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Tumour progression is an evolutionary process in which different clones evolve over time, leading
to intra-tumour heterogeneity. Interactions between clones can affect tumour evolution and hence
disease progression and treatment outcome. Pairs of mutations that are overrepresented in a
clonally exclusive fashion over a cohort of patient samples may be suggestive of a synergistic effect
between the different clones carrying these mutations. We therefore developed a novel statistical
test, called GeneAccord, to identify such gene pairs that are altered in distinct subclones of the
same tumour. We analysed our test for calibration and power. By comparing its performance to
baseline methods, we demonstrate that to control type I errors, it is essential to account for the
evolutionary dependencies among clones. In applying GeneAccord to the single-cell sequencing
of a cohort of 123 acute myeloid leukaemia patients, we find 6 clonally exclusive and 2 clonally
co-occurring gene pairs. The clonally exclusive pairs mostly involve genes of the key signalling
pathways.

Introduction

Intra-tumour heterogeneity refers to a diverse set of genetically or phenotypically distinct cell popula-
tions that coexist within a tumour (Marusyk and Polyak, 2010; Burrell et al., 2013). It is the result of
mutation, selection, and possibly other evolutionary forces during tumour evolution (Yates and Camp-
bell, 2012; Greaves and Maley, 2012; Beerenwinkel et al., 2016). More diverse tumours support more
evolutionary pathways and tend to adapt better to treatment and immune responses. Hence they are more
likely to escape these selective pressures and develop therapy resistance or immune escape (McGranahan
and Swanton, 2015; Dagogo-Jack and Shaw, 2018). Profiling tumours (Irmisch et al., 2021) and their
heterogeneity therefore has the potential to improve cancer diagnostics and treatment, and the ability
to resolve the clonal and subclonal structure of tumours has progressed rapidly with multi-region bulk
sequencing (Turajlic et al., 2018) and single-cell sequencing (Wang and Navin, 2015; Kuipers et al.,
2017). Recently, for acute myeloid leukeamia (AML), high-throughput single-cell panel sequencing has
uncovered the clonal diversity across two cohorts of 123 patients (Morita et al., 2020; Miles et al., 2020).
These studies show that AML samples tend to have a smaller number of clones, and importantly that
multiple different mutations in signalling pathway genes often occur in distinct subclones.

Beyond offering more potential evolutionary pathways, intra-tumour heterogeneity provides more
than just a bet-hedging strategy since the individual clones may interact with each other to confer com-
munal advantages (Heppner, 1984; Bonavia et al., 2011; Tabassum and Polyak, 2015). Interaction pro-
cesses between clones are distinct from genetic interactions (epistasis), where, for instance, two genes
are mutated in the same cell or clone and together lead to an unanticipated change in the phenotype
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(Wang et al., 2014). The different types of ecological interactions among cancer clones (Tabassum and
Polyak, 2015) include negative interactions, for example when clones compete for nutrients or oxygen,
while positive interactions such as commensalism, synergism, and mutualism drive tumour cell prolifer-
ation and ultimately favour greater intra-tumour heterogeneity. One example of commensalism, where
one clone benefits from another one without providing anything in return, is a clone stimulating blood
vessel growth, which also supplies other surrounding cells with nutrients and oxygen (Axelrod et al.,
2006). Ras-mutated dermal fibroblast cells have been observed to secrete factors that lead to down-
regulation of a strong angiogenesis inhibitor in normal cells over 10mm away (Kalas et al., 2005), also
suggesting that interactions may not only occur between directly neighbouring clones in solid tumours.
Cooperation, including synergism and mutualism, where for example, different clones cross-feed each
other resources, was hypothesised to be a driving factor in tumour progression (Axelrod et al., 2006) and
a wealth of examples of clonal cooperation have been discovered in cancer (Miller et al., 1991; de Jong
et al., 1998; Calbo et al., 2011; Marusyk et al., 2014; Cleary et al., 2014; Mateo et al., 2014; Chapman
et al., 2014; Konen et al., 2017). If a combination of two or more clones is beneficial, these clones will
likely co-exist stably over time and not outcompete each other (Axelrod et al., 2006; Cleary et al., 2014).
More formally, cooperation between cancer clones can be modelled and interpreted using evolutionary
game theory (Archetti, 2013; Archetti and Pienta, 2019; Li and Thirumalai, 2020).

