and time were investigated with site, season, time, and season*time as predictors.

13

240	The main effect of season*time was significantly associated with the collections ($\chi^2 = 65.20$, df =
241	3, $P < 0.001$). All pairwise contrasts for season*time were examined and the results are listed in
242	Table 1. Human sweep netting collections showed the greatest activity during Solar Noon in
243	New Jersey during the peak and late season. Substantial activity was also detected at Sunrise,
244	Sunset, and Lunar Midnight during the peak season with no significant difference between
245	Sunset and Lunar Midnight. The mean number of Ae. albopictus per collection declined in late
246	season (Figure 2). The highest level of activity was at Solar Noon, followed by that of Sunset,
247	and both were statistically different ($P < 0.05$) from Sunrise and Lunar Midnight.
248	In Florida, a total of 202 Ae. albopictus specimens were sampled with 68 (33.7%) captured
249	at Sunrise, followed by 55 (27.2%) at Solar Noon, 48 (23.8%) during Sunset and 31 (15.4%) at
250	Lunar Midnight. Collections were weighted towards females with a ratio of 5:1. The main effect
251	of time was significantly associated with the collections ($\chi^2 = 9.94$, df=3, $P = 0.020$). All
252	pairwise contrasts for time were examined and the results are listed in Table 2. The only
253	statistically significant activity for Ae. albopictus adults were found during Solar Noon and
254	Lunar Midnight (Figure 2).

255 Collection Bottle Rotator Trap

We tried several statistical models for analysis of the CBR trap data set. We found the best fit with ANOVA for CBR trap collections. The main effects of site (F(1,17) = 13.79, p = 0.002), season (F(2,17)=11.40, p = 0.001), and time (F(3,17) = 9.03, p = 0.001) were significant predictors of the transformed mosquito counts. The least squares means and corresponding confidence intervals along with the results of post-hoc Tukey's tests for season and time are

14

provided in the Tables 3 and 4. *Aedes albopictus* adult activity was highest during peak season
followed by early and late season (Figure 2). For time periods, the highest activity was recorded
during Solar Noon and it was significantly different than the other times investigated, excluding
Sunset (Table 4). The second highest activity was recorded during Sunset and it was significantly
different than Sunrise and Lunar Midnight.

266 Comparison between HSN and BGS Trap Collections

A total of 808 *Ae. albopictus* adults were collected in New Jersey during human sweep netting

collections. The BGS traps collected a total of 1,061 adults, close to a 1:1 ratio (585 females and

476 males). In Florida, a total of 202 Ae. albopictus were collected with human sweep netting

and BGS traps captured a total of 349 adults with a 6:1 ratio (299 females and 50 males).

- 271 Correlation analysis of mosquito collections showed that HSN and BGS trap collections were
- positively correlated in New Jersey (r = 0.477, p < 0.001) and in Florida (r = 0.401, p < 0.001).

273

274 DISCUSSION

In New Jersey, diurnal activity was clearly greatest at Solar Noon during the peak and late 275 seasons, but did not differ significantly between the two seasons. Activity was different when 276 comparing Sunrise and Sunset in both peak and late season. Interestingly, activity at Lunar 277 Midnight during peak season was only different from than that of Solar Noon. Sampling activity 278 in Florida was initiated in mid-July, when Ae. albopictus populations are often high. Overall, Ae. 279 albopictus activity levels were lower in the suburban Florida environment than those found in 280 New Jersey's urban habitat. There were no statistically significant differences in diel activity 281 between Sunrise, Solar Noon, or Sunset in Florida, and while Ae. albopictus activity was lowest 282

15

at Lunar Midnight, the level of activity at this time period was only different from that of activityat Sunrise.

