1 Title

2	Visualization of ecological successions in lakes subdivided by volcanic
3	eruption at Akan Caldera, Hokkaido, Japan
4	
5	Short title
6	Visualization of ecological successions in caldera lakes
7	
8	Author list
9	Isamu Wakana ^{1*} , Yasuro Kadono ² , Jotaro Urabe ³ , Yuki Tamura ⁴ , Yoshifusa
10	Suzuki ⁵ , Hiroyuki Yamada ⁶ , Yoichi Oyama ⁷ , Keiji Wada ⁸ , Takeshi
11	Hasegawa ⁹ , and Masashi Ohara ¹⁰
12	
13	¹ Kushiro International Wetland Center, Kushiro, 085-8505 Japan
14	² Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
15	³ Graduate School of Life Science, Tohoku University, Sendai, 980-8577
16	Japan
17	⁴ Kankyo Consultant Co., Ltd., Kushiro-cho, 088-0606 Japan
18	⁵ Kaiyoutansa Co., Ltd., Otaru, 047-0036 Japan

19	⁶ Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589
20	Japan
21	⁷ Faculty of Life and Environmental Sciences, University of Tsukuba,
22	Tsukuba, 305-0006 Japan (Present address: Kushiro City Board of
23	Education, Kushiro, 085-0467 Japan)
24	⁸ Hokkaido University of Education, Asahikawa Campus, Asahikawa, 070-
25	0825 Japan
26	⁹ Department of Earth Science, Ibaraki University, Mito, 310-0056 Japan
27	¹⁰ Graduate School of Environmental Science, Hokkaido University, Sapporo,
28	060-0810 Japan
29	
30	* Corresponding author
31	E-mail: akantbe1@seagreen.ocn.ne.jp

33 ABSTRACT

34It is unfeasible to continuously observe ecological succession in lakes because of the long time-scales involved. Thus, the process has been 35inductively deduced by comparing many lakes with different succession 36 states, or indirectly simulated by tracking studies of smaller water bodies, 37experiments using microcosms or mesocosms, and reconstruction of lake 38 39 history by sediment analysis. However, the reality of succession processes in large lakes with slow succession is not well understood, and new approaches 40 are needed. Theoretically, in a group of large and small lakes of similar ages 41and with similar initial and watershed environments the rate of nutrient 42accumulation in each lake depends on the ratio of lake size to the watershed 43area, and the lakes are predicted to evolve to different trophic levels over 44time. Here, we tested this hypothesis on the 10 lakes of varying sizes in 45Akan Caldera, Japan, which were formed thousands of years ago by 46 fragmentation due to volcanic eruptions within the caldera. Topographic 47and water quality studies found that the ratio of lake size (area and volume) 4849to accumulated watershed area, expressed logarithmically, had a positive linear regression with the total phosphorus concentration, an indicator of 50

51	trophic level. The trophic levels of the lakes were diverse, including
52	oligotrophic, mesotrophic, and eutrophic types in the traditional "lake type"
53	classification based on total phosphorus and chlorophyll-a concentrations.
54	Furthermore, 21 species of aquatic macrophytes were observed by a diving
55	survey, and the species composition was classified into five groups
56	corresponding to the trophic status of the lakes, indicating a conventional
57	"hydrarch succession". The diversity of water quality and aquatic vegetation
58	in a group of lakes with similar origins paves the way for new comparative
59	studies of lakes, including large lakes.

60

61 Introduction

Ecological succession within lakes is not only a major component of
freshwater ecology and limnology, but also a platform for diagnosis and
management of worldwide deteriorating aquatic environments resulting
from human activity since the 20th century [1-7]. In general, lake succession
proceeds thusly: when a lake is first formed the water is oligotrophic with a
paucity of biota, but the trophic level subsequently increases, as trophic
substances inflow from the watershed, and the lake basin shallows from

69	accumulation of sediments. The diversity of biota and biomass increase or
70	fluctuate throughout this process, and eventually the lake attains the state
71	of bog or marsh [1-4, 8]. Historically, Forel, the "father" of limnology [4],
72	explained this transition as analogous to human ageing [9], and this concept
73	has been widely accepted due to both intuitive and experiential evidence [1,
74	2, 4, 10]. Forel also pointed out that it is impossible to follow a normal lake's
75	evolution, because of the immense time-scales required for a lake to
76	disappear by sedimentation [9]. Therefore, this general picture of long-term
77	succession has been indirectly formed by comparing many lakes with
78	different trophic conditions [10-16], follow-up survey of small-scale dams or
79	reservoirs [2, 17], experimental microcosms and mesocosms [4, 18-22], and
80	historical reconstruction of sedimentation processes [5, 8, 23]. Despite these
81	efforts, however, the perception of ecological succession in large lakes still
82	relies on many assumptions, due to their long ageing process [2, 18, 24-26].
83	Is there any other approach to visualize lake succession processes,
84	including within large lakes? In principle, the rate of eutrophication, a
85	major factor in ecological succession, is determined by lake size, watershed
86	area and trophic condition of the watershed [4] Therefore, if trophic

 $\mathbf{5}$

87	conditions are equal among different watersheds, the eutrophication rates,
88	i.e., the rates of nutrient increase, should vary depending on the ratio of the
89	lake size to the watershed area in each lake. In addition, given a group of
90	lakes with similar formation time and initial environment, the
91	concentrations of nutrients is expected to change with a positive linear
92	regression between the ratios of lake size to watershed area. As described,
93	these lakes can be considered as a series that evolved into different trophic
94	levels, providing a new approach to visualizing lake succession. In practice,
95	however, no study has yet demonstrated this relationship, because nutrient
96	loading from the watershed is influenced by indigenous variables, such as
97	land form, soil, erosion, local climate (temperature and rainfall), vegetation,
98	and land use (farmland, factory and urbanization) in addition to the time
99	effect [1-4, 10]. We therefore offer insight into this problem by comparing a
100	group of lakes within a large caldera. The lakes of Akan Caldera, Hokkaido,
101	Japan, were formed by volcanic eruptions thousands of years ago, which
102	divided a huge caldera lake into several lakes of varying sizes [27-29]. These
103	lakes share a similar terrestrial environment within the caldera. In
104	contrast, the trophic levels in these lakes are known to be diverse, ranging

105	from oligotrophic to eutrophic [30-33], and may show a series of "lake
106	successions" or "lake types" in the natural ecological succession of lakes [2,
107	5, 10]. In this paper, we tested the hypothesis that the ratio of lake size to
108	watershed area may correspond to the trophic level of Akan Caldera lake
109	water, illustrated by studying the topography and water quality.
110	Furthermore, since the lake ecological succession is also displayed as
111	"hydrarch succession" according to changes in aquatic vegetation [2, 5, 10,
112	34], we examined the correspondence between aquatic macrophyte species
113	composition and lake trophic levels.
114	

115 Materials and methods

116 Study area

117 Akan Caldera is situated at the southern end of the Akan-Shiretoko

118 Volcanic Chain, a volcanic region in eastern Hokkaido, Japan [29]. The

119 outer shape of the caldera is oblong (24 km east-west × 13 km north-south)

- 120 [29], and a "central cone", Mt. O-akan, rises at the center of its inner basin
- 121 (Fig 1). Within the caldera there are lakes and marshes of various sizes
- 122 surrounding Mt. O-akan (Fig 1). Lake watersheds are isolated from external

123	input by the caldera-wall [35, 36], and the water systems, connected by
124	rivers or underground flow [27, 36, 37], are roughly divided north-south and
125	join at the southern foot of Mt. O-akan, where they then discharge through
126	Akan River, the notch in the south caldera-wall (Fig 1A).
127	
128	Fig 1. Map and landscape of Akan Caldera Lakes. (A) The watershed of
129	Akan Caldera is isolated by a caldera wall shown by red dotted lines, but the
130	western caldera wall is obscured by volcanos erupting after the formation of the
131	caldera. Ten lakes surround Mt. O-akan within the caldera, and are connected
132	by rivers and underground flow from water systems to the north and south. The
133	water flows converge south of Mt. O-akan and discharge is through the Akan
134	River. The map was generated by Kashmir 3C [38], a map software. (B) Land
135	area is mostly covered with subarctic forests except for a town south of Lake
136	Akan, Akanko-onsen.
137	
138	Large lakes are distributed from west to northeast of Mt. O-akan
139	and smaller lakes are localized from south to east (Fig 1A). This peculiar

140 lake arrangement is a result of the formation history of the caldera and Mt.

141	O-akan. The Akan region has witnessed more than ten large volcanic
142	eruptions in the last 1.5 million years, and the present oblong-shaped
143	caldera was formed by the largest eruption of 200,000 years ago [27, 29].
144	After the last large eruption (150,000 years ago), a huge lake, "Ko-akanko"
145	(ancient Lake Akan), was generated in the caldera [27-29]. The lake was
146	narrowed by post-caldera volcanic activity in the southwest part of the
147	caldera, and by 110,000 years ago landform of the inside caldera-wall was
148	almost completed [27-29]. A minor eruption of Mt. O-akan occurred 13,000
149	years ago slightly southeast of the center of the caldera, and it stopped when
150	the lava flow reached the caldera-wall, so that Ko-akanko was separated
151	into large and small basins [27-29].
152	The developmental history of Mt. O-akan also shows that Pond
153	Hyotan and Pond Junsai of the southern water system were first divided
154	from Ko-akanko, and other lakes of the northern water system were formed
155	5,000 to 2,500 years ago [27-29]. The depth charts of the large lakes, Akan,
156	Panke and Penke, show the remains of valleys on the bottom of the inside
157	caldera wall extending as far as the base of Mt. O-akan [27, 35, 37]. This
158	suggests that the water level of Ko-akanko was extremely low or the basin

159	was exposed by discharge through the notch before the eruption of Mt. O-
160	akan [27]. Therefore, the lakes of the northern water system are thought to
161	have formed by re-flooding after damming by Mt. O-akan, but the timing of
162	lake formation and the developmental processes are not fully understood.
163	Akan Caldera occupies a part of Akan-Mashu National Park
164	(designated in 1934), and is mostly covered with subarctic forests except for
165	a town on the south side of Lake Akan, Akanko-onsen (Fig 1B) [30]. Only
166	Lake Akan has been developed as a sightseeing area due to the presence of
167	Marimo, Aegagropila linnaei, a ball-shaped green alga designated a
168	Japanese natural treasure [30, 39]. Since the 1950s, the increase in tourism
169	has resulted in eutrophication from sewage discharge. This continued until
170	the 1980s when public sewage treatment service was provided [40].
171	
179	Topography of lakes and watersheds