As cooperation can play a significant evolutionary role in tumour progression, it is important to
elucidate its underlying mechanisms. In particular, understanding how to disrupt this process poten-
tially opens up novel treatment strategies to improve personal cancer treatment. In order to investigate
how clones co-exist and possibly interact, a systematic screening of subclonal mutation compositions is
necessary. From bulk sequencing data, mutual exclusivity and co-occurrence patterns can be detected
from the clonal mutation patterns across cohorts of patients (Jerby-Arnon et al., 2014; Kim et al., 2015;
Leiserson et al., 2015; Babur et al., 2015; Constantinescu et al., 2016; Cristea et al., 2017; Kuipers et al.,
2018). This patient-level resolution however does not account for the subclonal structure within each
patient overlooking potential subclonal interactions.

Resolving tumours at the subclonal level with multi-region bulk or single-cell sequencing of-
fers a route to address this. However it involves another challenge: the genotypes of the subclones
are not independent observations. Hence, treating clones like tumour samples in the above-mentioned
patient-level analyses would lead to spurious correlations. Instead, we must account for the dependency
structure among clones encoded by their phylogenetic relationships. For example, for two mutations
in a common lineage, after the first mutation we have clones with the genotype (1, 0) resembling an
exclusivity pattern while after both mutations we have the genotype (1, 1) indicating co-occurrence.
To avoid treating the dependency structure, previous analyses have, for example, been limited to the
common ancestor clone of the mutations to ensure independence, as was the case for the analysis of
clonal co-occurrences and exclusivities of ten selected driver events in clear cell renal carcinoma using
multi-region bulk sequencing (Turajlic et al., 2018). Here we develop a statistical test, called GeneAc-
cord, which considers the full phylogenetic tree representing the complete evolutionary history of each
tumour and the subclonal mutation patterns across the entire tree. GeneAccord can additionally take into
account the uncertainty in the tree inference by allowing the input of multiple alternative tree topologies
per patient. With this input, GeneAccord assesses, in a statistically rigorous way, whether specific sub-
clonal mutation combinations occur at a higher or lower rate than expected by chance over the cohort of
patient tumour samples. We evaluate GeneAccord’s power and demonstrate that it correctly controls the
type I error rate, unlike baseline alternatives which do not account for the underlying phylogenetic trees.
Finally, we illustrate GeneAccord on a cohort of 123 AML patients resolved with single-cell sequencing
(Morita et al., 2020). We find significant signs of clonal exclusivity, particularly between genes involved
in signalling pathways.
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Figure 1: Tumour evolution and clonal exclusivity. During tumour evolution different mutations
may arise leading to heterogeneous subclones with distinct genotypes. From single-cell sequencing we
may reconstruct the mutational history of each tumour, encoding the ordering of mutations and their
phylogenetic relationships. The clones are numbered in each tree and inherit mutations in ancestral
clones. For example in patient 1, clone 2 exhibits mutations in genes A, D and H (red, orange, purple)
as displayed in the clone-genotype matrix on the right. Clonally exclusive mutations will appear in
different branches of the trees and exhibit mutually exclusive patterns in the clone-genotype matrices,
as exhibited for example for the two rightmost mutations G and H (blue and purple) in both patients.

Results

GeneAccord algorithm In order to systematically analyse subclonal mutation combinations in
tumour clones, we developed a statistical framework and implemented it in the R package GeneAccord.
The statistical test can identify pairs of mutated genes or pathways that both occur in the same tumour
but in different clonal lineages. We refer to the situation of one clone lineage possessing mutations that
the other one does not have, and vice versa, as clonal exclusivity. By resolving the evolutionary history
of tumours, for example through single-cell sequencing and reconstructing the genotypes of the clones,
clonally exclusive gene pairs will display mutual exclusivity (Figure 1). The underlying rationale for
searching for clonally exclusive gene pairs is that if two clones co-exist in a tumour and cooperate, for
example, by sharing diffusible factors, they may have acquired complementary sets of mutations for
mutual benefit.