Bimodal activity has been documented in a variety of Aedes species including Ae. aegypti in 285 Trinidad [36], Aedes polynesiensis Marks [37] in Samoa, and Aedes woodi Edwards [38] in East 286 287 Africa. The bimodal activity of Ae. albopictus reported by Hawley (1988) and others, including Delatte et al. (2010) on the island of La Réunion during an outbreak of CHIKV was not observed 288 in either New Jersey or Florida [23,25]. Delatte et al. (2010), however, recorded continuous 289 290 activity across 24h in a series of human-baited experiments [25]. This is also the case with the data generated by human sweep netting collections in New Jersey and Florida, USA. These 291 findings corroborate the previous observations made in New Jersey [29,33] supporting earlier 292 field operations of nocturnal host seeking activity, and research including that of Yee and Foster 293 (1992), Higa et al. (2000), and Barnard et al. (2011), identifying nocturnal host-seeking by Ae. 294 295 albopictus under both laboratory and field conditions [39-41]. Barnard et al. (2011) found that 25% of all Ae. albopictus activity monitored by human landing rates took place at night [40]. For 296 those organizations charged with the deployment of ULV space sprays, our research provides 297 298 supporting evidence for the success of adulticiding directed at Ae. albopictus in Mercer between 2009-2011 [29], where nighttime applications of a pyrethroid insecticide (DUETTM Clarke. 299 Roselle, IL, USA) at mid-label rates, when sprayed and spaced one or two days apart, achieved 300 over 80% reduction in Ae. albopictus populations in the same urban habitats in which our current 301 studies took place. 302

This study demonstrated that, late season diel activity was reduced from that of the peak seasonin temperate New Jersey climate. Activity levels remained greatest at Solar Noon while activity

305	at Sunrise and Lunar Midnight were negligible. Seasonal influences upon the diel activity of Ae.
306	albopictus have been identified on La Reunion, with diel activity at night being reduced, and
307	during winter being entirely absent as a result of lower temperatures [25]. Decreasing
308	temperatures in New Jersey are known to influence diel activity of Aedes species, and cause
309	shifting levels of activity between the summer and fall seasons [42]. While a temporal shift in the
310	activity of Ae. albopictus is not apparent in New Jersey, overall activity is curtailed while diel
311	activity remained limited to warmer temperatures between Solar Noon and Sunset.
312	Differences in the diel periodicity of Aedes mosquitoes from urban and rural locations have also
313	been reported previously [43], and it has been proposed that the increased lumens associated
314	with street and residential lights promotes modifications or adaptations in behavior, including
315	host-seeking. Kawada et al. (2005) performed cross sections of the compound eye of Ae.
316	albopictus to determine ommatidial diameter and interommatidial angle, determinants of vision
317	[44]. The eye parameter value (1.59) identified explains the lower level of light that initiated
318	host-seeking in Ae. albopictus when compared to Ae. aegypti in a laboratory setting, and may
319	explain why Ae. albopictus has a preference for brighter environments. In addition, Sippell and
320	Brown (1953) reported the importance of movement to host location by diurnal species [23,45].
321	For example, under laboratory conditions, similar sized moving targets attracted twice the
322	number of diurnally active Aedes mosquitoes compared to stationary targets. Trap capture of Ae.
323	albopictus in Japan was attributed to the movement of field personnel walking toward and
324	attending traps [46]. While our research was not designed to determine the potential influence of
325	artificial light (i.e. street lights) in the urban and suburban residences, these might have

