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Abstract

The control of extensive complex biological systems is considered to depend on
feedback mechanisms. Reduced systems modelling has been effective to describe these
mechanisms, but this approach does not sufficiently encompass the required complexity
that is needed to understand how localised control in a biological system can provide
global stable states. Self-Organised Criticality (SOC) is a characteristic property of
locally interacting physical systems which readily emerges from changes to its dynamic
state due to small nonlinear perturbations. Small changes in the local states, or in
local interactions, can greatly affect the total system state of critical systems. It has
long been conjectured that SOC is cardinal to biological systems that show similar
critical dynamics and also may exhibit near power-law relations. Rate Control of
Chaos (RCC) provides a suitable robust mechanism to generate SOC systems which
operates at the edge of chaos. The bio-inspired RCC method requires only local
instantaneous knowledge of some of the variables of the system, and is capable of
adapting to local perturbations. Importantly, connected RCC controlled oscillators
can maintain global multi-stable states, and domains with power-law relations may
emerge. The network of oscillators deterministically stabilises into different orbits for
different perturbations and the relation between the perturbation and amplitude can
show exponential and power-law correlations. This is representative of a basic
mechanism of protein production and control, that underlies complex processes such
as homeostasis. Providing feedback from the global state, the total system dynamic
behaviour can be boosted or reduced. Controlled SOC can provide much greater
understanding of biological control mechanisms, that are based on distributed local
producers, remote consumers of biological resources, with globally defined control.

Author summary

Using a nonlinear control method inspired by enzymatic control, which is capable of 1

stabilising chaotic systems into periodic orbits or steady-states, it is shown that a 2

controlled system can be created that is scale-free and in a critical state. This means 3

that the system can easily move from one stable orbit to another using only a small 4

local perturbation. Such a system is known as self-organised criticality, and is shown 5

in this system to be deterministic. Using a known perturbation, it will result in a 6

scale-free response of the system that can be in a power law relation. It has been 7

conjectured that biosystems are in a self-organised critical state, and these models 8

show that this is a suitable approach to allow local systems to control a global state, 9

such as homeostatic control. The underlying principle is based on rate control of 10
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chaos, and can be used to understand how biosystems can use localised control to 11

ensure stability at different dynamic scales without supervising mechanisms. 12

Introduction 13

The physical universe, in which biological systems exist, is inherently nonlinear, chaotic 14

and noisy. The concepts of dynamic stability in complex biosystems is accepted [1], 15

but not very well understood at all levels. The capacity of biosystems to control their 16

internal and external response to the chaotic environment can be contributed to their 17

ability to adapt in a nonlinear manner to the highly variable environment. The facility 18

to quickly change state, apparently scale-free, is essential to the survival of each 19

organism [1]. Furthermore, the high level stability of a larger organism must be 20

constructed from the low-level dynamic behaviour of many contributing elements, 21

organs, and cellular behaviours. In particular, the local information available to each 22

organ, cell, sub-cellular body, or other organic organisation, is severely limited with 23

regards to the global state, and is also limited in its ability to respond in a timely and 24

measured manner. Although there exists some robust understanding of the 25

mechanisms involved in global stability of an organism [2], this is certainly not the 26

case for the required complexity of local small elements collaborating in a nonlinear 27

biological system to generate a globally stable dynamic state [3]. 28

Self-Organised Criticality (SOC) is a distinct property of physical systems based on 29

the local interactions of many small components each of which contributes to the 30

global critical system [4, 5]. Depending on the field of study, there seems to exist 31

different interpretations of the meaning of self-organised criticality [6]. The concept of 32

critical behaviour, or just criticality, and its meaning have been neatly summarised by 33

Watkins et al. [7]. Irrespective of alternative means of generating self-organised critical 34

systems, the proposed mechanism within this paper is not based on a physical 35

phenomenon as such, and focuses on the mathematical interpretation of such systems 36

within dynamic systems theory. This is described by the ability of complex systems to 37

reside at an equilibrium point or critical point within their parameter space, such that 38

they will change from one state to another with only a small perturbation to the 39

system [8]. Therefore, weak perturbations of the system from external sources may 40

cause a state of change due to the critical point, where the system will evolve into the 41

new stable or unstable state. The proposed mechanism of control ensures that the 42

system remains stable, in the Lyapunov sense [9], but with uniquely different stable 43

states. 44

Small interactions within the components of a SOC system are not significantly 45

large with respect to the scale of each element, but they contribute to the global 46

critical state due to nonlinear behaviour. These nonlinear local perturbations are 47

usually observed as rapid transitions from one state to another of the global system. A 48

typical illustration is an avalanche of snow or sand, where a previously apparent stable 49

state rapidly changes to a new stable state. Similar critical dynamics have been 50

determined in biological systems, at low [10] and high levels [11], and in particular in 51

neural dynamics [12, 13]. The functional role of criticality, the self-organised and 52

self-sustaining multi-stable state of the system, appears to be mostly related to 53

network complexity, and power-law relations within those networks [14]. However, it is 54

still unclear if power-law relations are a true property of large scale complex systems 55

over the entire domain of scale [15]. Furthermore, as will be shown, the emergent 56

power-law relations may be considered only an epiphenomenon of the combined 57

response of the nonlinear oscillators, and may exist for only part of the parameter 58

domain, where the essential property of the system is stable periodic behaviour 59

throughout these perturbations. For the described systems below, the means by which 60
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the criticality may emerge is not based on the separation of timescales, but on the 61

local adjustments of the control mechanism in combination with nonlinear connectivity. 62