To search for clonal exclusivity, we evaluate across a cohort of patient tumours whether the ob-
served patterns of exclusivity occur more or less often than expected by chance alone. Specifically,
we compare to the null model of mutations being placed randomly within each tumour phylogeny. We
frame the testing procedure as a likelihood ratio test with a single clonal exclusivity score ∆ for each
gene pair, which when negative indicates that the gene pair is mutated in different clones more often
than expected, and when positive indicates a higher rate of co-occurrence in the same clonal lineage.
We developed and implemented the statistical test as an exact and asymptotic test in the GeneAccord R
package (Methods, https://github.com/cbg-ethz/GeneAccord). After testing gene pairs,
multiple testing correction is performed to control the false discovery rate with the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995). If a pair is significantly clonally exclusive, it suggests that
this specific clone configuration may confer a selective advantage, possibly through cooperation between
the clones.
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Figure 2: Calibration of the chi-squared approximation. For gene pairs observed in a smaller number
n of patient samples, we observe overly liberal p-values and a lack of calibration. For larger n, the
approximation becomes more appropriate.
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Figure 3: Calibration of the exact test. For the exact test we observe conservative p-values at lower
significance levels, and very pronounced discrete effects for larger values.
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Figure 4: Calibration of the exact test with Monte Carlo smoothing. Smoothing the exact test by
adding noise to the rates, we observe good calibration and the desired uniform distribution of p-values
under the null for the larger n.
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Figure 5: Power of the exact test. The power of the exact test as we increase the effect size for different
sample sizes.

Calibration and power of the test The statistical testing (Methods) is a likelihood ratio test where
the test statistic asymptotically follows a chi-squared distribution. For gene pairs observed in a smaller
number n of patient samples this asymptotic result can however be poorly calibrated. For example, we
simulated data under the null where the background clonal exclusivity rates r are sampled from a beta
distribution with parameters 2 and 3 which gives a similar mean and variance to the rates computed from
the real AML dataset. Using the chi-squared distribution to compute p-values under the null we see an
enrichment of lower p-values for smaller n (Figure 2). The chi-squared approximation however seems
appropriate when the gene pair is observed in enough samples (more than ∼10).

We therefore developed an exact version of the test (Methods) to ensure calibration. For the same
simulated example as before we now observe fewer than 5% of p-values under the null being significant
at a 5% threshold (Figure 3). However, since the number of possible outcomes is limited, we also
observe very strong discrete effects in the null p-value distribution.

For larger n, enumerating all possible outcomes for the exact test becomes more computationally
expensive, while the chi-squared approximation improves. As a default in the R package we therefore
switch to the chi-squared approximation for n > 12.

To check calibration while dampening the discrete effects, we created a Monte Carlo version of
the exact test (Methods) into which we could additionally add smoothing through adding noise to the
sampled clonal exclusivity rates. Performing such smoothing (with ν = 10) we observe uniformity of
the p-values under the null for larger n, with some remnants of the discrete effects visible for lower n
(Figure 4). The simulated data therefore show that the exact test is calibrated on average.

Having checked the calibration of the GeneAccord exact test under the null, we next evaluate its
power by simulating data under the alternative for different values of ∆. The rates are again sampled
from a beta distribution with parameters 2 and 3. For very small sample sizes, we need a relatively
strong effect to have a high power (for example a ∆ of -4 to have a power of 75% for gene pairs in only
4 patients), though the power rapidly increases for larger samples sizes as expected; for example, a ∆ of
-3 can be detected in 10 patients with a probability of over 96% (Figure 5).