17

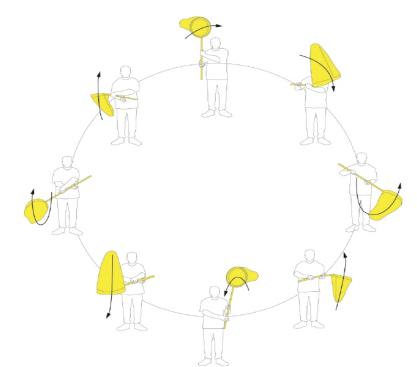
influenced Ae. albopictus night time activity [43]. Similar to artificial light, use of human sweep 326 netting for surveillance must have provided strong visual cues to host-seeking mosquitoes. 327 Biogents Sentinel traps have proven to be an effective surveillance tool for monitoring host-328 seeking populations of Ae. albopictus, and are used routinely to estimate population levels and 329 direct decisions on control activities for this species. It is common practice in Florida to use a 330 landing rate in association with a homeowner's service request in order to determine if the 331 request is generated by Ae. albopictus activity [47]. Biogents Sentinel traps have previously been 332 determined to approximate human landing rate estimates [21,48]. The positive correlation of 333 334 BGS traps with human sweep netting in both the urban and suburban environments evaluated during this study is invaluable, when considering landing rate surveillance and the influence of 335 varied levels of attractiveness, and collection and enumerating skills when performed by 336 337 different individuals [49]. In addition, the availability of a surveillance tool such as the BGS trap, removes any perceived ethical concerns or problems related to personnel performing landing 338 rates during periods of disease activity [50]. 339 The diel activity demonstrated by Ae. albopictus in both New Jersey and Florida increases the 340 potential of mosquito-human contact and therefore places individuals at risk of health impacts 341 related to arbovirus transmission. The ongoing global expansion of *Ae. albopictus* and dynamics 342 of viral adaptation and vector evolution continues to place more humans at risk [6,13,51]. The 343 introduction of exotic pathogens such CHIKV, DENV, and ZIKV are no longer merely 344 conjectural, but are now considered as regular ongoing occurrences globally. Additionally, 345 DENV is considered the second most important mosquito-borne pathogen, trailing only malaria, 346 which primarily affects impoverished populations and can be considered as a neglected tropical 347

348	disease. Given the emergence and re-emergence of DENV in both developed and undeveloped
349	regions, and the lack of resources available for effective and timely intervention efforts, our
350	study elucidates additional biological behaviors and diel activity that may prove instrumental for
351	focused control. Furthermore, understanding temporal activity and potential seasonal influences
352	upon levels of activity are also vitally important to the deployment of successful control
353	strategies [52-54]. For personnel actively engaged in organized mosquito surveillance and
354	control programs, this research provides critical information that supports the potential to impact
355	adult populations of a likely disease vector outside widely accepted parameters. These types of
356	investigations will further elucidate the biology and behavior of important vector species, and
357	ultimately lead to more rapid and efficacious intervention efforts against neglected tropical
358	diseases. Our investigations definitively provide evidence that Ae. albopictus displays some level
359	of activity throughout the entire day, and that adult mosquito control measures conducted at
360	night should not be discounted as part of an effective integrated vector management program.
361	
362	
363	
364	
365	
366	
367	
368	
369	

370	ACKNOWLEDGEMENTS
371	The authors thank Charles S. Apperson for his critical review of an earlier draft of this
372	manuscript. We thank James Pulaski for creation of drawings and Garret W Dow for field
373	assistance. This work was supported by the USDA National Institute of Food and Agriculture
374	Hatch project accession number 1020755 through the New Jersey Agricultural Experiment
375	Station, Hatch project NJ08530.
376	
377	
378	
379	
380	
381	
382	
383	
384	
385	
386	
387	
388	
389	
390	
391	

392	FIGURE LEGENDS
393	Fig. 1. Diagramatic representation of individual performing human sweep net surveillance using
394	a butterfly or "Figure 8" pattern.
395	Fig 2. A. Human sweep netting counts from Florida for all Aedes albopictus during four time
396	periods; Sunrise, Solar Noon, Sunset, and Lunar Midnight (red bars), and human sweep netting
397	counts from New Jersey for all Aedes albopictus over two seasons (peak and late) and four time
398	periods: Sunrise, Solar Noon, Sunset, and Lunar Midnight. B. Count bottle rotator trap
399	counts of all Aedes albopictus at two study sites over three seasons (early, peak, and late) and
400	over a 24 hr period in New Jersey.
401	[¥] Values not sharing the same superscript are significantly different (Holm's test, $P < 0.05$)
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	