The method contains all three key features for a system to be in a critical state, 63

namely non-trivial scaling due to the external perturbation, spatiotemporal power-law 64

correlation in respect to the total behaviour of the network, and self-tuning to the 65

critical point where the network self-selects the periodic orbit [7]. 66

Considerable effort has been put into deciding the characteristic properties of large 67

and complex systems. Aspects, such as connectivity, and dynamics are known to be 68

important, on which the principle of Artificial Neural Networks is based. Here, it is 69

argued that the problem can be said to lie in determining how a local system, usually 70

at a much smaller scale, can contribute to a global, stable system of which they form 71

only a small part. Within dynamic systems theory, these local systems can act as 72

perturbations of the overall global system. Even if the individual components are 73

stable, the entire system may become unstable due to these perturbing elements. This 74

is commonly seen in spatiotemporal chaos, where individual elements are dynamically 75

stable, yet destabilise the entire system when weakly coupled [16]. Within biosystems 76

this property, where clusters of smaller elements contribute to the total behaviour, is 77

very common. For example, it may be seen clearly in the organs of large multi-cellular 78

organisms [17, 18]. Loss of stability in any of these localised systems may be 79

catastrophic for the entire global system. The ability to ensure that the entire system 80

remains stable may not depend on a specific supervisory element, but must be 81

provided by the cooperative nature of the constituting elements. This, in effect, 82

precludes the use of supervisory systems, even if that is a much higher order controller, 83

such as the brain [19]. This characteristic property of biological systems to exhibit 84

emergent dynamic behaviour is based on local small scale distributed dynamics 85

behaviour which collaborates to produce a higher order dynamics. In particular, the 86

ability to respond in a characteristic nonlinear manner, such as a log scale response, to 87

input [20], as well as the regulation of producing and consuming biomatter. Different 88

parts of the organism are involved in maintaining and developing the global system 89

and these small conglomerates of cells or organisms can produce types of activity 90

similar to the behaviour of larger organisations [1]. For these disparate systems to 91

cooperate effectively, it would seem that local control is not sufficient. However, if 92

these systems share properties with critical systems [21], it becomes feasible that by 93

changing the response of the local system to the external conditions, a suitable state 94

can be found that is appropriate for control to be effective at the global scale. This 95

means that the proposed mechanism of control permits local control of homeostatic 96

systems without external or supervisory approaches. 97

Homeostatic control is based on negative, as well as occasionally positive, feedback 98

of some of the components in relation to some set point. This well known concept is 99

enticingly simple, and has echoes of the older concepts of physical harmony, and well 100

balanced systems. It exists in many biological systems at almost all levels, from 101

sub-cellular molecular dynamics [22, 23], through physiological phenomena (e.g. 102

glucose and blood pressure levels) [24], neural dynamics [25], and all the way to 103

sociological behaviour. Both from experimental data and from physiological 104

experiences [26], this concept seems to be somewhat flawed. In dynamic systems 105

theory it has been shown that feedback systems can only under the strictest 106

circumstances be guaranteed to be stable. For example, it is shown that a reduced 107

system can have multiple stable states using isolated feedback loops [27] but only for a 108

specific parameter set. Positive and negative feedback loops may have both stabilising 109

and destabilising effects, depending on the shape of the Jacobian matrix for only some 110

determined stable states [28]. Lastly, even an unified control approach, emphasising 111

the possibility of hierarchical control, avoids the issue of system stability and does not 112
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consider the effect of the complexity of each of the boxes connected within various 113

feedback loops [2] . 114

It has become clear that even well known homeostatic systems are very rarely 115

stable in the dynamic sense, appearing to have multiple stable states, and do not show 116

the properties of stable systems when perturbed. This has now been encapsulated 117

within the concept of allostasis that permits multiple stable states within an 118

homeostatic system [29]. Assuming that a homeostatic system is the apparent result of 119

underlying stabilising mechanisms, rather than the mechanism itself, it may be 120

possible to explain this concept, and its limitations in a consistent dynamic systems 121

manner, using criticality [10, 21]. Employing criticality to understand dynamic 122

interactions allows the system to be highly variable, as indicated by multiple stable 123

but controlled states, and at the same time be dynamically stable in the sense that 124

each individual state does not destabilise the system. Providing dynamic stability 125

with high variability of the emerging system will allow for a better understanding of 126

the underlying mechanisms, and may provide possible ways to resolve the limitations 127

of homeostatic control that currently cannot be addressed appropriately [30]. 128