Comparison to exclusivity testing without trees Alternative methods to GeneAccord to test for
exclusivity do not take the phylogenetic information into account. As a demonstration that utilising evo-
lutionary histories is necessary, we perform naı̈ve exclusivity testing at the clonal level by constructing a
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Figure 6: Comparison to standard exclusivity tests. Standard independence tests (top row: Fisher’s
exact test, G-test and log odds ratio (OR) test, from left to right) are heavily miscalibrated for data gen-
erated from placing mutations on lineage trees under the null. GeneAccord (bottom row: chi-squared
approximation, exact test and with Monte Carlo smoothing, from left to right), apart from some enrich-
ment with the chi-squared approximation, shows proper calibration.

contingency table for each gene pair and running standard independence testing: the Fisher’s exact test,
the G-test using the chi-squared distribution and the log odds ratio test with the normal approximation.
To generate data we sampled random binary trees each with 10 inner branches and uniformly distributed
20 mutations across those branches to create 10 clonal genotypes per tree. We collated sets of 10 trees,
corresponding to gene pairs observed in 10 patient samples, and ran the standard independence tests
along with GeneAccord. The entire procedure was repeated 400 times.

As the mutations are interchangeable in their random placement in the trees, we are in the null
setting of no clonal enrichment. The standard tests, however, are very heavily confounded and find
significant results (at the 5% level) roughly half the time (Figure 6, top row). Not taking the underlying
tree structure into account, and treating the clonal genotypes as independent observations, therefore leads
to spurious exclusivity and co-occurrence patterns. GeneAccord’s exact test remains properly calibrated,
as evidenced with the Monte Carlo smoothing, while there is a slight enrichment with the chi-squared
approximation (Figure 6, bottom row).

AML gene pairs We ran the GeneAccord algorithm on the cohort of 123 AML patient samples
from Morita et al. (2020) whose evolutionary histories have been reconstructed with the single-cell
phylogeny method SCITE (Jahn et al., 2016). The results, summarised in Table 1, show 6 gene pairs
with significant evidence of clonal exclusivity, and 2 gene pairs with co-occurrence.

One clonally exclusive gene pair is between the two IDH genes, while the other 5 involve the
genes FLT3, NRAS, KRAS and PTPN11, which affect the receptor tyrosine kinase (RTK)/Ras GTPase
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Table 1: GeneAccord results for the AML cohort (Morita et al., 2020). Ranked list of the gene
pairs tested with the GeneAccord algorithm on the cohort of 123 AML patient samples. For each gene
pair, the column n is the number of patients exhibiting both gene mutations, ncx the number of times the
genes are clonally exclusive. ∆ is the clonal exclusivity score indicating enrichment of clonal exclusivity
(negative) or clonal co-occurrence (positive). LLR is the log-likelihood ratio statistic, p is the p-value
and q the adjusted p-value after Benjamini-Hochberg correction. Linear trees which are not informative
for the testing have been excluded. Only gene pairs in more than 3 patient samples are included.

Rank Gene pair n ncx ∆ LLR p q
1 NRAS PTPN11 8 8 -∞ 141.64 0.00042 0.0088
2 FLT3 NRAS 8 7 -2.704 93.78 0.0021 0.022
3 NPM1 PTPN11 8 0 ∞ 90.40 0.0059 0.034
4 KRAS NRAS 9 8 -2.434 77.00 0.0069 0.034
5 KRAS PTPN11 4 4 -∞ 79.94 0.0092 0.034
6 FLT3 KRAS 4 4 -∞ 76.86 0.011 0.034
7 FLT3 NPM1 11 0 ∞ 81.31 0.011 0.034
8 IDH1 IDH2 4 4 -∞ 67.46 0.017 0.045
9 KRAS NPM1 5 0 ∞ 58.62 0.040 0.092
10 FLT3 PTPN11 7 5 -1.756 41.64 0.055 0.115
11 NPM1 NRAS 11 2 1.321 29.17 0.129 0.246
12 IDH2 PTPN11 4 0 ∞ 31.22 0.191 0.303
13 PTPN11 WT1 5 3 -1.469 20.28 0.193 0.303
14 DNMT3A FLT3 4 0 ∞ 24.64 0.202 0.303
15 IDH2 NRAS 6 3 -0.828 0.908 0.270 0.379
16 IDH2 NPM1 7 1 1.098 12.47 0.314 0.413
17 DNMT3A NPM1 5 1 0.618 0.326 0.495 0.578
18 IDH1 NPM1 5 1 0.847 0.635 0.496 0.578
19 DNMT3A IDH2 4 1 0.521 0.179 0.780 0.804
20 FLT3 IDH1 4 1 0.297 0.066 0.791 0.804
21 FLT3 IDH2 5 1 0.407 0.137 0.804 0.804