21


414 References

- 415 1. Gratz NG (2004) Critical review of the vector status of *Aedes albopictus*. Med Vet Entomol
 416 18: 215-227.
- 2. Sardelis MR, Turell MJ, O'Guinn ML, Andre RG, Roberts DR (2002) Vector competence of
 three North American strains of *Aedes albopictus* for West Nile virus. J Am Mosq
 Control Assoc 18: 284-289.
- 3. Halasa YA, Shepard DS, Fonseca DM, Farajollahi A, Healy S, et al. (2014) Quantifying the
 impact of mosquitoes on quality of life and enjoyment of yard and porch activities in
 New Jersey. PLoS One 9: e89221.
- 4. Carrieri M, Bellini R, Maccaferri S, Gallo L, Maini S, et al. (2008) Tolerance thresholds for *Aedes albopictus* and *Aedes caspius* in Italian urban areas. J Am Mosq Control Assoc 24:
 377-386.
- 426 5. Azar SR, Roundy CM, Rossi SL, Huang JH, Leal G, et al. (2017) Differential vector
 427 competency of *Aedes albopictus* populations from the Americas for Zika virus. Am J
 428 Trop Med Hyg 97: 330-339.
- 6. Lambrechts L, Scott TW, Gubler DJ (2010) Consequences of the expanding global
 distribution of *Aedes albopictus* for dengue virus transmission. PLoS Negl Trop Dis 4:
 e646.
- 7. Perera-Lecoin M, Luplertlop N, Surasombatpattana P, Liégeois F, Hamel R, et al. (2016)
 Dengue and Chikungunya coinfection–The emergence of an underestimated threat.
 Current Topics in Chikungunya: 67.
- 8. Gould E, Gallian P, De Lamballerie X, Charrel R (2010) First cases of autochthonous dengue
 fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect
 16: 1702-1704.
- 9. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli A, et al. (2007) Infection with
 chikungunya virus in Italy: an outbreak in a temperate region. The Lancet 370: 18401846.
- 10. Grard G, Caron M, Mombo IM, Nkoghe D, Ondo SM, et al. (2014) Zika virus in Gabon
 (Central Africa)–2007: a new threat from *Aedes albopictus*? PLoS Negl Trop Dis 8:
 e2681.
- Unlu I, Farajollahi A (2012) Vectors without borders: imminent arrival, establishment, and
 public health implications of the Asian bush (*Aedes japonicus*) and Asian tiger (*Aedes albopictus*) mosquitoes in Turkey. Hacetteppe J Biol Chem 40: 23-36.
- 447 12. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk
 448 of invasion by the mosquito *Aedes albopictus*. Vector Borne Zoonotic Dis 7: 76-85.
- 13. Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A (2013) Climate change and range
 expansion of the Asian tiger mosquito (*Aedes albopictus*) in Northeastern USA:
 implications for public health practitioners. PLoS One 8: e60874.
- 452 14. Weinstein P, Laird M, Browne GN (1997) Exotic and endemic mosquitoes in New Zealand
 453 as potential arbovirus vectors: Ministry of Health Wellington.
- Huang Y-JS, Ayers VB, Lyons AC, Unlu I, Alto BW, et al. (2016) *Culex* species mosquitoes
 and Zika virus. Vector Borne Zoonotic Dis 16: 673-676.