The simulations described in this paper aim to develop possible mechanisms for 129

local control that are based on minimal models but with the capability to control 130

indirectly the global state of complex systems. This has become feasible by means of 131

the Rate Control of Chaos method that ensures that the dynamic system under 132

control remains dynamically stable but allows many multiple states to co-exist within 133

the same parameter space. 134

Methods 135

Recently, it has been shown that nonlinear chaotic dynamics can be stabilised using 136

the Rate Control of Chaos method. This method adjusts the rate of evolution of part 137

of a nonlinear system such that the exponential growth of an unstable chaotic 138

oscillator is controlled into stable limit cycles. The control is estimated using the rate 139

of growth of some of the variables in proportion to the overall embedded phase space 140

of those variables. This is then applied to an exponential control function that, in 141

effect, causes the rate of change of the variable to be controlled to speed up, or slow 142

down. The proportional rate of change is unity when no control is applied or is not 143

changing exponentially [31, 32]. 144

This method may be regarded as an extension of the traditional biochemical 145

enzyme control concept by adjusting the reaction rate. The ability to control the 146

stability of biochemical reactions, by controlling the rate of reaction based only on 147

local information, allows the biosystem to function under a wide range of conditions. 148

Furthermore, it has been shown that this mechanism can be extended further to 149

control higher level spatiotemporal chaos, even if the underlying dynamics of each 150

element is chaotic in its own right [32]. The individual elements, as well as the total 151

observable system, are stable in the sense of Lyapunov stability. This means that the 152

system will reliably return to the same area of phase space relative to its controlled 153

dynamics, although it does not necessarily follow that this is the same as the 154

uncontrolled chaotic domain. Therefore, the RCC method does not eliminate entirely 155

the chaotic properties of the underlying nonlinear system, but applies limited localised 156

control to the system to maintain an apparently stable system. The controlled system 157

still has many properties of the nonlinear system; it can respond nonlinearly to 158

perturbations and can be weakly chaotic. This is illustrated in Fig 1A, where the RCC 159

controlled system of a bienzymatic model, described below, is controlled into a stable 160

orbit. In Fig 1B is shown the local Lyapunov estimates for the controlled system, 161

demonstrating weak chaos. The phase space of both the controlled and uncontrolled 162

April 27, 2021 4/15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442730
http://creativecommons.org/licenses/by/4.0/


system can be seen in Fig 1C. 163

The nonlinear model of a bienzymatic cycle used in this paper by Berry [33], 164

described by (4) to (7), has been shown to be controllable using the Rate Control of 165

Chaos (RCC) method, such that the control allows the stabilisation of the external 166

environment by adjusting the amount of enzyme based on the local amount of one of 167

the components f [34]. This model describes the two enzymes that control the 168

formation of extracellular matrix m from soluble filaments f . The proteinase p 169

transforms the matrix into filaments, and the transglutaminase g converts the 170

filaments into matrix. Extracellular matrix is produced by neighbouring cells rim at a 171

constant rate, and each protein decays in catalytic processes proportional to p. rim is 172

a bifurcation parameter, that may cause the system to become unstable and chaotic. 173

Application of Rate Control of Chaos, described by the quotient qf (1), and the two 174

control functions σp (2), and σg (3), can control the production of the two enzymes p 175

and g (in (6) and (7)) such that the system remains in controlled stable orbits for 176

large ranges for values of the bifurcation parameter rim. Within the subsequent 177

simulations, the model is shown as time series of the main variables m and f or phase 178

space plots of f (x-axis) versus m (y-axis). 179

Furthermore, the generic properties of a two enzymatic control of a producer and 180

consumer system, such as the formation of (extra-)cellular matrix, can be considered 181

to be representative of many biological processes where a resource is controlled by 182

antagonistic control using two enzymes. The model is not considered to be solely 183

representative of this concept, but is recognisably typical for many types of control 184

needed for biological control processes. 185

qf =
f

f + µf

(1)

σp(qf ) = fp e
(ξp qf ) (2)

σg(qf ) = fg e
(ξg qf ) (3)

dm

d t
= kg

f g

KG + f
−

mp

1 +m
+ rim (4)

d f

d t
= −kg

f g

KG + f
+

mp

1 +m
−

f p

1 + f
(5)

d p

d t
= σp(qf )γ

fn

Kn
R + fn

− ka p
2 (6)

d g

d t
= σg(qf )β

f l

K l
S + f l

− kdeg
g p

Kdeg + g
(7)

The Berry model parameters are as follows; 186

γ = 0.026, β = 0.00075,KR = 4.5,KS = 1,KG = 0.1,Kdeg = 1.1, kg = kdeg = 0.05, 187

ka =
kdeg

Kdeg
= 0.0455 and the Hill-numbers l = n = 4. For different values of the 188

bifurcation parameter rim in (4), the model exhibits a wide range of dynamic 189

behaviour, including periodic cycles, bistability and chaos [33]. This parameter is kept 190

for all oscillators within the chaotic domain. External input is provided to this 191

parameter in the perturbation experiments (8), and this parameter is used to connect 192

the different oscillators together using a scaled relative contribution from all the other 193

oscillators (i.e. no self-connections): 194

riim =

n
∑

k=1,k 6=i

wk mk + ǫ (8)
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where wk the connectivity strength for the oscillator which can be either 0.00011 , 195

0.00012, or 0.00025, and remains within the chaotic domain. ǫ is a uniform distributed 196

perturbation term drawn from the domain [−1, 1] and scaled to the connectivity 197

strength of each unit. The perturbation used for the oscillators is the same random 198

uniform distributed value applied to each oscillator, but is scaled by the randomly 199

chosen values [7.5, 1, 8, 3.25], although each column in Fig 1F has the same 200

perturbation value to ensure that the network is not symmetric. Furthermore, the 201

perturbation is redrawn after a certain number of evolution steps, allowing the system 202

to be explored for different values of perturbation, resulting in different oscillations. 203