172 **Topography of lakes and watersheds**

- 173 Lake area and boundary length were calculated using ARCGIS10 (Esri
- 174 Japan Co.) based on the 1/25,000 numerical map data of the Geographical
- 175 Survey Institute, Japan. Land area includes island areas.
- 176 Land watershed area was computed using the DEM10m data of the

177	Geographical Survey Institute. After altitude data were changed into raster
178	(altitude grid), subtle undulations were removed by the Fill tool, and
179	bearing azimuth of flow was computed by the Flow Direction tool (north; 64,
180	northeast; 128, east; 1, southeast; 2, south; 4, southwest; 8, west; 16 and
181	northwest; 32). Accumulation value (number of cells accumulated toward
182	the direction of flow) computed by the Flow Accumulation tool was extracted
183	at accumulation values more than 30000 (sl30000) and more than 200
184	(sl200) by the Reclass command, and each watershed (ws30000, ws200) was
185	computed by being grouped by every feeder of sl30000 and sl200 by the
186	Stream Link tool. Finally, the Ws raster was converted into the polygon,
187	and Ws30000 and ws200 were manually divided as a watershed for each
188	lake, observing the DEM.
189	Lake volume and mean depth were calculated based on lake charts.
190	Depth sounding for chart drawing was performed in autumn of 2014 in eight
191	lakes, excepting Lakes Akan, Panke and Penke which already have lake
192	charts. The whole lake was uniformly measured by a GPS fish finder
193	(Lowrance HDS-8, Navico) on a motor boat. Elevation of the lake surface
194	was obtained by the GNSS survey. The depth-sounding data were converted

into contour drawings by chart drawing software, Reefmaster (ReefMaster
Software Ltd.). Residence time was calculated with annual rainfall at 1200
mm [30].

198

199 Water quality

Measurements of physical and chemical variables and collection of lake 200water were performed in ten lakes of Akan Caldera from October to 201November 2013 and in July 2014. Secchi depth, water temperature (Temp), 202electrical conductivity (EC) and pH were directly recorded using a Secchi 203disk or portable sensors at the center of each lake. Water was collected at 204205the same point using 21 polycarbonate bottles and taken immediately to the 206 laboratory. Dissolved oxygen (DO) and chemical oxygen demand (COD) were measured by titration with standard sodium thiosulfate solution and 207potassium permanganate solution, respectively. Total nitrogen (TN) and 208total phosphorus (TP) were measured by an auto analyzer (AACS-II, 209 Bran+Luebbe Ltd.). Additionally, an aliquot of the water sample was 210211filtered onto Whatman GF/F glass fiber filters, and suspended solids (SS) measured gravimetrically after drying at 110 °C for two hours. Chlorophyll-212

218	Macrophyte survey
217	
216	organic carbon (DOC) with a TOC meter (TOC VC, Shimadzu Co. Ltd.).
215	using methanol (100%). The filtrate was used for measuring dissolved
214	with a spectrophotometer (UV-1600, Shimadzu Co. Ltd.) after extraction
213	a (Chl-a), concentrated onto a Whatman GF/F glass filter, was quantified

Macrophytes were surveyed and collected by SCUBA diving or snorkeling
along the entire shorelines of Lake Akan (August and October 2012), Lake
Panke (August 2012 and July 2014) and the other eight lakes (October–
November 2013 and July 2014). The maximum depth surveyed was 18 m in

223 Lake Panke.

224

225 Statistical analysis

A total of 31 variables were analyzed (S1 Table): 11 variables of the lake

227 topographic factors (elevation, boundary length, lake area [LA], shore line

- 228 development, maximum depth, mean depth, lake volume [LV], residence
- time, land watershed area [LWA], total watershed area [TWA] which is the
- 230 sum of LA and LWA, and accumulated watershed area [AWA] which is the

231	sum of the TWA above a given lake), 6 variables reflecting gauges of inflow
232	and outflow of materials (LWA-LA ratio, LWA-LV ratio, TWA-LA ratio,
233	TWA-LV ratio, AWA-LA ratio, AWA-LV ratio) [3], 10 variables of water
234	chemistry (Temp, pH, DO, EC, SS, Chl-a, DOC, COD, TN, TP), and 4
235	variables of the macrophyte communities (number of submerged species,
236	floating-leaved species, free-floating species and total species). Secchi depth
237	was excluded from the analysis due to missing data (S1 Table).
238	A correlation matrix of these standardized data was made (S2 Table)
239	and variables with strong correlation coefficients ($ \mathbf{r} \ge 0.7$) were
240	investigated in detail. In lakes where macrophytes occurred, the
241	presence/absence of individual species was converted into 1/0 data, and a
242	cluster analysis was conducted by the Ward method using the Euclid
243	distance. The BellCurbe (Social Survey Research Information), an add-in
244	program for Excel, was used for the analysis.
245	
246	Results and discussion

247 Water quality and lake types

248 The water quality of the 10 lakes was diverse (S1 Table), and classified as

249	oligotrophic (2 lakes), mesotrophic (5 lakes) and eutrophic (3 lakes)
250	according to Chl-a and TP concentrations (Fig 2A) [7]. Among these lakes,
251	Pond Junsai (eutrophic) had brownish water with high TN (0.438 mg l^{-1}),
252	DOC (7.1 mg $l^{\text{-}1}$) and Chl-a concentrations (12.5 μg $l^{\text{-}1}$) (S1 Table), indicating
253	dystrophic properties [5, 21].
254	
255	Fig 2. Aspects of trophic status in Akan Caldera Lakes. (A) A variety of lake
256	types categorized by Chlorophyll-a and total phosphorous (TP) according to the
257	Organization for Economic Co-Operation and Development (OECD) [7]. Even
258	though the lakes share the same origin and most of them were formed at the
259	same time, the lake types are diversified into oligotrophic, mesotrophic and
260	eutrophic. Additionally, Pond Junsai (red square) has dystrophic characteristics
261	(S1 Table). (B) Relationship between ratio of accumulated watershed area to
262	lake volume (AWA/LV) and TP. The AWA/LV shows significant correlation with
263	TP thought to be a parameter of eutrophication rate, but only Lake Akan (red
264	square), subjected to anthropogenic eutrophication in the past, shows an
265	unusually high TP.

266

267	To explore the relationship between water quality and topography, a
268	correlation matrix was completed on 10 water quality variables and 17
269	topographic characters (S2 Table). Strong ($ \mathbf{r} \ge 0.7$) and significant ($p <$
270	0.05, by test of no correlation) correlation coefficients were found between:
271	TP and AWA, TP and AWA-LV ratio (AWA/LV), EC and AWA, EC and
272	AWA-LA ratio (AWA/LA), EC and AWA/LV, pH and shoreline development,
273	DO and AWA/LV, and Temp and elevation (Table 1). Although correlation
274	coefficients between TP and AWA/LA, and DO and AWA/LA did not reach
275	0.7 and -0.7, respectively, both were statistically significant (Table 1).
276	

Table 1. Combinations indicating strong correlation coefficients (r)

between water quality variables and topographic characters.

Wator	Topography			
Water	Shoreline	A\A/A	AWA/LA	AWA/LV
quality	development	AWA AWA/LA	AVVA/LV	
TP	-0.052 ^{n.s}	0.820**	0.665*†	0.751*†
EC	0.236 ^{n.s}	0.991***	0.720*†	0.726*†
рН	0.885***	0.283 ^{n.s}	-0.149 ^{n.s.}	-0.205 ^{n.s.}
DO	0.517 ^{n.s}	-0.395 ^{n.s}	-0.692*	-0.763*
Temp	-0.924***	0.610 ^{n.s}	0.338 ^{n.s}	0.386 ^{n.s}

The original correlation matrix is available in S2 Table. TP: total phosphorus,

281	EC: electrical conductivity, DO: dissolved oxygen, Temp: temperature, AWA:
282	accumulated watershed area, AWA/LA: AWA-lake area ratio, AWA/LV: AWA-
283	lake volume ratio, ***: <i>p</i> < 0.001, **: <i>p</i> <0.01, *: <i>p</i> < 0.05, n. s.: not significant, †:
284	Lake Akan as an outlier.
285	
286	When two-dimensional plots were drawn on these 10 combinations,
287	Lake Akan was discriminated as an outlier in TP and AWA/LA, TP and
288	AWA/LV, EC and AWA/LA, and EC and AWA/LV (Table 1, Fig 2B). As
289	previously noted, Lake Akan was subject to anthropogenic eutrophication in
290	the second half of the 20th century [40]. We thus estimated phosphorus
291	concentration before eutrophication. The oldest P_2O_5 data, 0.010 mg l ⁻¹ ,
292	measured in Lake Akan in 1931 [41] was calculated at 0.004 mg $l^{\cdot 1}$
293	phosphorus by the conversion formula which divides the value of $\mathrm{P_2O_5}$ by
294	2.29 [10]. This result was close to the regression lines of TP and AWA/LA (r
295	= 0.787, $p < 0.05$), and TP and AWA/LV (r = 0.881, $p < 0.01$) drawn for nine
296	lakes except for Lake Akan (Fig 3A). The difference (0.022 mg l^{-1}) from our
297	observed data (0.026 mg l^{-1} , S1 Table) can be thought of as part of the

298 increase from eutrophication, suggesting that before eutrophication,

- 300 regression relationship with TP. Conversely, without including the outlier in
- 301 the case of TP and AWA, the resulting plot when Lake Akan TP data was

replaced by the above 0.004 mg l^{-1} drew away from the regression line (r =

- $303 \quad 0.795, p < 0.05, Fig 3B$).
- 304

305 Fig 3. Estimation of phosphorus concentration in Lake Akan before

- 306 **eutrophication.** Because Lake Akan was subject to anthropogenic
- ³⁰⁷ eutrophication in the second half of the 20th century [40], phosphorus
- 308 concentration before eutrophication was estimated based on data from 1931
- [41]. Each regression line is drawn for nine lakes (blue circles) except for Lake
- Akan. In (A) relationship between ratio of accumulated watershed area (AWA)
- to lake volume and total phosphorus (TP), the 1931 estimate of phosphorus
- 312 concentration for Lake Akan (light red square) is significantly lower than the
- 2013–14 TP data (dark red square), and is close to the regression lines.
- 314 Conversely, in (B) the relationship between AWA and TP, the same 1931
- s15 estimate is distant from the regression line.