456	16. Ayers VB, Huang Y-JS, Lyons AC, Park SL, Dunlop JI, et al. (2019) Infection and
457	transmission of Cache Valley virus by Aedes albopictus and Aedes aegypti mosquitoes.
458	Parasit Vectors 12: 384.
459	17. Crans W, Chomsky M, Guthrie D, Acquaviva A (1996) First record of Aedes albopictus from
460	New Jersey. J Am Mosq Control Assoc 12: 307-309.
461	18. Unlu I, Farajollahi A (2014) A multiyear surveillance for Aedes albopictus with Biogents
462	Sentinel trap counts for males and species composition of other mosquito species. J Am
463	Mosq Control Assoc 30: 122-125.
464	19. Unlu I, Farajollahi A, Healy SP, Crepeau T, Bartlett-Healy K, et al. (2011) Area-wide
465	management of Aedes albopictus: choice of study sites based on geospatial
466	characteristics, socioeconomic factors and mosquito populations. Pest Manage Sci 67:
467	965-974.
468	20. Farajollahi A, Kesavaraju B, Price DC, Williams GM, Healy SP, et al. (2009) Field efficacy
469	of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and
470	West Nile virus surveillance. J Med Entomol 46: 919-925.
471	21. Krockel U, Rose A, Eiras AE, Geier M (2006) New tools for surveillance of adult yellow
472	fever mosquitoes: comparison of trap catches with human landing rates in an urban
473	environment. J Am Mosq Control Assoc 22: 229-238.
474	22. Unlu I, Baker M (2018) Comparison of BG-Sentinel prototype, BG-Sentinel-1, and BG-
475	Sentinel-2: Better results with modification of earlier design. J Am Mosq Control Assoc
476	34: 237-239.
477	23. Hawley WA (1988) The biology of <i>Aedes albopictus</i> . J Am Mosq Control Assoc Suppl 1: 1-
478	39.
479	24. Almeida APG, Baptista SS, Sousa CA, Novo MTL, Ramos HC, et al. (2005) Bioecology and
480	vectorial capacity of Aedes albopictus (Diptera: Culicidae) in Macao, China, in relation to
481	dengue virus transmission. J Med Entomol 42: 419-428.
482	25. Delatte H, Desvars A, Bouétard A, Bord S, Gimonneau G, et al. (2010) Blood-feeding
483	behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector Borne
484	Zoonotic Dis 10: 249-258.
485	26. Hassan A (1996) Patterns in Aedes albopictus (Skuse) population density, host-seeking, and
486	oviposition behavior in Penang, Malaysia. J Vector Ecol 21: 17-21.
487	27. Oda T (1964) Observations on the mosquitoes visiting the flowers of spindle trees,
488	Euonymus japonica. Endemic Diseases Bulletin of Nagasaki University 6: 242-246.
489	28. Chen CD, Lee HL, Lau KW, Abdullah AG, Tan SB, et al. (2014) Biting behavior of
490	Malaysian mosquitoes, Aedes albopictus Skuse, Armigeres kesseli Ramalingam, Culex
491	quinquefasciatus Say, and Culex vishnui Theobald obtained from urban residential areas
492	in Kuala Lumpur. Asian Biomedicine 8: 315-321.
493	29. Farajollahi A, Healy SP, Unlu I, Gaugler R, Fonseca DM (2012) Effectiveness of ultra-low
494	volume nighttime applications of an adulticide against diurnal Aedes albopictus, a critical
495	vector of dengue and chikungunya viruses. PLoS One 7: e49181.
496	30. Fonseca DM, Unlu I, Crepeau T, Farajollahi A, Healy SP, et al. (2013) Area-wide
497	management of Aedes albopictus. Part 2: Gauging the efficacy of traditional integrated
498	pest control measures against urban container mosquitoes. Pest Manage Sci 69: 1351-
499	1361.