The connectivity strength values for each oscillator may vary, and this affects the 204

dynamics, but not the stability. This is shown in the simulations with stepwise 205

increase of the connectivity strength, starting from 206

wk = [0.0001, 0.0002, 0.0003, 0.0004] for each column, and increased after 105 time 207

steps by 0.00005 (Fig 2C). The connectivities were therefore kept within the chaotic 208

domain of the underlying oscillators, and further work is under way to demonstrate 209

the utility of the connectivity strength within these models. The RCC method can be 210

shown to stabilise spatiotemporal patterns, which may become unstable due to local 211

nonlinear interaction, and is effective even when the underlying systems are 212

chaotic [32]. The advantage of this method is that it allows nonlinear systems to be 213

stabilised into periodic stable dynamics based only on the local dynamics of each 214

individual oscillator. The Rate Control of Chaos parameters were also kept constant 215

in these models, but can be varied to change the shape of the local oscillator. For the 216

first perturbation experiments (described in figures 1-4), the control parameters in (1) 217

are µf = 2, and in the RCC functions for each of the enzymes p (2) and g (3) are 218

ξp = −1, fp = 1, ξg = −1, fg = 1. In the criticality experiments with global feedback, 219

the control is enhanced by ξp = −3, and ξg = −3, with no other changes. In the 220

experiments with 64 oscillators (see figure 4), the connectivity strength for each 221

oscillator was a randomly assigned unique value between 1 and 10. This was to show 222

that the parameters do not need careful tuning beyond ensuring that the system is in 223

the chaotic domain, and RCC controlled. 224

Using simple finite-difference connections between the oscillators, or more 225

elaborate connectivity schemes as required, the critical dynamics can be generated. 226

The individual oscillators will adjust their local dynamics to accommodate the 227

perturbations by their immediate neighbours. The global dynamics may then become 228

critical due to the nonlinear oscillators. As shown in the result, imposing a 229

linearisation method on the connectivity scheme, such as Crank-Nicholson 230

discretisation, will remove the high frequency nonlinear behaviour and results in the 231

loss of criticality of the global state. The network of oscillating nonlinear models is 232

simulated using standard ODE fixed step integration methods. The fourth-order 233

Runge-Kutta (RK) method, as well as the higher order extensions, Fehlberg RK and 234

Prince-Dormand RK, provide suitable results with varying choice of integration step 235

size. The qualitative results are readily reproducible using any of these methods. The 236

simulation software EuNeurone, used for these models, is available as open source on 237

Github (https://github.com/biodynamical/euneurone). The model equations are 238

available on DataDryad (https://doi.org/10.5061/dryad.hhmgqnkdc) at 239

https://datadryad.org/stash/share/iWjuPsoa_PXLyK0cpOx8JPZUSV1MlNqsGvdiyK0iIaQ 240

The total unweighted dynamics is determined by the sum of the individual 241

oscillators i for a total of n, as could be seen by a remote observer for whom the 242

individual oscillators are not readily visible. 243
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M =
n
∑

i

mi (9)

F =

n
∑

i

fi (10)

The summed total of the variables m for each of the oscillators is added to Eq (8) 244

for the models with global feedback, scaled either negatively or positively as 245

appropriate (vk = ±0.00001), to ensure that the individual oscillator is within the 246

controlled domain. This feedback is added during the evolution of the differential 247

equations, so that M is due to the instantaneous value determined at each integration 248

step, and therefore not merely equal to the current summed input of the previous time 249

step reflecting the local instantaneous state of the system. 250

riim =

n
∑

k=1,k 6=i

wk mk + ǫ± vkM where vk < wk (11)

The Eq (11) shows that feedback for this model in effect reduces the connectivity 251

as provided to rim for each oscillator, but because of the weaker feedback, it does not 252

disrupt the network such as much stronger connectivity or little connectivity would 253

effect. 254

The log-log plots are generated by the maximal peak values of the unweighted sum
max (M) during a single oscillation, and used to determine the power plot as
estimated using the power-law estimate function according to Clauset et al. [35]. This
method estimates the scaling parameter α from the power law probability distribution
p(x) = Pr(X = x) = Cxα using the method of maximum likelihood. This is
determined using the numerical maximisation of the logarithmic likelihood function
described by

L(α) = −n ln ς(α, xmin)− α

n
∑

i=1

xi (12)

The minimum bound for xmin for these estimates is determined by the 255

Kolmogorov-Smirnov statistic, that is the maximal distance between cumulative 256

distribution functions of the data and the fitted model. It is noted that these methods 257

would require a significantly large data set for reliable estimation. Within the shown 258

simulations, these estimates are primarily to demonstrate that the overall probability 259

of a power law relation is present, but its actual value is not particularly relevant to 260

the argument, given that these models are not at all intended to describe a real 261

physical biosystem as such. 262

Determining the fitness of any model that can describe the datasets is more readily
achievable for probabilistic approaches that allow the preplanned comparisons between
models. The goodness of fit, as used above, employing the method of maximum
likelihood, is only appropriate to the extent that it allows the model to be reconciled
with the options available, in this case the existence of some power law relation. It
also suffers somewhat from the ability to be a suitable predictor due to possible
overfitting. Similar complexity measures for model estimates are the Bayesian
Information Criterion (BIC) and the Akaike Information Criterion (AIC) that can
indicate the best fit of log-likelihood, often used for predictors in regression models.
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These can be determined as follows, based on the Mean Squared Error.