(RAS)/MAP Kinase (MAPK) signalling pathways. Clonal exclusivity would align with functional re-
dundancy making the mutations interchangeable, though having several mutations in parallel lineages is
evolutionarily more complex than sharing a single mutation in an ancestral clone. The significant clonal
exclusivity of these gene pairs may then point to stronger effects like cooperation across the clones or
synthetic lethality where having co-occurring mutations in the same lineage leads to strong decrease in
viability of the tumour clone (Unni et al., 2015; Varmus et al., 2016).

We observe significant co-occurrence of NPM1, the most frequent mutation in the cohort, with
both PTPN11 and FLT3. There is a strong interplay between NPM1, FLT3 and age in terms of survival
prognosis (Juliusson et al., 2020), and proven biological cooperation in AML between the genes (Mupo
et al., 2013; Mallardo et al., 2013; Rau et al., 2014).

Discussion

We have introduced GeneAccord as a novel statistical framework to systematically analyse the subclonal
mutation patterns in cohorts of tumour patients. By introducing a null model of the mutations randomly
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placed in the evolutionary histories of each patient, we created a new exact test to assess how unusual
the subclonal patterns are across the cohort. We evaluated the calibration and power of the test. For
larger numbers of patient samples exhibiting the same pair of genes, the exact test becomes more com-
putationally intensive, while utilising the asymptotic chi-squared distribution becomes better calibrated
and is computationally cheap. We focussed on clonal exclusivity at the gene level, but the method ap-
plies to any marker that can be assigned to the clones in the architecture of each tumour, for example to
pathways by mapping from mutations to pathways (Moore et al., 2021) or from differentially expressed
genes to pathways.

We detect pairs of genes or pathways that have an elevated or depressed rate of mutating in dif-
ferent clonal lineages of the same tumour. There are several possible biological explanations for such
mutational patterns. For clonally exclusive gene pairs occurring in separate co-existing clones, the two
clones could have complementing phenotypes and cooperate or mutually benefit each other, for instance,
by sharing diffusible factors. Another possibility is that the two genes of a clonally exclusive pair are
synthetically lethal and that both genes being mutated in the same cell would lead to a disadvantageous,
and maybe even lethal, phenotype. The two clones may also be the result of parallel convergent evo-
lution where both clones exhibit the same phenotype by different mutations. The specific subclonal
mutation pattern may also depend on the evolutionary subtype (Turajlic et al., 2018). In order to gain a
better understanding of possible reasons for the clonally exclusive pattern, it is important to examine the
biological functions of these genes and pathways in more detail. A definite proof of such interactions
then requires future experimental studies in vitro or in vivo. Here, we have developed and applied a
new computational approach to identify such gene (or pathway) pairs that are unlikely to be generated
by random chance alone. As such, the GeneAccord method will be useful in finding and prioritising
candidate cooperative tumour clones in cancer patient cohorts.

While many cancer-related mutually exclusive gene pairs have been previously identified across
cohorts at a bulk or consensus level, finding such pairs within a single tumour and its clonal architecture
has received less attention. Especially with the high resolution of multi-region bulk and single-cell
sequencing we can now better reconstruct the evolution histories of tumours for downstream analyses
as performed here. As the panels used for high-throughput single-cell sequencing increase in size and
coverage we can expect more detailed tumour phylogenies and better clonal resolution to provide more
power to detect clonal exclusivity patterns. For example, in the current cohort of AML patients many
exhibit only a handful of mutations among the panel sequenced and often in a linear order. These
samples are not informative for our exclusivity testing reducing our effective sample size. On a related
front, our testing is conditioned on the observed tumour phylogenies, but the phylogenetic structure itself
may be the result of clonal interactions and shed further light on them. As a future extension we could
integrate our testing with evolutionary modelling to extract additional signals of subclonal cooperation.
In particular, linear trees are uninformative for the GeneAccord test, whereas such topologies may be
favoured with co-occurring gene pairs. Currently we focused on testing genes pairwise, and another
possible extension would be to consider larger sets of genes and detect more generalised (higher order)
clonal exclusivity patterns.