500 501 502	31. Unlu I, Farajollahi A, Rochlin I, Crepeau TN, Strickman D, et al. (2014) Differences in male–female ratios of Aedes albopictus (Diptera: Culicidae) following ultra-low volum adulticide applications. Acta Trop 137: 201-205.	ne
503	32. Faraji A, Egizi A, Fonseca DM, Unlu I, Crepeau T, et al. (2014) Comparative host feeding	
503 504	patterns of the Asian tiger mosquito, <i>Aedes albopictus</i> , in urban and suburban	
505	Northeastern USA and implications for disease transmission. PLoS Negl Trop Dis 8:	
506	e3037.	
507	33. Unlu I, A. BM, Indelicato N, Derek D, Zishuo Z, et al. (2018) Nighttime applications of tw	
508	formulations of pyrethroids are effective against Aedes albopictus J Am Mosq Contro	I
509	Assoc 34: 158-162.	• •
510	34. Schall R (1991) Estimation in generalized linear models with random effects. Biometrika 7	/8:
511	719-727.	
512	35. Osborne J (2010) Improving your data transformations: Applying the Box-Cox	
513	transformation. Pract Assess Res Evaluation 15: 12.	
514	36. Chadee DD (1988) Landing periodicity of the mosquito Aedes aegypti in Trinidad in relation	on
515	to the timing of insecticidal space-spraying. Med Vet Entomol 2: 189-192.	
516	37. Samarawickrema W, Sone F, Cummings R (1987) Seasonal abundance, diel biting activity	
517	and parity of Aedes polynesiensis marks and A. samoanus (Grünberg)(Diptera: Culicida	ae)
518	in Samoa. Bull Entomol Res 77: 191-200.	
519	38. Trpis M, Gerberg E (1974) Diel periodicity in the biting activity of Aedes woodi in East	
520	Africa. Mosq News 34: 443-447.	
521	39. Yee WL, Foster WA (1992) Diel sugar-feeding and host-seeking rhythms in mosquitoes	
522	(Diptera: Culicidae) under laboratory conditions. J Med Entomol 29: 784-791.	
523	40. Barnard D, Knue G, Dickerson C, Bernier U, Kline D (2011) Relationship between mosqu	
524	(Diptera: Culicidae) landing rates on a human subject and numbers captured using CO	2-
525	baited light traps. Bull Entomol Res 101: 277-285.	
526	41. Higa Y, Tsuda Y, Tuno N, Takagi M (2000) Tempo-spatial variation in feeding activity an	d
527	density of Aedes albopictus (Diptera: Culicidae) at peridomestic habitat in Nagasaki,	
528	Japan. Med Entomol Zool 51: 205-209.	
529	42. Crans W, Sprenger D (1996) The blood-feeding habits of Aedes sollicitans (Walker) in	
530	relation to Eastern Equine Encephalitis virus in coastal areas of New Jersey. III. Habita	
531	preference, vertical distribution, and diel periodicity of host-seeking adults. J Vector Ed	col
532	21: 6-13.	
533	43. Chadee DD, Martinez R (2000) Landing periodicity of Aedes aegypti with implications for	•
534	dengue transmission in Trinidad, West Indies. J Vector Ecol 25: 158-163.	
535	44. Kawada H, Takemura S-Y, Arikawa K, Takagi M (2005) Comparative study on nocturnal	
536	behavior of Aedes aegypti and Aedes albopictus. J Med Entomol 42: 312-318.	
537	45. Sippell W, Brown A (1953) Studies of the responses of the female Aedes mosquito. Part V	•
538	The role of visual factors. Bull Entomol Res 43: 567-574.	
539	46. Kusakabe Y, Ikeshoji T (1990) Comparative attractancy of physical and chemical stimuli t	0
540	aedine mosquitoes. Med Entomol Zool 41: 219-225.	
541	47. Lloyd AM, C.R. C, D.B C (2018) Florida White Paper. Florida Coordinating Council on	
542	Mosquito Control Florida Mosquito Control: The state of the mission as defined by	
543	mosquito controllers, regulators, and environmental managers.	

- 48. Obenauer P, Kaufman P, Kline D, Allan S (2010) Detection of and monitoring for *Aedes albopictus* (Diptera: Culicidae) in suburban and sylvatic habitats in north central Florida
 using four sampling techniques. Environ Entomol 39: 1608-1616.
- 547 49. Silver JB (2007) Mosquito ecology: field sampling methods: springer science & business
 548 media.
- 50. Association AMC (2017) Best Practices for Integrated Mosquito Management: A Focused
 Update.
- https://cdnymawscom/wwwmosquitoorg/resource/resmgr/docs/Resource_Center/Training
 Certification/1221_amca_guidelines_final_pdf.
- 553 51. Egizi A, Fefferman NH, Fonseca DM (2015) Evidence that implicit assumptions of 'no
 evolution' of disease vectors in changing environments can be violated on a rapid
 timescale. Philos Trans R Soc Lond B Biol Sci 370: 20140136.
- 52. Suárez-Mutis MC, Fé NF, Alecrim W, Coura JR (2009) Night and crepuscular mosquitoes
 and risk of vector-borne diseases in areas of piassaba extraction in the middle Negro
 River basin, state of Amazonas, Brazil. Mem Inst Oswaldo Cruz 104: 11-17.
- 53. Godsey MS, Burkhalter K, Delorey M, Savage HM (2010) Seasonality and time of hostseeking activity of *Culex tarsalis* and floodwater *Aedes* in Northern Colorado, 2006–
 20071. J Am Mosq Control Assoc 26: 148-159.
- 54. Gray KM, Burkett-Cadena ND, Eubanks MD, Unnasch TR (2011) Crepuscular flight activity
 of *Culex erraticus* (Diptera: Culicidae). J Med Entomol 48: 167-172.
- 564 565
- 566
- 567