aic = −n ln

(

1

n

n
∑

n=1

(xi − x̂i)
2

)

+ 2 k (13)

bic = −n ln

(

1

n

n
∑

n=1

(xi − x̂i)
2

)

+ k ln(n) (14)

(15)

where k is the number of parameters of the estimated model, and x̂i is the estimate fit. 263

The choice of underlying RCC controlled model is itself also not critical. It has 264

been shown that other RCC controlled oscillators can produce similar critical states, 265

e.g. using the Rössler model [31], but this model has lower adaptability due to the 266

absence of multiple nonlinear terms, preventing the system to respond quickly to the 267

perturbations and nonlinear interactions. 268

Results 269

Any perturbation of the controlled system appears to the RCC method as chaotic 270

change, and it therefore adjusts the rate to compensate. If this is due to noise or an 271

external input, the controlled orbit or state will vary in accordance to the control but 272

remain stable. This allows the construction of networks of controlled nonlinear 273

oscillators that can adjust their dynamic behaviour due to external input. The ability 274

to control dynamics based on local information alone also allows the construction of a 275

mechanism that is capable of control at different scales, due to the fact that each 276

contributing element provides only enough local control to maintain its own stable 277

environment. The cumulative effect, given that these are controlled chaotic elements, 278

would then provide amplification of the control into the global domain. This control of 279

local spatiotemporal dynamics is a further demonstration of interacting rate controlled 280

chaotic systems that exhibit emerging properties which are associated with 281

self-organising criticality with scale-free relations. 282

Local control provides global stability 283

To illustrate this emerging global controlled behaviour, a simulation of 16 coupled 284

RCC controlled chaotic oscillators is used. These oscillators receive local random 285

external perturbations (i.e. external to these oscillators), causing them to change their 286

local dynamics in response. To visualise this, in Fig 1D is shown a short series of only 287

7 perturbations, where the perturbations are randomly varied every 20,000 time steps. 288

Note that after only very short transients, the total global behaviour of the unweighted 289

sum of the oscillators becomes stable in a different oscillation each time. The phase 290

space plot of a sample of 24 randomly perturbed oscillations is shown in Fig 1E, where 291

the total unweighted sum of the two main variables of each oscillator are plotted, with 292

the transients removed. Each different coloured line represents one of these stable 293

oscillations, showing changes in the dynamics, but only depending on these 294

perturbations. The individual oscillators that combine to generate the global stable 295

dynamics are shown in phase plots in Fig 1F, where each coloured line represents the 296

stable oscillation under the perturbed conditions, with transients removed. 297

The number of oscillators in the network naturally affects the amplitude of the 298

summed oscillators, but the critical multi-stability property of the network is 299

preserved. This is shown in Fig 2A, where the log-log plot of three networks are shown. 300

The lower graph shows total behaviour M of 8 coupled oscillators, the middle of 16 301
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Fig 1. Dynamic controlled behaviour of the Berry model
A Example of the chaotic Berry model with control enabled at the dotted line, the
system quickly stabilises into a two orbit. Top panel shows the modelled soluble
filament f , the bottom panel the fixed matrix m in time. B Lyapunov estimates of
the model in Fig 1A, showing small positive and small negative values. The control,
enabled at the dotted line, does not eliminate the chaotic state, but changes the
system into a stable oscillation. C Phase space plot of the chaotic model in blue, with
the RCC controlled two orbit superimposed in gold, F versus M . D Total unweighted
sum M from sixteen weakly coupled RCC controlled oscillators, with random external
perturbations at fixed intervals showing 7 stable oscillations after very short transients.
E Phase space plot F versus M , of 24 stable oscillations based on the total
unweighted sum of the sixteen weakly coupled oscillators. Each coloured line is a
single stable oscillations, as can be seen in time in Fig 1D. F Phase space plots of the
sixteen systems F versus M , where each coloured line is a single stable oscillation,
different due to the random external perturbations (transients removed).

oscillators (same network as shown in figure 1, but with different random 302

perturbations) and on top, 32 coupled oscillators. The curve fits that are 303

superimposed on the three sample behaviours show the power relations 304

M(8) = 26.88 ǫ−0.14, M(16) = 15.19 ǫ−0.22, and M(32) = 32.48 ǫ−0.29. To show that 305

the underlying relation has some power law relation rather than an exponential or 306

similar relation, the power law estimation functions for each of the three samples of 307

coupled networks were determined [35]. In Fig 2B for the 8 coupled oscillators with a 308

minimum of M = 64.5, and slope α = 7.05. In Fig 2C for the 16 coupled oscillators 309

with a minimum of M = 99, and slope α = 5.85, and in Fig 2D with a minimum of 310

M = 184.5, and slope α = 5.27. Due to the limited number of oscillators used, the 311

power law function does not cover many decades. The results show that the near 312

power law relation holds for several sizes of networks; large scale modelling, which is 313

computationally expensive, will need to show the full range of scale-free behaviour. 314