316

317	A strong correlation was observed between EC and TP (r = 0.821, $p <$
318	0.01, S2 Table). The regression formula ($y = 819.023x \cdot 2.343$) estimated the
319	EC of Lake Akan at 0.933 mS m ⁻¹ , near the regression lines of EC and
320	AWA/LA (r = 0.973, p < 0.001,) and EC and AWA/LV (r = 0.979, p < 0.001)
321	for the nine lakes when TP was 0.004 mg l^{-1} (Fig 4A). By contrast, the
322	calculated result of Lake Akan EC drew away from the regression between
323	EC and AWA without the outlier (r = 0.988, $p < 0.001$, Fig 4B). This
324	suggests that the involvement of AWA may be invalid, along with the
325	results of similar substitution of that between TP and AWA, shown in Fig
326	3B.
327	
328	Fig 4. Estimation of electrical conductivity (EC) in Lake Akan before
329	eutrophication. Because phosphorus concentration in Lake Akan was
330	estimated to be significantly lower before eutrophication (Fig. 3), EC showing a
331	high correlation with total phosphorus (TP) was also examined. The EC for
332	1931 was calculated at 0.933 mS m ⁻¹ by substituting the estimated phosphorus
333	concentration for 1931 (0.004 mg I^{-1}) into the regression formula for EC and TP.

334	Each regression line in the graphs is drawn for nine lakes (blue circles) except
335	for Lake Akan. In (A) relationship between ratio of accumulated watershed area
336	(AWA) to lake volume and EC, the 1931 estimate of EC for Lake Akan (light red
337	square) is significantly lower than the 2013–14 EC data (dark red square), and
338	is close to the regression lines, similar to the case of phosphorus in Fig. 3.
339	Conversely, in (B) the relationship between AWA and EC, the same 1931
340	estimate is distant from the regression line, as in the case of phosphorus.
341	
342	The regression line of pH and shoreline development was likewise
343	drawn without including the outlier (Fig 5). Because shoreline development
344	is proportional to the length of horizontal littoral zone, the correlation with
345	pH was presumed to relate to consumption of CO_2 through hydrophytic
346	photosynthesis [2, 4, 42].
347	
348	Fig 5. Relationship between shoreline development and pH in Akan Caldera
349	Lakes. Despite the lakes having a rich diversity of lake basin sizes and water
350	quality, including trophic levels (S1 Table), shoreline development, the degree of
351	shoreline flexion, is strongly correlated with lake water pH.

352

353	The regression lines of DO and AWA/LA, and DO and AWA/LV were
354	drawn with a slight negative slope due to the specific low DO data for Lake
355	Jiro (Fig 6), and may not indicate an environmental gradient. Lake Jiro has
356	no inflow and outflow rivers (Fig 1A), and the water appears to be supplied
357	through underground flow from the upstream Lake Akan [43]. However, in
358	addition to DO, Chl-a, DOC, and COD in Lake Jiro were the lowest
359	concentrations among the Akan Caldera Lakes, and TP was the highest (S1
360	Table). Furthermore, a portion of the lake surface of Lake Jiro does not
361	freeze in winter [43]. These results suggest that other water sources, such
362	as groundwater, may be involved in water formation in Lake Jiro.
363	
364	Fig 6. Relationship between ratios of accumulated watershed area to lake
365	volume and dissolved oxygen (DO). Despite high correlation coefficients
366	(Table 1), regression lines may not indicate an environmental gradient of DO,
367	because its slight negative slope results from the uniquely low DO data for Lake
368	Jiro (red square) with a relatively heterogeneous water quality (S1 Table)
369	

370	Finally, regardless of the lake's size, water temperature decreases

- 371 with elevation upstream, and the difference in water temperature was 3.5°C
- for an elevation difference of about 150 m (Fig 7).

373

Fig 7. Relationship between elevation and water temperature in Akan
Caldera Lakes. Water temperature is lower in lakes located upstream at higher
elevations, regardless of lake size.

377

378 Distribution and species composition of macrophytes

379 We recorded 21 species of macrophytes in total (excluding emergent plants

and macro algae) in 7 lakes, while no macrophyte species were observed in 3

381 lakes without inflow rivers (S1 Table). The correlation matrix of the number

382 of macrophyte species was strong and significant with the following

variables among the above-mentioned lake topographic characters (S2

```
Table): boundary length (r = 0.720, p < 0.05), shoreline development (r =
```

385 0.703, p < 0.05), maximum depth (r = 0.924 < 0.001), mean depth (Fig 8, r =

0.928, p < 0.001) and residence time (r = 0.921, p < 0.001). Several previous

387 studies on relatively shallow or small lakes and ponds reported that the

388	number of macrophyte species is correlated with lake area and that
389	MacArthur and Wilson's "the theory of island biogeography", which
390	theorizes how larger islands have more species than smaller islands, is often
391	applicable [44-51]. However, in our study no significant correlation was
392	found between lake area and the number of macrophyte species (S2 Table).
393	The boundary length and the shoreline development are parameters
394	affecting horizontal length of the littoral zone, and the magnitude of the
395	maximum and mean depths and the residence time related to depth and
396	volume of lake basin contribute to expansion of the vertical littoral zone
397	under conditions of greater water clarity. Therefore, the number of
398	macrophyte species in the large lakes of Akan Caldera is presumed to be
399	more closely related to the area of the littoral zone than the lake area.
400	
401	Fig 8. Effect of lake size on number of aquatic macrophyte species in Akan
402	Caldera Lakes. In total, 21 species were observed in 7 lakes. The number of
403	species in each lake shows high correlation with mean depth as well as with
404	maximum depth, boundary length, shoreline development and residence time
405	(S2 Table). Pond Junsai (red square) has dystrophic water quality (S1 Table)

and is dominated by floating-leaved and free-floating plants, whereas most
other lakes have a submerged plant community (S1 Table).

408

409	The two-dimensional plots of the number of macrophyte species and
410	the above five topographic characters showed that Pond Junsai, a dystrophic
411	lake, was designated an outlier (Fig 8). Furthermore, when the individual
412	species was classified as submerged, floating-leaved and free-floating, the
413	correlation coefficient was significantly greater with the number of species
414	of submerged plants (S2 Table). The number of species of floating-leaved
415	and free-floating plants showed significant and strong correlation with the
416	water quality parameters Chl-a, DOC, COD and TN (S2 Table), with most of
417	these species localized in Pond Junsai. Thus, we conducted a cluster
418	analysis to understand species composition of macrophytes in each lake (Fig
419	9). The cluster was firstly divided into two groups: 6 species of floating-
420	leaved and free-floating plants of Pond Junsai, and 14 submerged and 1
421	floating-leaved plants in the other lakes. Pond Junsai contained some
422	indicator species of the dystrophic water: Brasenia schreberi (Fig 10),
423	Nuphar pumila var. pumila, Nymphaea tetragona var. tetragona and

424	Utricularia macrorhiza [52]. The remaining species recorded from the other
425	lakes were classified as oligotrophic, mesotrophic, oligo-mesotrophic and
426	oligo-meso-eutrophic groups, following the lake-type based on the trophic
427	status shown in Fig 2A. <i>Ranunculus nipponicus</i> var. <i>submersus</i> (Fig 10),
428	Potamogeton alpinus and Isoetes asiatica, typically found in more pristine
429	water [52, 53], were designated oligotrophic. <i>Myriophyllum spicatum</i> (Fig
430	10), Hydrilla verticillata, Potamogeton compressus, Potamogeton pectinatus
431	and <i>Ceratophyllum demersum</i> , occurring in more eutrophic settings [52,
432	53], were designated oligo-mesotrophic. <i>Potamogeton crispus</i> (Fig 10),
433	distributed in a variety of water environments [52], was designated
434	mesotrophic.
435	
436	Fig 9. Cluster analysis of distribution and species composition of aquatic
437	macrophytes in Akan Caldera Lakes. The tree diagram was drawn by the
438	Ward method using Euclid distance based on the 1/0 data converted from the
439	presence/absence data for the seven lakes where macrophytes occurred.
440	According to the lake habitat types (Fig. 2A), clusters are classified into five
441	vegetation types: oligotrophic, mesotrophic, oligo-mesotrophic, oligo-meso-

442 eutrophic, and dystrophic.

443

444	As mentioned above, prior to anthropogenic eutrophication, the
445	phosphorus level in Lake Akan in the first half of the 20th century appears
446	to have been much lower than currently (Fig 3). Thus, the current aquatic
447	flora was also compared with results from the oldest known vegetation
448	survey conducted in 1897 [54]. Of the ten species of macrophytes in Lake
449	Akan observed in our study, nine species were also found in 1897, except for
450	<i>P. crispus,</i> classified as mesotrophic. However, the two oligotrophic species
451	<i>R. nipponicus</i> var. <i>submersus</i> and <i>I. asiatica</i> in the old list were not
452	confirmed. These results suggest a shift to a more eutrophic vegetation
453	type.

454

455 Uniqueness of Akan Caldera Lakes

To summarize the results, although the lakes of Akan Caldera have the
same origin, they have developed into a series of oligotrophic, mesotrophic,
eutrophic and dystrophic lakes, after being divided by a volcanic eruption
(Fig 2A). The trophic level of each lake indicated by TP was closely related

460 to the ratio of watershed area (AWA) to lake size (LA and LV) (Fig 2B	s).
---	-----

461	These results strongly suggest the possibility that the rate of eutrophication		
462	was different among the lakes, and we see the various stages of lake		
463	succession in progress in this system. However, the observed TP of Lake		
464	Akan and its downstream neighbors, Lake Jiro and Lake Taro, are assumed		
465	to have been impacted by anthropogenic eutrophication in the past (Fig 3A).		
466	Furthermore, the formation history of the Akan Caldera Lakes suggests		
467	that Ponds Hyotan and Junsai are significantly older than the other lakes		
468	[27-29]. As shown in Fig 2A, Chl-a levels in these two ponds are specifically		
469	higher than those of other lakes, which might be due to differences in time		
470	of formation. To understand the long-term changes in nutrient loading,		
471	including TP, and in primary production, the correct time of formation and		
472	subsequent eutrophication history of each lake should be clarified through		
473	research on lake sediment, etc. In addition, the linear regression of the		
474	relationship between TP and AWA/LA and AWA/LV (Fig 2B) suggests that		
475	the indigenous environmental variables of the watersheds may vary little.		
476	However, in reality, the geology and vegetation within the Akan Caldera are		
477	not uniform [27, 30], and further research is needed to determine the actual		

478 phosphorus loading from the watersheds.