Looking ahead, combined single-cell sequencing of the exome and transcriptome (Macaulay
et al., 2015) will allow the assignment of differentially expressed genes to specific clones. Alternatively,
matching multi-omic profiling of the different cells from the same sample, for example, through match-
ing expression profiles and copy number states (Campbell et al., 2019) on evolutionary trees (Kuipers
et al., 2020), would provide a transcriptomic profile for each clone. This would enable a GeneAccord
analysis on the transcriptomic level. Therefore, with single-cell data, one could perform a combined
analysis using various omics layers including differentially expressed genes, as well as copy number
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and epigenetic changes. This would allow for a more holistic portrait of the subclonal alteration profiles
and potentially reveal more synergies between clones that could inform the design of future treatments.

Methods

GeneAccord overview The input data to the GeneAccord algorithm are the mutated gene-to-clone
assignments from a cohort of cancer patients. These are obtained by running phylogenetic tree inference
methods, for example on single-cell sequencing data. We utilised the trees inferred by SCITE (Jahn
et al., 2016) for the cohort of 123 AML patient samples (Morita et al., 2020).

In general, there is uncertainty in the tree structure learned from sequencing data. Therefore, our
algorithm was designed to allow as input multiple gene-to-clone assignments per patient, for example
by sampling from the posterior distribution of trees. The tree inference designates point mutations to
individual clones, while mutations can then be mapped to genes or pathways using existing pathway
databases. Our statistical framework can be applied on the gene level, or on the pathway level to detect
clonally exclusive pairs of pathways. We focus on the gene case here.

Likelihood ratio test To test if gene pairs have a different rate of clonal exclusivity compared to
typical genes, we first compute the background rate of clonal exclusivity for each patient i

ri =
# gene pairs on different branches

# gene pairs
(1)

When we have a sample of trees for the patient, we average this rate across the trees. Then for each gene
pair (j, k), we look at the clonal exclusivity of gene j and gene k among the patient samples that possess
both somewhere in their trees. For each patient i, we compute

O
(j,k)
i =

# trees with gene j and gene k clonally exclusive
# trees

(2)

When we have a single tree for patient i, this quantity will be either 0 or 1. Under the null model that
genes are placed randomly on the trees for each patient, the likelihood that a gene pair will be exclusive
is ri while the likelihood of co-occurrence is (1 − ri). The log-likelihood of the observed exclusivity
patterns of the gene pair is then

l
(j,k)
0 =

n∑
i=1

[
O

(j,k)
i log(ri) +

(
1−O(j,k)

i

)
log(1− ri)

]
(3)

where the sum is only over patients with both genes present. For the alternative model, we allow the
clonal exclusivity rates to differ for the gene pair. To ensure that the shifted rates are between 0 and 1,
we perform the shift in the logit space and define the shifted rate r′i = r′i(∆) by

logit(r′i) = logit(ri)−∆ , logit(x) =
x

1− x
(4)

where the sign of the shift ∆ is chosen so that negative values indicate clonal exclusivity and positive
values indicate co-occurrence. Then we maximise the log-likelihood of the alternative over ∆

l
(j,k)
1 = max

∆

n∑
i=1

[
O

(j,k)
i log(r′i) +

(
1−O(j,k)

i

)
log(1− r′i)

]
(5)

where the dependence on ∆ is through the r′ and the maximisation is performed numerically (with the
optimize function in R). For computational reasons, we restrict ∆ to a range of ±10 since after the
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logit transformations the r′ will essentially be 0 or 1 and further increasing or decreasing ∆ to ±∞ will
hardly affect the maximal log-likelihood numerically. As a test statistic we employ the log-likelihood
ratio (LLR)