Fig 2. Network size in relation to power law due to random perturbations.
A Log-log plot of the total unweighted sum M from 8 (blue), 16 (green), and 32
(gold), weakly coupled RCC controlled systems, with random external perturbations.
The power curve fits are M(8) = 26.88 ǫ−0.14, M(16) = 15.19 ǫ−0.22, and
M(32) = 32.48 ǫ−0.29.B Power-law estimation function for the 8 coupled oscillators
with a minimum of M = 64.5, and slope α = 7.05. C Power-law estimation function
for the 16 coupled oscillators with a minimum of M = 99, and slope α = 5.85. D
Power-law estimation function for the 32 coupled oscillators with a minimum of
M = 184.5, and slope α = 5.27.

By modelling a simple network of controlled chaotic nonlinear oscillators, it can be 315

seen that even with random perturbations, the control allows the total system to 316

remain stable. It adapts to these perturbations by stabilising into different orbits. The 317

perturbations can still destabilise the entire system if their contribution is 318

disproportionally large with respect to the ergodic properties of the individual 319

oscillators. The number of elements affects the dynamics by allowing higher 320

amplitudes, but more importantly the system maintains multi-stable states and has 321

apparent power law relations, even for such small networks. 322

Scale-free emergent behaviour 323

To demonstrate how the network of rate controlled oscillators is capable of generating 324

apparent scale-free behaviour, the same network is used, still randomly perturbed by 325

uniform perturbations on each of the oscillators, but simultaneously the network 326

connectivity is stepwise increased. Starting with a relatively low connectivity, strong 327
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enough to maintain some cohesion between the oscillators, the connectivity between 328

the oscillators is increased stepwise at a constant rate. This is shown in Fig 3A, where 329

the unweighted sum M is shown in time, with stepwise increments of connectivity at 330

each multiple of 105 time steps. Even though the dynamics of the total system may 331

change, it remains stable throughout. Not shown is that if the connectivity becomes 332

too dominant, M will explode to a singularity. In Fig 3B is shown the total dynamics 333

of f versus m of each individual stable oscillation indicated by individual different 334

colours, with transients removed. Although at higher connectivity strengths the orbits 335

are more noisy, due to the amplification of the individual random perturbations, the 336

total system remains stable. This can be seen in Fig 3C, where the sixteen oscillators 337

are shown, for each of the incremental steps, clearly demonstrating their individual 338

stability, even at high connectivity. 339

The changes in connectivity could for most coupled dynamic systems be a source of 340

instability, often causing bifurcation phenomena. However, the local control manages 341

to stabilise each individual oscillator, based on local information alone, and thereby 342

ensures that the global system remains stable as well. The subsequent total or global 343

system also demonstrates properties of criticality, in that the total system amplitude 344

grows much faster than merely the sum of the individual elements a linear (or reduced) 345

system would show. To quantify this, the peaks M are determined (the maximal value 346

of M once stabilised past the transient), and plotted versus the amount of local 347

perturbation in Fig 3D. To demonstrate independence of the connectivity strengths of 348

this scale-free property, the data from the perturbation simulations are used, as in 349

Fig 1D. The log-log plot shows the apparent power-law relation, with a fitted power 350

curve 3.9 ǫ−0.13. The corresponding power-law estimation function is in Fig 3E, with a 351

minimum of M = 160, and slope α = 18.24, demonstrating that the data is partly 352

power distributed. It is interesting to observe that this scale-free aspect results in an 353

almost power-law relation which is characteristic for biological observations [15]. 354

Testing the hypothesis that the emergent critical system is based on the combination 355

of the RCC controlled chaotic system with weak to moderately strong connectivity, 356

the connectivity function was modified to match the standard Crank-Nicholson 357

interpolation method, using a two-by-two stencil of the local neighbourhood. The 358

peaks of M were determined based on the uniform perturbed network of oscillators, 359

and plotted against the perturbation in Fig 3F. No system parameters were modified, 360

apart from the interpolation connectivity; therefore both the individual oscillators and 361

the total system remained stable, but have lost the scale-free power relation. The 362

power-law estimation function for those data samples is in Fig 3G, with a minimum of 363

M = 41.76, and slope α = 9.55, showing no power law relation present. 364

Fig 3. Importance of connectivity in creating an RCC critical system.
A Total unweighted sum M from sixteen weakly coupled RCC controlled systems,
with random external perturbations, as well as, incremental increases in the
connectivity strengths. B Phase space plot of the total dynamic behaviour of the
perturbed systems, with incremental stepwise increases of the connectivity strengths.
Each coloured line is one stable oscillation. C Phase space plots of the sixteen weakly
coupled individual systems, with incremental increases in connectivity strengths. D
Log-log plot of the external perturbation ǫ versus the maxima of the total unweighted
sum of m. Fitted power curve in black (3.9 ǫ−0.13). E Power-law estimation of the
maxima of the network with the fitted power function (dotted line) superimposed with
minimum x(M) = 160 with slope α = −18.24. F Log-log plot of the external
perturbation ǫ versus the maxima of the total unweighted sum m with
Crank-Nicholson interpolation connectivity scheme. The fitted power curve in black
2.1 ǫ−0.32. G Power-law estimation of the maxima of the Crank-Nicholson connected
network with the fitted power function (dotted line) superimposed; minimum
x(M) = 41.76, slope α = −9.55.
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To further investigate the effect of perturbations on a larger pool of oscillators, a 365

network of 64 oscillators was individually perturbed with Normalised Gaussian 366