479	Macrophyte species composition varied among lakes, driven by lake		
480	trophic conditions (Fig 9), and is indicative of aquatic plant succession, or		
481	"hydrarch succession". Many species of macrophytes are classified into a		
482	variety of "types" according to environmental characteristics of habitats,		
483	including trophic level [48, 53, 55-59]. Schneider and Melzer [59], for		
484	example, proposed seven categories ranging from oligotrophic to eutrophic		
485	and even polytrophic types. Meanwhile, Lacoul and Freedman [53]		
486	simplified into three categories: oligotrophic, eutrophic, and general types,		
487	based on the opinion that many macrophytes generally have a broad		
488	ecological range, occurring over wide trophic levels, while other species have		
489	a narrower distribution. In our study, however, all of the observed species		
490	belonged to only one of the five occurrence types, with a species-specific		
491	range of trophic level (Fig 10). Thirteen species were distributed among		
492	oligotrophic, mesotrophic and dystrophic lake-types, respectively, and eight		
493	species occurred in the oligotrophic and mesotrophic, and the oligotrophic,		
494	mesotrophic and eutrophic-type lakes with wider trophic ranges. These		
495	results explain how the species composition of macrophytes in the Akan		

496	Caldera Lakes with different trophic types is determined by the combination
497	of species with different trophic requirements. Importantly, we noted
498	vegetation changes in Lake Akan due to anthropogenic eutrophication: this
499	was characterized by disappearance of oligotrophic-type species, appearance
500	of mesotrophic-type species, and survival of oligo-mesotrophic and oligo-
501	meso-eutrophic-type species, when the trophic level of Lake Akan shifted
502	from oligotrophic to mesotrophic as shown in Fig 10. This might be the first
503	example to clearly and simply illustrate the replacement of species in an
504	aquatic plant community caused by the change of trophic level. Further
505	investigation is necessary to test whether this is a universal phenomenon in
506	limnology.
507	
508	Fig 10. Determination model for macrophyte species composition
509	corresponding to trophic types in Akan Caldera Lakes. Individual
510	macrophyte species belong to any one of the five occurrence types of
511	macrophytes, accompanied by inherent trophic type(s) and range. Macrophytes
512	of oligotrophic-, mesotrophic- and dystrophic-occurrence types are only
513	distributed within oligotrophic-, mesotrophic- and dystrophic-type lakes,

514	respectively. In contrast, within oligo-mesotrophic- and oligo-meso-eutrophic-
515	occurrence types, macrophytes are able to occur widely in
516	oligotrophic/mesotrophic- and oligotrophic/mesotrophic/eutrophic-type lakes.
517	Accordingly, species composition of macrophytes in oligotrophic- and
518	mesotrophic-type lakes is determined by combination of the occurrence types,
519	oligotrophic/oligo-mesotrophic/oligo-meso-eutrophic and mesotrophic/oligo-
520	mesotrophic/oligo-meso-eutrophic. In eutrophic and dystrophic lakes, oligo-
521	meso-eutrophic- and dystrophic-occurrence types are distributed, respectively.
522	
523	Trophic levels are not the only factor known to affect macrophyte
524	distribution and species composition. At a smaller scale, the following
525	physical factors have been important in producing environmental gradients
526	
	between or within lakes: topography, geological qualities, inflow waters as
527	between or within lakes: topography, geological qualities, inflow waters as physical factors in the watershed, lake basin morphology (mainly depth and
527 528	
	physical factors in the watershed, lake basin morphology (mainly depth and
528	physical factors in the watershed, lake basin morphology (mainly depth and area), water temperature, light conditions, turbidity, current flow, substrate

532	understanding of the mechanisms that determine the distribution and	
533	species composition of macrophytes is difficult, due to multiple influencing	
534	factors. In the Akan Caldera Lakes, species distribution was related to	
535	trophic conditions (Fig 9 and 10), while number of species was closely	
536	related to lake size (Fig 8). In general, species diversity at smaller scales	
537	increased, depending upon spatial environmental heterogeneity [66, 67].	
538	Lakes Akan, Panke and Penke, all large and oligo and mesotrophic lakes	
539	with high species count, appear to offer a large variety of the physical and	
540	chemical factors noted above. The topography of capes, bays and islands in	
541	these lakes diversifies wave action and substrate via varying wind-wave	
542	parameters, and "fetch", i.e. the length of the lake surface over which wind	
543	blows [4, 53]. Inflow rivers locally alter substrate, current and water	
544	quality, greater water depth lowers water temperature and reduces	
545	substrate grain size, and oligo/mesotrophic water allows sunlight to	
546	penetrate deeper into the littoral zone, leading to a gradual gradient in the	
547	light environment [4, 5, 21, 47, 48, 51, 53, 60, 64]. This environmental	
548	variability may offer habitat for a number of macrophytes in these large	
549	lakes. On the other hand, Pond Junsai, dominated by floating-leaved and	

550	free-floating plants, is the only example of dystrophic water quality in the		
551	Akan Caldera Lakes. Its brownish lake water, derived from high DOC		
552	containing abundant humic substances, suppresses submerged plant growth		
553	due to high light absorption [5, 21, 48, 53, 64]. Humic substances are		
554	thought to originate from decomposing terrestrial and/or littoral plant		
555	material [5, 22, 42, 53]. Thus, eutrophication in Pond Junsai may have		
556	undergone a different process than in the other lakes because of differing		
557	surrounding vegetation, even if the initial process was the same. To		
558	understand the factors affecting plant distribution the relationships		
559	between detailed macrophyte distribution and habitat micro-environments		
560	in each lake, including impacts of the surrounding vegetation, must be		
561	elucidated.		

562

563 Conclusions

564 In this study, we demonstrated that the ratio of Akan Caldera lake size to 565 watershed area was linearly-positive regressed with TP concentration, an 566 indicator of trophic level in lakes. Furthermore, the variety of trophic levels 567 in the lakes, ranging from oligotrophic to eutrophic, coincided with the "lake

568	succession" or "lake type" series of ecological succession in lakes. Further,
569	"hydrarch succession", a change in the species composition of macrophytes,
570	also indicates a regular series corresponding to the trophic levels. These
571	facts indicate that the unique eutrophication rates, defined by the ratio of
572	lake size to watershed area, may have diversified the water quality and the
573	aquatic flora of the lakes. Uniquely, this possibly illustrates lake ecological
574	succession in "real time", previously thought impossible to see [2, 9, 18, 24].
575	In other words, the Akan Caldera Lakes can be seen as a massive
576	experiment conducted by nature in an "Akan Caldera Laboratory", or seen
577	as catalog visualizing a freshwater ecosystem, focusing on lake and
578	hydrarch succession. The essence of ecological succession is, simply put,
579	nothing more than a developing and changing process of biodiversity [67]. In
580	this context, the Akan Caldera Lakes will enable a new approach to the
581	comparative study of spatio-temporal fluctuations in biodiversity and
582	aquatic environments, including responses to changes in the surrounding
583	environment, especially climate change, now seen as an issue of paramount
584	importance [24, 26].
585	

586 Acknowledgements

587A part of this study is "Research of the aquatic plants in Lake Akan and circumference lakes" and "Lake charts drawing of Lake Akan and 588circumference lakes" conducted in 2012, 2013 and 2014 by the Ministry of 589Environment of Japan. The City of Kushiro provided facilities and funding 590for compilation of the study. Árni Einarrson, Mývatn Research Station, 591592Iceland, provided advice on research design. Takehiko Fukushima, University of Tsukuba and Koichi Kamiya, Ibaraki Kasumigaura 593Environmental Science Center supported the water analyses. The Hokkaido 594Shimbun Press contributed to the aerial photography. Satoshi Kofuku and 595Kokoro kikuchi, IDEA Consultants, Inc., assisted with literature research. 596597Shuji Hino, Yamagata University and Yasushi Ishikawa, Hokkaido Research Organization, advised regarding caldera lakes and calculation of 598water quality. Mami Yamazaki, Sapporo Museum Activity Center, provided 599advice on macrophytes. 600

601

602 **References**

1. Whittaker RH. Communities and ecosystems. 2nd ed. New York:

604	Macmillan;	1975.

- 2. Sakamoto M. Ecological succession, II. Tokyo: Kyoritsu-Shuppan; 1976.
- 606 (in Japanese)
- 607 3. Owen OS. Natural resource conservation: an ecological approach, 4th ed.
- 608 New York: Macmillan; 1985.
- 4. Horne AJ, Goldman CR. Limnology, 2nd ed. New York: McGraw-Hill;
- 610 **1994**.
- 5. Wetzel RG. Limnology: lake and river ecosystems, 3rd ed. San Diego:
- 612 Academic Press; 2001.
- 613 6. Schindler DW, Vallentyne JR. The algal bowl, overfertilization of the
- 614 world's freshwaters and estuaries. Edmonton: University of Alberta
- 615 Press; 2008.
- 616 7. Vollenweider R, Kerekes J. Eutrophication of waters: Monitoring,
- 617 assessment and control. Paris: Organization for Economic Co-Operation
- and Development (OECD); 1982.
- 619 8. Lindeman RL. The trophic-dynamic aspect of ecology. Ecology. 1942;23:
- 620 399-417. https://doi.org/10.2307/1930126.
- 621 9. Forel FA. Handbuch der Seenkunde: allgemeine Limnologie. Stuttgart:

J. Engelhorn; 1901. (in Germany)

- 623 10. Yoshimura S. Limnology. Tokyo: Sanseido; 1937. (in Japanese)
- 11. Pearsall WH. The development of vegetation in the English lakes,
- 625 considered in relation to the general evolution of glacial lakes and rock
- 626 basins. Proc R Soc B, Biol Sci. 1921;92: 259-84.
- 627 https://doi.org/10.1098/rspb.1921.0024.
- 628 12. Dachnowski A. Peat deposits of Ohio: their origin, formation and uses.
- 629 Columbus: Division of Geological Survey, Ohio; 1912.
- 630 http://hdl.handle.net/1811/78409
- 13. Pearsall WH. The aquatic vegetation of the English lakes. J. Ecol.
- 632 1920;8: 163-201. doi: 10.2307/2255612.
- 633 14. Dachnowski AP. Factors and problems in the selection of peat lands for
- 634 different uses. Washington, D. C.: United States Department of
- 635 Agriculture; 1926. https://doi.org/10.5962/bhl.title.108906
- 636 15. Kormondy EJ. Concepts of ecology. 2nd ed. Englewood Cliffs: Prentice-
- 637 Hall; 1969. http://ci.nii.ac.jp/ncid/BA1127514X
- 638 16. Odum EP. Fundamentals of ecology, 3rd ed. Philadelphia: Saunders;
- 639 **1971**.