LLR = 2l
(j,k)
1 − 2l

(j,k)
0 (6)

For linear trees all gene pairs are in the same lineage and with none being clonally exclusive ri = 0. The
logit transform maps to -∞ which is unaffected by the shift of ∆ and the transformed rate r′i will also be
0. Similarly, for star trees with every gene in its own lineage and ri = 1, the shifted rates are unchanged.
These topologies therefore do not contribute to the LLR statistic, and patients with such uninformative
trees are removed from the cohort in a pre-processing step. If we denote by n the number of patients
samples with both genes, for larger n the LLR statistics will follow a χ2

1 distribution.

Exact test To be able to use GeneAccord for less common gene pairs we devise an exact test for
smaller n. When the gene pair is observed in n patient samples, there are 2n different possible binary
clonal exclusivity patterns. If we store the binary pattern in a vector b, the probability of it arising under
the null is

P (b) =
n∏

i=1

[ribi + (1− ri)(1− bi)] (7)

For each binary vector, we compute its LLR statistic. The p-value is the sum of the probabilities of the
binary vectors with a LLR statistic larger than the observed statistic. In the p-value we also include half
the probabilities of binary vectors with identical LLR statistics. This is necessary to obtain calibration
of the p-values, which we demonstrate with Monte Carlo smoothing.

Monte Carlo smoothing To better check the calibration of the exact test we wish to introduce
some smoothing into the p-value distribution. Rather than enumerating all binary vectors, we could
simply sample them proportionally to their probabilities and obtain a Monte Carlo estimate of the p-
value. In the limit of an infinite sample size this reduces to the value from the exact test, with the same
discrete effects. To smooth these effects we add some noise to the values of r for each Monte Carlo
sample by sampling them from a beta distribution with parameters νr and ν(1 − r). The parameter
ν corresponds to the amount of overdispersion or noise in the sampled rates with the limit ν → ∞
being noiseless. From the Monte Carlo samples, the p-value is the proportion of samples with a larger
LLR statistic (the probability of being equal is 0). As we take the limit ν → ∞ the median of a beta
distribution approaches the mean, so that half the Monte Carlo samples which would have the same LLR
in the exact test will be more extreme, and half less extreme. In the exact test we therefore count binary
vectors with the same discrete LLR statistic with weight half.

Computational cost After the data pre-processing, computing the LLR statistic involves opti-
mising the log-likelihood numerically while each likelihood computation is linear in n, the number of
patient samples. For the chi-squared approximation we perform a single optimisation so for each gene
pair considered the cost is O(n). The exact test involves optimising 2n log-likelihoods leading to a cost
of O(n2n). The Monte Carlo smoothed version optimises for each Monte Carlo sample, so with N
samples the cost is O(nN).

Alpha budgeting For gene pairs mutated in only a handful of patient samples, depending on the
background clonal exclusivity rates for those patients, it may never be possible to get a significant p-
value below 5% regardless of the observed clonal exclusivity patterns in the data. For each gene pair we
therefore compute, from the set of patient samples possessing both mutations, the minimum possible p-
value. If the minimum is greater than 5%, the gene pair is removed before the testing with GeneAccord
so as not to affect multiple testing corrections.
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AML cohort processing In the AML cohort (Morita et al., 2020), we start with the trees inferred
with SCITE (Jahn et al., 2016) and filtered out any clones with a frequency below 1%. Since most patient
samples only exhibit a few mutations amongst the panel of 30 genes selected, the majority of trees are
linear. Of the 123 patient samples, 35 have trees which are informative and these are retained for the
GeneAccord analysis. We then consider gene pairs which were both present in at least 4 patient trees,
of which there are 22 pairs. For one pair there was no power to detect significance so it was removed,
leaving a final set of 21 gene pairs (Table 1).

Availability of data and materials The original data was previously published (Morita et al.,
2020) and the processed data along with the analysis with GeneAccord are available at https://
github.com/cbg-ethz/GeneAccord
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