Distributed perturbations with mean of 0.00005 and variance of 10, to ensure that each 367

oscillator is receiving sufficiently different input. The choice of Gaussian distribution 368

to replace the uniform distribution is made to show that the approach is independent 369

of specific distributions for criticality to emerge. The resulting stable oscillations of 370

100 orbits are shown in a phase space representation in Fig 4A, where each colour 371

represents a different stable oscillation of the total behaviour of the summed variables 372

F versus M . In Fig 4B can be seen the maxima of each stable oscillation of F versus 373

M , showing that there are two distinct domains of oscillatory behaviour emerging 374

from this network. The first type is a single orbit that seems almost linearly related. 375

The second type is a two-orbit that causes an apparent cluster on the left, above the 376

apparent line. However, the underlying relation between the perturbations and the 377

effect on the total dynamic behaviour is not linear, as can be seen in Fig 4C, where 378

the total summed perturbations of the 64 oscillators is plotted against the maxima of 379

M . It becomes clear that the left part of this plot for ǫ <= 0.043 (before the dotted 380

line), exhibits a power-law relation between the total perturbation ǫ and the maxima 381

of M . This is shown in a log-log plot in Fig 4D, where superimposed are also shown 382

four curve fits. The power function 134.7 ǫ−0.328 in red is fitted to the curve for 383

ǫ <= 0.043 and clearly expresses the sub-domain where a power law relation exits. In 384

blue is shown the fit of an exponential function 715.9 e−16.89ǫ on the same domain, 385

which is clearly quite poor. The domain for ǫ > 0.043 fits a power law 5.38e+ 05 ǫ2.254 386

in orange) but also an exponential function in green 56.59 e48.26ǫ, indicating that this 387

domain does not have a power law relation, and may be exponential or simply linear. 388

Fig 4. Domains of power law relations within perturbation space of RCC

controlled Self-Organised Criticality.
A Phase space plot of M versus F of 100 stable oscillations in a 64 oscillator network.
B Plot of the maxima of F versus the maxima of M of the 100 orbits on the left.
Notice the two domains where the dynamics of the oscillators change. C Plot of the
Normalised Gaussian distributed perturbation ǫ with variance 10 versus the maxima
of M , showing that around 0.043 the oscillators change their shape. D Log-log plot of
the Normalised Gaussian distributed perturbation ǫ versus the maxima M , same as
the panel on the left. Additionally, the curve fits for the power functions 134.7 ǫ−0.328

(red), 5.38× 105 ǫ2.254 (orange), and exponential function fits 715.9 e−16.89ǫ (blue),
56.59 e48.26ǫ (green). This shows clearly that the system can have a power law relation
for limited size perturbations, and a non-power law relation otherwise.

These models are based on deterministic behaviour of the perturbed network which 389

itself is based on controlled chaotic oscillators. The models are only perturbed from 390

one state to another by the random perturbations, and no noise is included in these 391

systems. The resulting behaviour is therefore fully stable deterministic and is 392

completely described by the RCC control. It is possible to determine the log-likelihood 393

of the data for model selection. The relevance of probabilistic model selection 394

approaches is very limited to this type of modelling because statistics such as AIC are 395

designed for preplanned model estimates that do not take into account the model 396

parameter space, which for a large set of nonlinear differential equations is 397

extensive [36, page 216]. It should also be considered that the underlying model is not 398

based on probabilistic methods, and that the emerging power or exponential relation 399

causes great variance in the data, which greatly amplifies the mean squared error. As 400

a representative example of such estimates, the BIC and AIC were determined for 401

both the power fit model, and the exponential fit model on the data shown in Fig 4D . 402

The model fits with samples for ǫ < 0.043 are 135.5 ǫ−0.3277, and 712.7 e−16.65 ǫ. In 403

this case, for the power fit, the Mean Square Error is 46.2, BIC is −247.98., AIC is 404

−254.64; and for the exponential fit MSE is 374.74, BIC is −390.33, AIC is −396.98. 405

Despite the relatively large value of MSE, the power fit still seems better suited than 406

the exponential fit. For the model fits with samples ǫ > 0.043, the fits are 407
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5.387e+ 5 ǫ2.254, and 56.59 e48.26 ǫ. The corresponding values for the power fit, MSE is 408

304.47, BIC is −183.85, AIC is −188.43; and for the exponential fit, MSE is 330.63, 409