640	17.	Morishita I. Dam lake ecology. Tokyo: Sankaidou; 1983. (in Japanese)
641	18.	Margalef R. Perspectives in ecological theory. Chicago: University of
642		Chicago Press; 1968.
643	19.	Odum EP. The strategy of ecosystem development. Science. 1969;164:
644		262-270. http://habitat.aq.upm.es/boletin/n26/aeodu.en.html
645	20.	Wetzel RG, Likens GE. Limnological analyses, 3ed ed. New York:
646		Springer; 2000.
647	21.	Dodson SI. Introduction to limnology. New York: McGraw-Hill; 2005.
648	22.	Dodds WK, Whiles MR. Freshwater ecology, 2nd ed. Burlington:
649		Academic Press; 2010.
650	23.	Smith J, Appleby P, Battarbee R, Dearing J, Flower R, Haworth E, et al.
651		Environmental history and palaeolimnology. Springer Science &
652		Business Media; 1991.
653	24.	Kling GW. A lake's life is not its own. Nature. 2000;408: 149-50. doi:
654		https://doi.org/10.1038/35041659.
655	25.	Johnson EA, Miyanishi K. Testing the assumptions of chronosequences
656		in succession. Ecol Lett. 2008;11: 419-431. doi:
657		https://doi.org/10.1111/j.1461-0248.2008.01173.x

658	26.	Sayer C, Roberts N, Sadler J, David C, Wade P. Biodiversity changes in
659		a shallow lake ecosystem: a multi - proxy palaeolimnological analysis. J
660		Biogeogr. 1999;26: 97-114. doi: https://doi.org/10.1111/j.1365-
661		2699.1999.00298.x
662	27.	Satoh H. Akanko, explanatory text of the geological map of Japan,
663		Kushiro, No. 7. Tokyo: Geological Survey of Japan; 1965. (in Japanese
664		with English summary)
665	28.	Tamada J, Nakagawa M. Eruption history of Oakan volcano, eastern
666		Hokkaido, Japan. Kazan. 2009;54: 147-62. (in Japanese with English
667		summary)
668	29.	Hasegawa T, Nakagawa M. Large scale explosive eruptions of Akan
669		volcano, eastern Hokkaido, Japan: a geological and petrological case
670		study for establishing tephro-stratigraphy and chronology around a
671		caldera cluster. Quat Int. 2016;397: 39-51. doi:
672		https://doi.org/10.1016/j.quaint.2015.07.058.
673	30.	Maeda Ippoen Foundation. The nature of Akan National Park, 1993.
674		Akan: Maeda Ippoen Foundation; 1994. (in Japanese)
675	31.	Hino S, Mikami H, Arisue J, Ishikawa Y, Imada K, Yasutomi R, et al.

676	Limnological	characteristics a	and vertical	distribution of	of phytoplankton

- in oligotrophic lake Akan-Panke. Jpn J Limnol. 1998;59: 263-279. doi:
- 678 https://doi.org/10.3739/rikusui.59.263
- 679 32. Tanaka M. The lakes in Japan. Nagoya: Nagoya University Press; 1992.
- 680 (in Japanese)
- 681 33. Hokkaido Institute of Environmental Science. Lakes and marshes in
- 682 Hokkaido, revised edition. Sapporo: Hokkaido Institute of
- 683 Environmental Science; 2005. (in Japanese)
- 684 34. Clements FE. Plant succession: an analysis of the development of
- 685 vegetation. Washington: Carnegie Institution of Washington; 1916.
- 686 http://ci.nii.ac.jp/ncid/BA39490309
- 687 35. Tanakadate S. Research report on the volcano lakes in Hokkaido.
- 688 Sapporo: Hokkaido Government; 1925. (in Japanese)
- 689 36. Takayasu S, Igarashi H, Sawa K. Lake survey, Lake Akan. Sci Rep
- 690 Hokkaido Fish Exp Stn. 1930;21: 67-92. (in Japanese)
- 691 37. Takayasu S, Kondo K. River and lake survey, Lake Panke and Lake
- 692 Penke. Sci Rep Hokkaido Fish Exp Stn. 1936;39: 1-24. (in Japanese)
- 693 38. Sugimoto T. Introduction to Kashmir C3. Tokyo: Jitsugyo no Nihon Sha;

694 2010. (in Japanese)

695 39. U	Jmekawa T,	Wakana I,	Ohara M.	Reproductive	behavior and	l role in
-----------	------------	-----------	----------	--------------	--------------	-----------

- 696 maintaining an aggregative form of the freshwater green alga Marimo,
- 697 Aegagropila linnaei, in Lake Akan, Hokkaido, Japan. Aquat Bot.
- 698 2021;168: 103309. doi: https://doi.org/10.1016/j.aquabot.2020.103309.
- 699 40. Igarashi S, Ishikawa Y, Mikami H. Long-term changes in limnological
- 700 characteristics in Lake Akan, Hokkaido. Res Rep NIES, Japan.
- 701 2000;153: 34-54. (in Japanese)
- 41. Miyadi D. Studies on the bottom fauna of Japanese lakes, VII. Lakes of
- 703 Hokkaido. Jpn J Zool. 1932;4: 223-52.
- 42. Brönmark C, Hansson L-A. The biology of lakes and ponds, 2nd ed.
- 705 Oxford: Oxford University Press; 2005.
- 43. Motoda S. The lakes in Hokkaido Sci Rep Hokkaido Fish Hatchery.
- 707 1950;5: 1-96. (in Japanese)
- 44. Wilson EO, MacArthur RH. The theory of island biogeography.
- 709 Princeton: Princeton University Press; 1967.
- 45. Møller TR, Rørdam CP. Species numbers of vascular plants in relation
- to area, isolation and age of ponds in Denmark. Oikos. 1985;45: 8-16.

712 doi: https://doi.org/10.2307/3565216.

- 713 46. Rørslett B. Principal determinants of aquatic macrophyte richness in
- northern European lakes. Aquat Bot. 1991;39: 173-93. doi:
- 715 https://doi.org/10.1016/0304-3770(91)90031-Y.
- 716 47. Weiher E, Boylen CW. Patterns and prediction of α and β diversity of
- aquatic plants in Adirondack (New York) lakes. Can. J. Bot. 1994;72:
- 718 1797-804. doi: doi.org/10.1139/b94-221.
- 719 48. Toivonen H, Huttunen P. Aquatic macrophytes and ecological gradients
- in 57 small lakes in southern Finland. Aquat Bot. 1995;51: 197-221. doi:

721 https://doi.org/10.1016/0304-3770(95)00458-C.

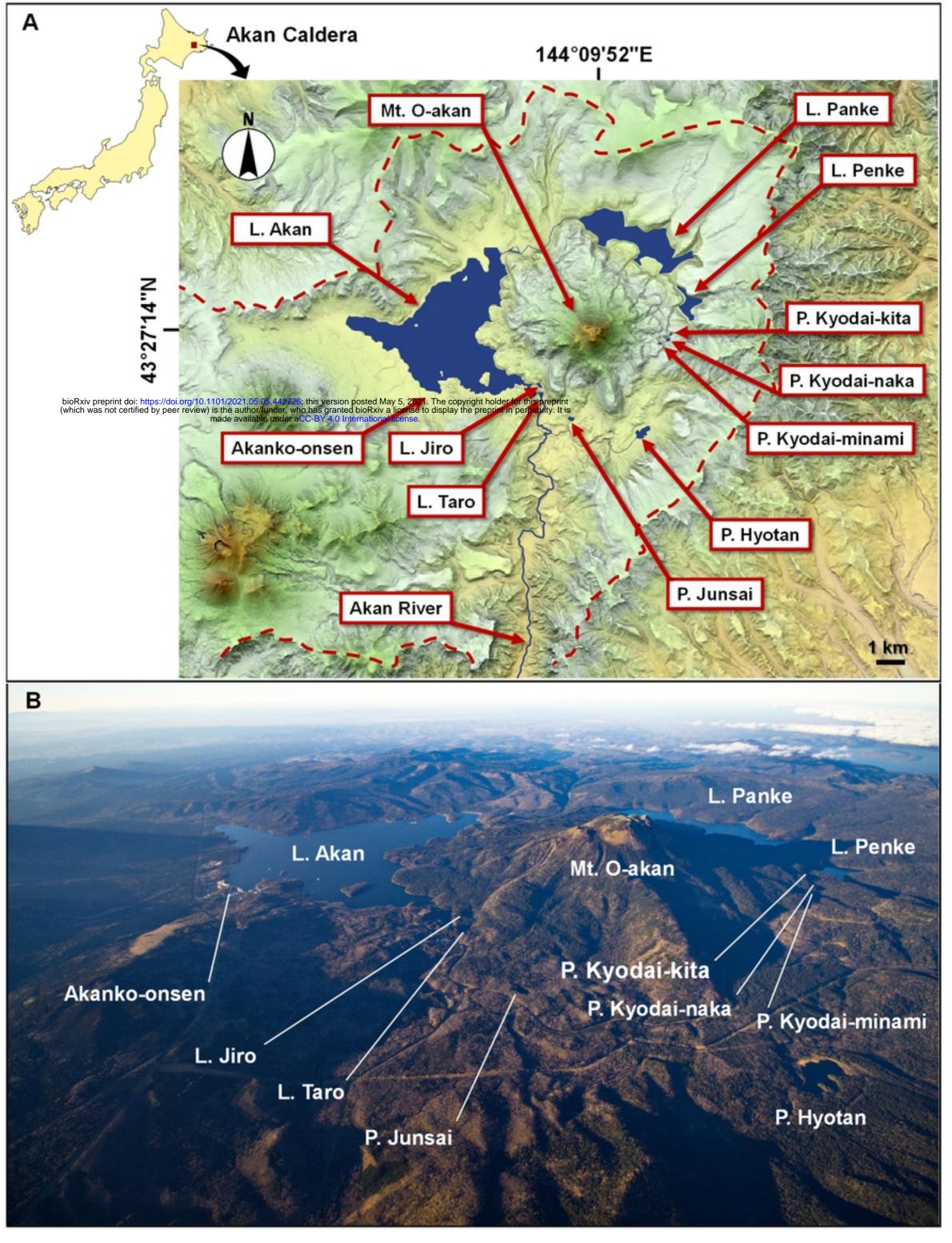
- 49. Linton S, Goulder R. Botanical conservation value related to origin and
- 723 management of ponds. . Aquat Conserv Mar Freshw Ecosyst. 2000;10:
- 724 77-91. doi: https://doi.org/10.1002/(SICI)1099-
- 725 0755(200003/04)10:2<77::AID-AQC391>3.0.CO;2-Y.
- 50. Mäkelä S, Huitu E, Arvola L. Spatial patterns in aquatic vegetation
- composition and environmental covariates along chains of lakes in the
- 728 Kokemäenjoki watershed (S. Finland). Aquat Bot. 2004;80: 253-69. doi:
- 729 https://doi.org/10.1016/j.aquabot.2004.08.006.