570 Figure 1.

Table 1. Least square means from log-linear analysis of New Jersey human sweep netting counts

of all *Aedes albopictus* for ten study sites over two seasons (peak and late) and four time periods:

Season Time		LS Mean [¥]	95% C.I.
	Sunrise	13.48 ^b	10.60 - 17.15
Deals	Solar Noon	22.73 ^a	18.30 - 28.23
Peak	Sunset	8.07 °	6.12 - 10.64
	Lunar Mid	8.77 °	6.70 - 11.5
	Sunrise	0.39 °	0.14 - 1.05
T 4	Solar Noon	10.22 a	7.89 - 13.25
Late	Sunset	3.62 ^b	2.51 - 5.23
	Lunar Mid	0.10 c	0.01 - 0.70

583 Sunrise, Solar Noon, Sunset, and Lunar Midnight.

⁴Values not sharing the same superscript are significantly different (Holm's test, P < 0.05)

27

- Table 2. Least square mean estimates from log linear analysis of Florida human sweep net counts
- of all *Aedes albopictus* for six sites over four time periods: Sunrise, Solar Noon, Sunset, and

596 Lunar Midnight.

Time	$LS Mean^{\text{F}}$	95% C.I.
Sunrise	4.39 ^{a,b}	2.82 - 6.85
Solar Noon	5.43 ^a	3.56 - 8.29
Sunset	3.83 ^{a,b}	2.42 - 6.07
Lunar Midnight	2.47 ^b	1.47 - 4.17

597

⁴Values not sharing the same superscript are significantly different (Holm's test, $\alpha < 0.05$)

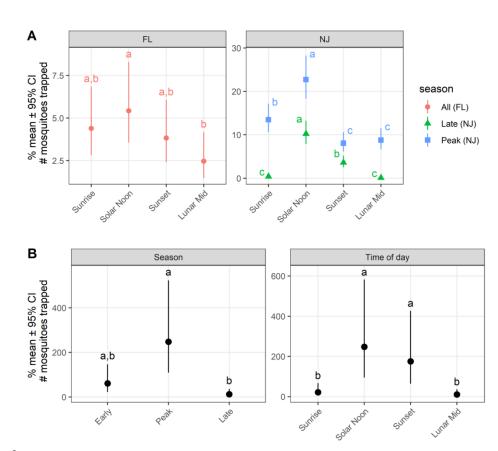
- Table 3. Least square means with confidence intervals for New Jersey bottle rotator trap
- 601 counts of all *Aedes albopictus* at two study sites over three seasons (early, peak, and late) and

602 over a 24 hr period.

Se	ason	LS Mean	95% C.I.
e	arly	61.08 ^{a,b}	22.68 - 146.98
р	eak	247.92 ^a	109.26 - 522.93
1	ate	12.48 ^b	3.66 - 35.96
Values	not shar	ing the same sup	erscript are significan
			28

- Table 4. Least square means with confidence intervals for New Jersey bottle rotator trap
- 621 counts of all *Aedes albopictus* at two study sites over three seasons (early, peak and late)
- 622 combined, during four different time periods.

Time	LS Means Estimate	95% C.I.
Sunrise	21.69 ^b	5.76 - 67.63
Solar Noon	247.92 ^a	95.24 - 582.20
Sunset	175.64 ^a	64.43 - 426.97
Lunar Midnight	10.65 ^b	2.47 - 36.66


623 Values not sharing the same superscript are significantly different (Tukey's test, P < 0.05)

624

625

626

627

630 Figure 2.