BIC is −186.65, AIC is −191.23 ,which shows there is little difference in these 410

estimates for model selection, possibly favouring the power fit somewhat. 411

It can also be concluded from this set of simulations that the relation between 412

perturbations, the number of oscillators, and connectivity strengths is not 413

straightforward. However, the resulting system of connected oscillators is dynamically 414

stable, can exhibit different types of emerging relations between the total amplitude of 415

the oscillators and the perturbations, and also that the emerging power law relations 416

are an epiphenomenon of the network’s attempt to stabilise its overall behaviour in 417

response to external random perturbations. 418

These apparent power-law relations provide a strong indication that the nonlinear 419

behaviour of each oscillator causes perturbations such that the total behaviour of 420

these oscillators is much stronger than the individual contributions they provide. This 421

does not seem to be based on the onset of synchronisation due to changing coupling 422

strengths, because it occurs for constant coupling and there is no critical coupling 423

strength for which the relation holds. 424

It has already been shown that chaotic units may generate a critical system [37], 425

where the effect of connectivity over time is shown to have a power-law relation 426

between connectivity and the connected chaotic systems. Here, the connectivity level 427

of k-connectedness is critical to establish the power law stability. Therefore, a locally 428

controlled mechanism of generating critical rate controlled systems, as described in 429

this paper, may provide the necessary dynamics for complex interactions found in 430

biological systems. For example, local producers of a protein can regulate their 431

behaviour on local information alone, but still provide the effect needed by remote 432

consumers of the protein. This may be particularly important for regulatory processes 433

and may provide the key elements of a feedback loop process that responds rapidly to 434

changing global behaviours. 435

Criticality as a homeostatic process 436

Adapting the network of sixteen coupled oscillators to include a global feedback of the 437

total dynamic behaviour is possible by adding the scaled total behaviour to the 438

external perturbation of each oscillator, ensuring that the perturbed input to each of 439

the oscillators is not too great to push it out of the controlled domain. By making this 440

feedback either positive or negative, the effect of global input to the individual 441

oscillators as negative and positive feedback loops is shown. In Fig 5A is shown the 442

total dynamics of the network, with stepwise increased connectivity and positive 443

feedback, but without further random perturbations. In this case, the different stable 444

orbits due to the increased connectivity are amplified to higher totals than without 445

the positive feedback. The corresponding power-law estimation function, based on the 446

maximal values of these orbits, shows a strong power relation between the connectivity 447

and the total amplitude of the oscillations (Fig 5B). Conversely, if the feedback of the 448

total behaviour is negative, the total dynamics is more compressed, as can be expected 449

(Fig 5C). Also, the individual oscillations are more limited, with less drift. The 450

power-law estimation function of the negative feedback (Fig 5D) shows, interestingly, 451

that the critical system has lost its power-law relation and appears more linear. This 452

would suggest that, just like in classical homeostatic negative feedback control, the 453

global negative feedback can stabilise individual global states. This in effect 454

counteracts the local connectivity, but at the expense of less dynamic capabilities. Due 455

to the currently available network connectivity the network has become less complex. 456

Conclusion 457

Self-Organised Criticality emerges from local nonlinear interactions of Rate Control of 458

Chaos controlled elements. This allows critical states to exist where the global 459

dynamics, as expressed by the total unweighted sum of each element, is dynamically 460

stable. Multiple states are achievable for the dynamic system, driving the system 461

towards the desired global state by perturbing individual oscillators. Adjusting the 462

local connectivity, in effect recruiting more elements, allows different dynamic states 463

to emerge. Increasing the number of elements allows domains of different relations 464
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Fig 5. Global positive or negative feedback causing enhancement or loss of

power relations.
A Total dynamic behaviour of a network of sixteen coupled rate controlled oscillators
with global positive feedback. The feedback pushes the total dynamic behaviour to
new heights. Each coloured line is one stable oscillation with positive feedback. B
Power-law estimation of the maxima of the positive feedback network with the fitted
power function (dotted line) superimposed with minimum x(M) = 360.24 and slope
α = −6.74. C Total dynamic behaviour of a network of sixteen coupled rate
controlled oscillators, differently coloured lines indicate different stable oscillations,
with negative global feedback. The negative feedback reduces the behaviour. D
Power-law estimation of the maxima of the negative feedback network with the fitted
power function (dotted line) superimposed with minimum x(M) = 435.69 and slope
α = −59.29.

between perturbations and total behaviour to emerge. These apparent relations, 465

whether power-law, exponential or linear relations, appear due to the networks’ 466

self-stabilising properties. Given that he primary aim of any biological system is to 467

maintain stability, the exact nature of the emerging relation becomes therefore a mere 468

epiphenomenon of the ability of the system to stabilise and control its complex 469

dynamics. Furthermore, providing localised global feedback may allow other critical 470

states to also become available, or allow the control of global behaviour into a more 471

limited stable domain. 472

The described models are clearly in a critical dynamic state, and can readily 473

change state due to local perturbations. This critical state is the result from the RCC 474

controlled systems with local interaction between the units and is therefore 475

self-organising. Lastly, the emerging power law relations and other relations are the 476

result of the nonlinear interactions of the oscillatory units. Therefore, these models are 477

said to describe Self-Organising Criticality because it matches the characteristic key 478

features: non-trivial scaling, spatiotemporal power-law relations (domain bound), and 479

self tuning to the critical state [7]. 480

Biosystems can therefore emerge from the localised interactions between controlled 481

nonlinear systems, creating the perfect combination of complexities that supersedes 482

the limitations of linear systems, avoids the instability of chaotic nonlinear systems, 483

and limits the domain of self-emergent critical systems. This opens up the possibility 484

of innovative research in controlled nonlinear biological dynamics with direct 485

applications to health, engineering control, and human wellbeing. 486
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