730	1. Søndergaard M, Jeppesen E, Jensen JP. Pond or lake: does it make any
731	difference? Arch Hydrobiol. 2005;162: 143-65. doi: 10.1127/0003-
732	9136/2005/0162-0143.
733	2. Kadono Y. A field guide to aquatic plants of Japan. Tokyo: Bun-ichi Sogo
734	Shuppan; 2014. (in Japanese)
735	3. Lacoul P, Freedman B. Environmental influences on aquatic plants in
736	freshwater ecosystems. Environ Rev. 2006;14: 89-136. doi:
737	https://doi.org/10.1139/a06-001.
738	4. Kawakami T. Collection record in Akan, Kushiro Province. Bot Mag
739	Tokyo. 1898;12: 220-225. (in Japanese)
740	5. Seddon B. Aquatic macrophytes as limnological indicators. Freshw Biol.
741	1972;2: 107-30. doi: doi.org/10.1111/j.1365-2427.1972.tb00365.x.
742	6. Wiegleb G. A study of habitat conditions of the macrophytic vegetation
743	in selected river systems in Western Lower Saxony (Federal Republic of
744	Germany). Aquat Bot. 1984;18(4): 313-52. doi:
745	https://doi.org/10.1016/0304-3770(84)90055-X.
746	7. Mäkirinta U. Classification of South Swedish Isoetid vegetation with the
747	help of numerical methods. Vegetatio. 1989;81: 145-157.

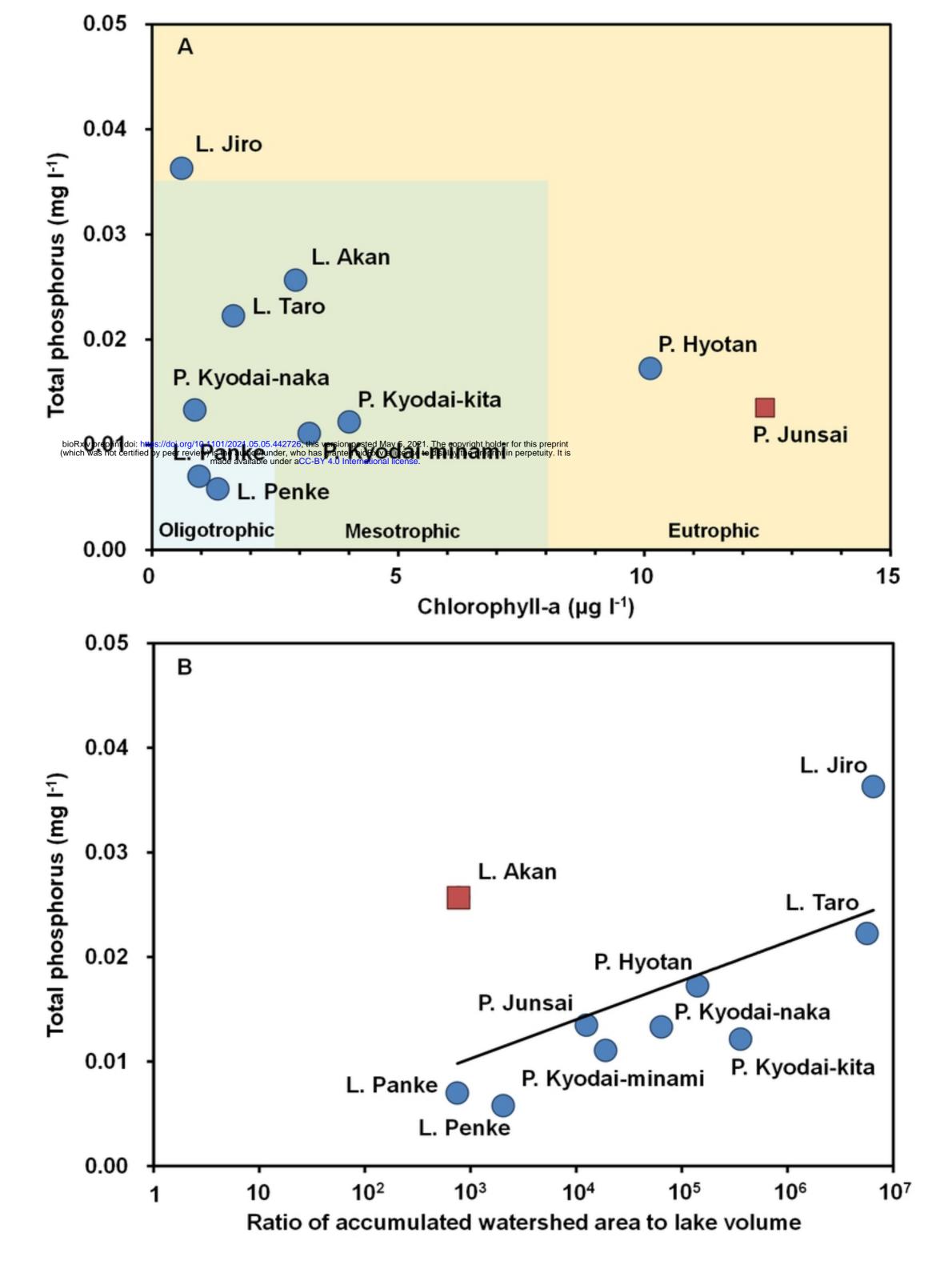
748		https://link.springer.com/chapter/10.1007/978-94-009-2432-1_12.
749	58.	Heegaard E, Birks HH, Gibson CE, Smith SJ, Wolfe-Murphy S. Species-
750		environmental relationships of aquatic macrophytes in Northern
751		Ireland. Aquat Bot. 2001;70: 175-223. doi: https://doi.org/10.1016/S0304-
752		3770(01)00161-9.
753	59.	Schneider S, Melzer A. The trophic index of macrophytes (TIM)–a new
754		tool for indicating the trophic state of running waters. Internat Rev.
755		Hydrobiol. 2003;88: 49-67. doi: https://doi.org/10.1002/iroh.200390005.
756	60.	Hutchinson GE. A treatise on limnology, Vol III, Limnological Botany.
757		New York: John Wiley; 1975.
758	61.	Spence DHN. Factors controlling the distribution of freshwater
759		macrophytes with particular reference to the lochs of Scotland. J Ecol.
760		1967;55: 147-170. doi: 10.2307/2257723.
761	62.	Kadono Y. Occurrence of aquatic macrophytes in relation to pH,
762		alkalinity, Ca ⁺⁺ , Cl ⁻ and conductivity. Jap J Ecoi. 1982;32: 39-44. doi:
763		10.18960/seitai.32.1_39.
764	63.	Vestergaard O, Sand-Jensen K. Alkalinity and trophic state regulate
765		aquatic plant distribution in Danish lakes. Aquat Bot. 2000;67: 85-107.

43

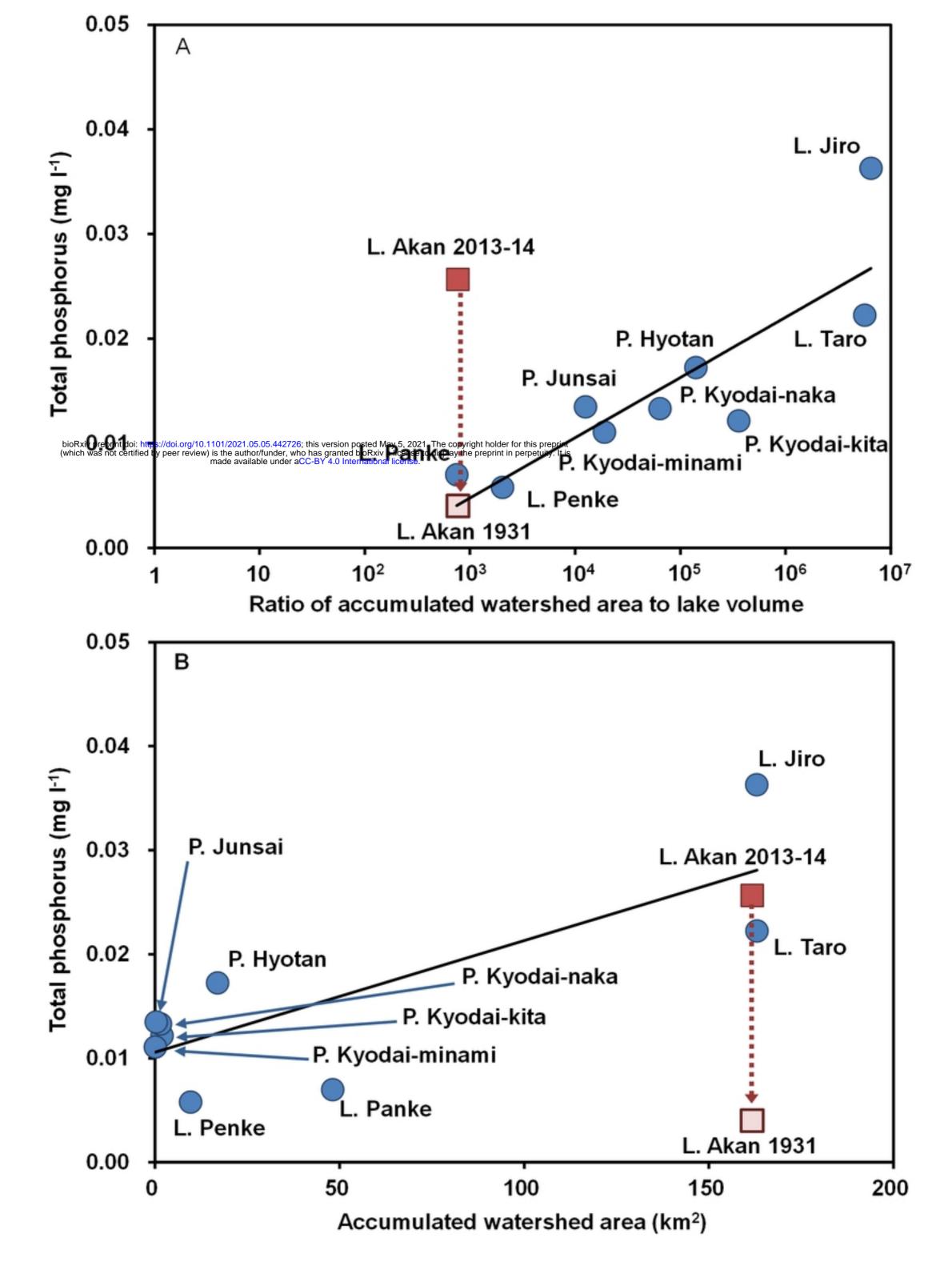
766 doi: https://doi.org/10.1016/S0304-3770(0	00)00086-3.
---	-------------

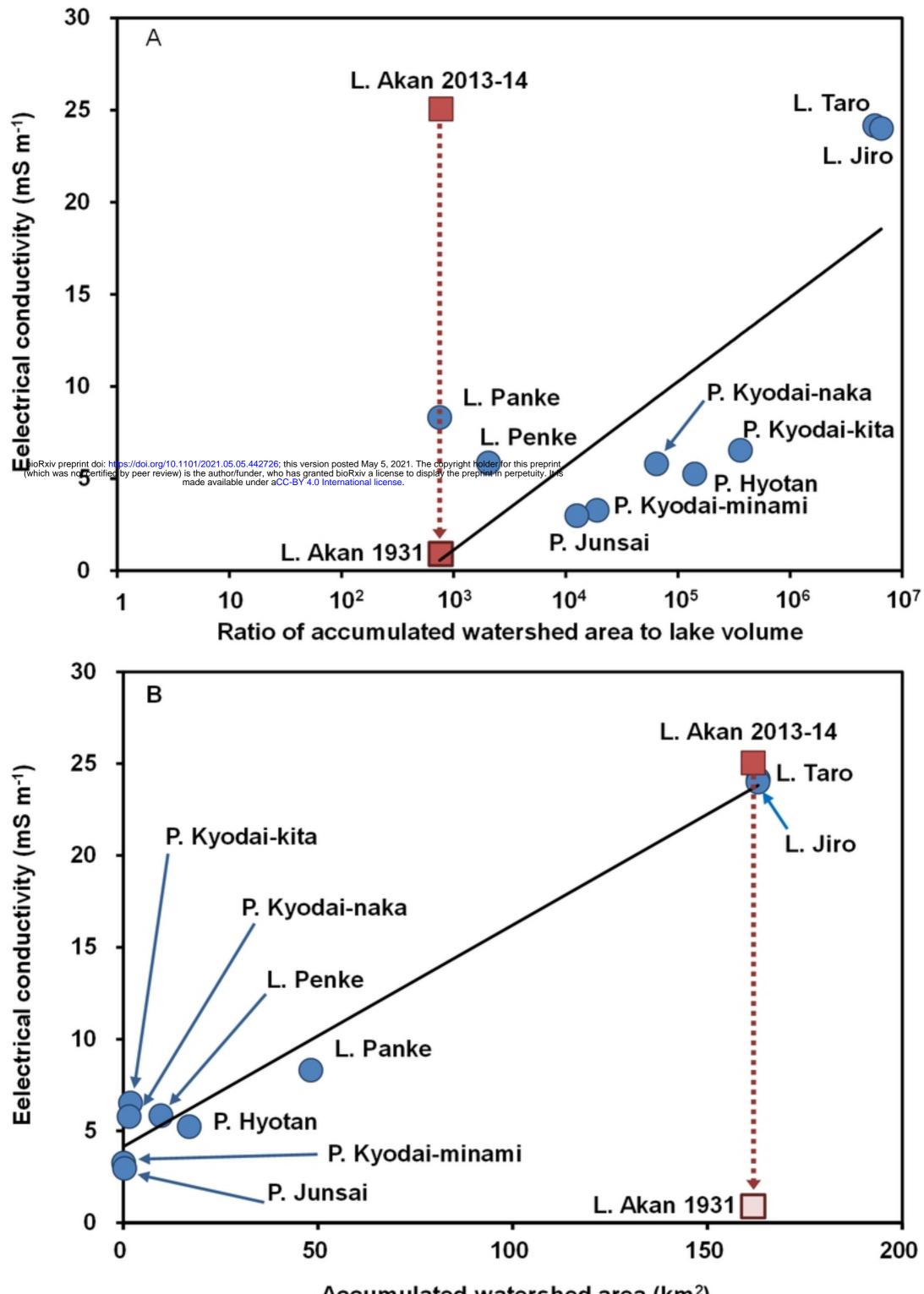

- 767 64. Søndergaard M, Johansson LS, Lauridsen TL, Jørgensen, TB,
- 768 Liboriussen L, Jeppesen E. Submerged macrophytes as indicators of the
- reshw Biol. 2010;55: 893-908. doi:
- 770 https://doi.org/10.1111/j.1365-2427.2009.02331.x.
- 65. Lukács BA, Tóthmérész B, Borics G, Várbíró G, Juhász P, Kiss B, et al.
- 772 Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary).
- 773 Limnologica. 2015;53: 74-83. doi
- 66. Wright DH, Currie DJ, Maurer BA. Energy supply and patterns of
- species richness on local and regional scales. In: Ricklefs RE, Schluter D,
- editors. Species diversity in ecological communities: historical and
- geographical perspectives. 7. Chicago: University of Chicago Press; 1993.
- 67. Miyashita T, Noda T. Community ecology. Tokyo: University of Tokyo
- 779 Press; 2003. (in Japanese)

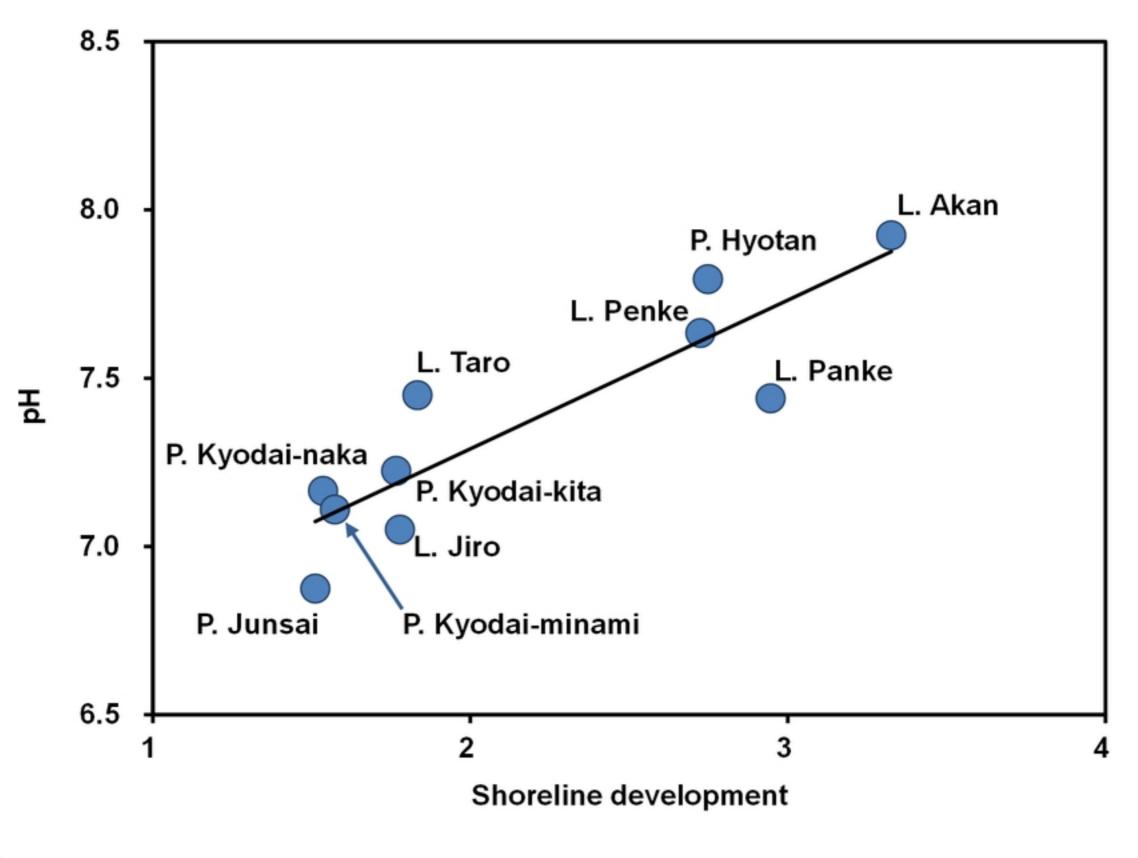
780

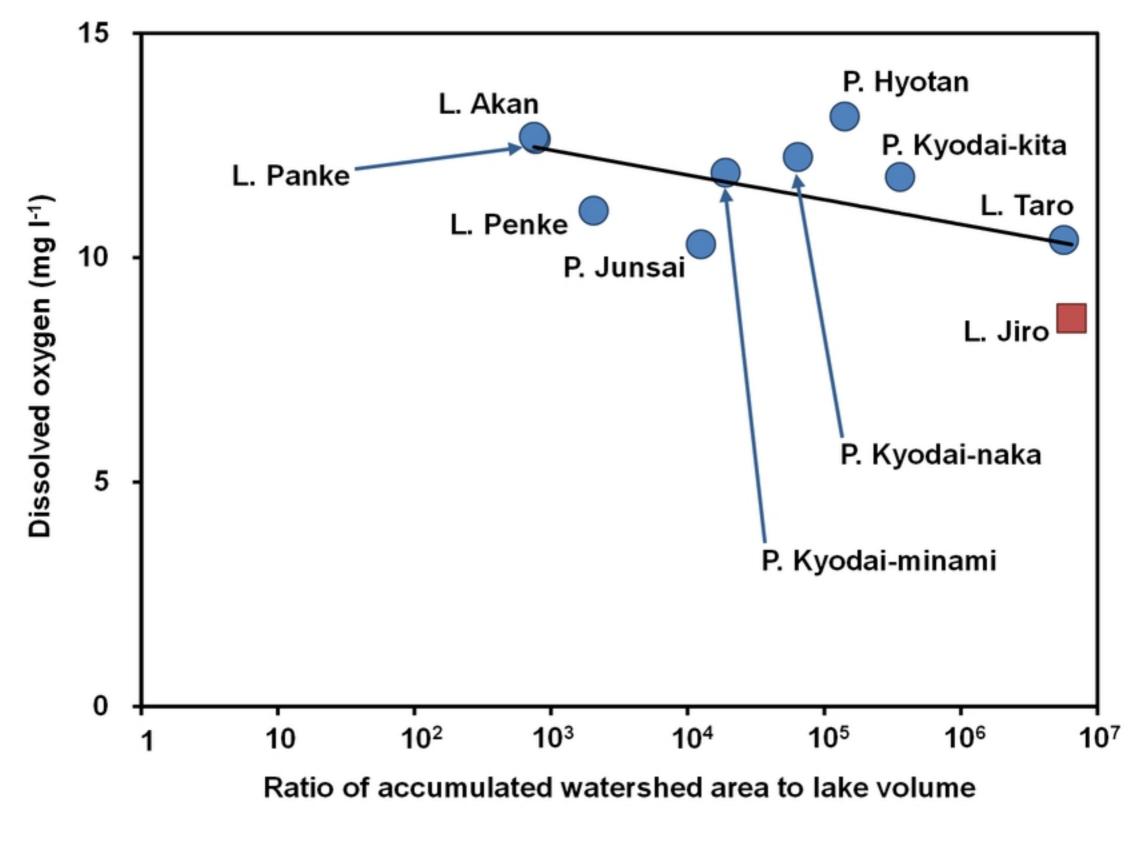

44

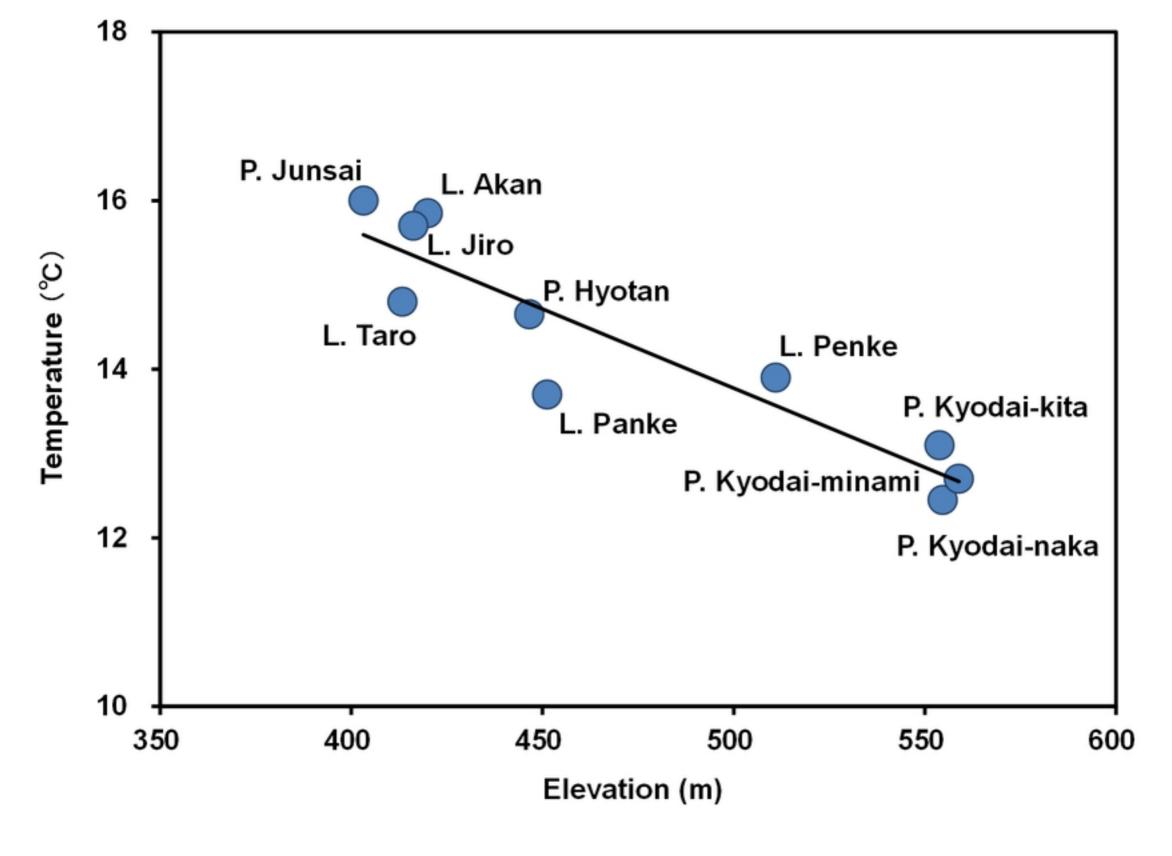
781 Supporting information

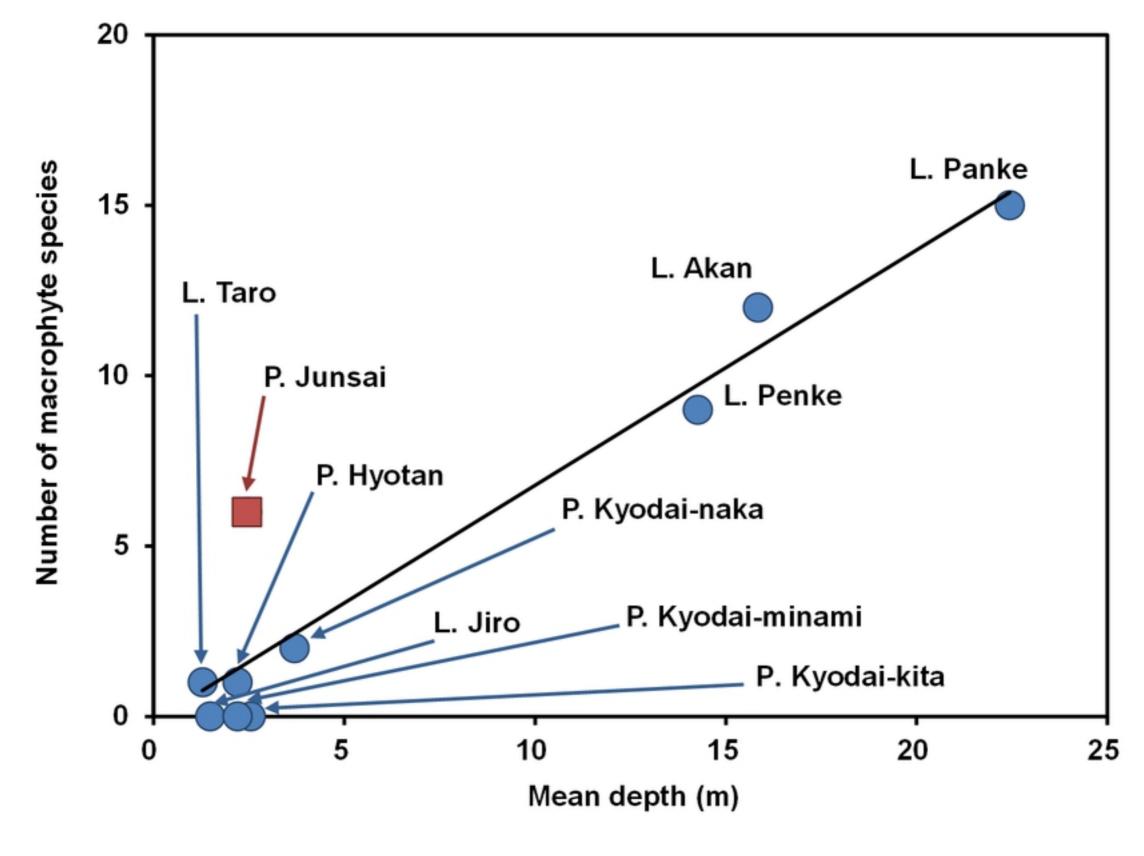

- 782 S1 Table. Data set of topography, water quality and number of species of macrophytes
- 783 in Akan Caldera Lakes.
- 784 S2 Table. Correlation matrix of topography, water quality and number of species of
- 785 macrophytes in Akan Caldera Lakes.


Figure








Accumulated watershed area (km²)

Lake Species	L .Panke	L. Penke	L. Akan	P. Kyodai- naka	P. Hyotan	L. Taro	P. Junsai	Type of occurrence	Euclidean distance 0 1 2 3 4 5
Ranunculus nipponicus var. submerses	1	0	0	0	0	0	0		
Potamogeton alpinus	1	0	0	0	0	0	0		
Najas yezoensis	1	1	0	0	0	0	0	Oligotrophic	
Potamogeton gramineus	1	1	0	0	0	0	0		
Isoetes asiatica	1	1	0	0	0	0	0		h
Potamogeton berchotoldii	1	1	1	1	0	1	0	Oligo-meso-	
Potamogeton perfoliatus	1	1	1	1	1	0	0	eutrophic	
Potamogeton maackianus	1	1	1	0	0	0	0		
Myriophyllum spicatum	1	1	1	0	0	0	0		
Hydrilla verticillata	1	0	1	0	0	0	0	Oligo-	
Potamogeton compressus	1	0	1	0	0	0	0	mesotrophic	
Stuckenia pectinate	1	0	1	0	0	0	0		
Ceratophyllum demersum	1	0	1	0	0	0	0		
Potamogeton crispus	0	0	1	0	0	0	0	Mesotrophic	
Persicaria amphibia	0	0	1	0	0	0	0	Mesotrophic	
Brasenia schreberi	0	0	0	0	0	0	1		
Nuphar pumila var. pumila	0	0	0	0	0	0	1		
Nymphaea tetragona var. tetragona	0	0	0	0	0	0	1	Durative his	
Potamogeton natans	0	0	0	0	0	0	1	Dystrophic	
Utricularia macrorhiza	0	0	0	0	0	0	1		
Utricularia minor	0	0	0	0	0	0	1		

Occurrence type of	Species of macrophyte	Trophic type of lake								
macrophyte	opecies of macrophyte	Oligotrophic	Mesotrophic	Eutrophic	Dystrophic					
Oligotrophic	Ranunculus nipponicus var. submerses Potamogeton alpinus Najas yezoensis Potamogeton gramineus Isoetes asiatica	R.nipponicus var. submersus L. Panke								
Mesotrophic	Potamogeton crispus Persicaria amphibia		P. crispus L. Akan							
Oligo- mesotrophic	Potamogeton maackianus Myriophyllum spicatum Hydrilla verticillata Potamogeton compressus Stuckenia pectinata Ceratophyllum demersum	M. spicatum L. Panke	M. spicatum L. Akan							
Oligo-meso- eutrophic	Potamogeton berchotoldii Potamogeton perfoliatus	P. perfoliatus L. Penke	P. perfoliatus P. Kyodai-naka	P. perfoliatus P. Hyotan						
Dystrophic	Brasenia schreberi Nuphar pumila var. pumila Nymphaea tetragona var. tetragona Potamogeton natans Utricularia macrorhiza Utricularia minor				B. chreberi P. Junsai					