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17 Abstract

18 Phylogenetic profiling in eukaryotes is of continued interest to study and predict 

19 the functional relationships between proteins. This interest is likely driven by the 

20 increased number of available diverse genomes and computational methods to infer 

21 orthologies. The evaluation of phylogenetic profiles has mainly focussed on reference 

22 genome selection in prokaryotes. However, it has been proven to be challenging to obtain 

23 high prediction accuracies in eukaryotes. As part of our recent comparison of orthology 

24 inference methods for eukaryotic genomes, we observed a surprisingly high performance 

25 for predicting interacting orthologous groups. This high performance, in turn, prompted 

26 the question of what factors influence the success of phylogenetic profiling when applied 

27 to eukaryotic genomes.

28 Here we analyse the effect of species, orthologous group and interactome 

29 selection on protein interaction prediction using phylogenetic profiles. We select species 

30 based on the diversity and quality of the genomes and compare this supervised selection 

31 with randomly generated genome subsets. We also analyse the effect on the performance 

32 of orthologous groups defined to be in the last eukaryotic common ancestor of eukaryotes 

33 to that of orthologous groups that are not. Finally, we consider the effects of reference 

34 interactome set filtering and reference interactome species. 

35 In agreement with other studies, we find an effect of genome selection based on 

36 quality, less of an effect based on genome diversity, but a more notable effect based on 

37 the amount of information contained within the genomes. Most importantly, we find it is 

38 not merely selecting the correct genomes that is important for high prediction 

39 performance. Other choices in meta parameters such as orthologous group selection, the 
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40 reference species of the interaction set, and the quality of the interaction set have a much 

41 larger impact on the performance when predicting protein interactions using phylogenetic 

42 profiles. These findings shed light on the differences in reported performance amongst 

43 phylogenetic profiles approaches, and reveal on a more fundamental level for which types 

44 of protein interactions this method has most promise when applied to eukaryotes.

45   

46 Introduction

47 The post-genomic era has provided us with a wealth of eukaryotic genomes of 

48 diverse and underrepresented phyla [1]. Most of the sequences in these new genomes 

49 are without precise function assignment and a challenge remains, protein function and 

50 interaction discovery [2,3]. Computational approaches that are available for large scale 

51 analyses of protein function and interactions include phylogenetic profiling. Phylogenetic 

52 profiling uses correlations of the presences and absences of groups of orthologous 

53 proteins (orthologous groups) across a set of species [4]. Phylogenetic profiling is a 

54 seemingly straightforward method proven to be a valuable alternative resource for 

55 studying functional relationships between proteins. Recently the method has played an 

56 integral part in identifying the cellular functional role of CENATAC that is a key player in 

57 a rare aneuploidy condition in humans [5], identifying eukaryotic reproduction genes [6], 

58 and identifying eukaryotic novel recombination repair genes [7].

59 The information in the phylogenetic profiles given by presence and absence 

60 patterns, are shaped by a diverse range of evolutionary forces. These forces include 

61 horizontal gene transfer, secondary endosymbiosis and gene loss. The method relies on 
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62 the principle that proteins with a similar profile indicate that the proteins co-evolved due 

63 to them belonging to the same functional pathway or complex. There are countless 

64 observations that co-occurring proteins tend to interact [8–10]. Phylogenetic profiling can 

65 be a powerful tool for function prediction. By comparing, or even clustering, profiles of 

66 proteins with unknown function to those with known function enables us to infer to which 

67 complexes or functional pathways the uncharacterized proteins likely belong and, in turn, 

68 infer their function. 

69 Multiple studies have shown the effectiveness of phylogenetic profiling in large 

70 scale analyses of eukaryotes [9,11], which has become possible with the large increase 

71 in genomic data and computational methods to (automatically) infer orthologies [12–14] 

72 or cluster genes [11]. However, benchmarking and analysing the performance of large-

73 scale phylogenetic profiling has been limited to prokaryotes, for which good performance 

74 can be obtained when predicting protein interactions [15–18]. The performance 

75 decreases when benchmarking is done solely with eukaryotes or when eukaryotes are 

76 combined with prokaryotes [15,16]. Likely, the performance reduction is caused by the 

77 different forces driving eukaryotic genome evolution, compared to the dynamic pan 

78 genomes of prokaryotes where the interplay of rampant horizontal gene transfer of 

79 operons and loss of genes that create highly informative patterns.  

80 We recently obtained a high protein interaction prediction performance in a large 

81 set of eukaryotes in the context of evaluating a diverse set of orthologous group inference 

82 methods [19]. The surprisingly high prediction performance only marginally depended on 

83 the orthologous group inference methods (which was the focus of the study), suggesting 

84 that its cause could be any of the other underlying choices. Therefore, a more elaborate 
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85 analysis of the choices made for phylogenetic profiling is warranted. Here we evaluate in-

86 depth the meta parameters influencing the performance of phylogenetic profiles in 

87 eukaryotes.

88 Multiple studies have understandably focused their analysis on reference genome 

89 selection or the amount of genomes/data needed to increase prediction performance [16–

90 18,20,21]. Besides genome diversity and quality, we analyse orthologous groups and 

91 reference interactome selection. Our results demonstrate that an interplay of biological 

92 and technical aspects influence phylogenetic profiling. Most importantly, our results show 

93 that prediction performance is influenced not only by genome selection but mostly by 

94 orthologous and interactome selection. 

95 Results 

96 Each results section describes the analyses of meta parameters encompassing 

97 five main concepts: genome quality, genome diversity, performance directed genome 

98 selection, orthologous group selection, and reference interactome selection. To rule out 

99 any orthology specific issues, we performed the analyses using two orthology inference 

100 methods, Sonicparanoid [13] and Broccoli [14]. Sonicparanoid performed the best in our 

101 previous study using phylogenetic profiles for protein interaction prediction [19]. We chose 

102 Sonicparanoid as the primary method, while broccoli serves to determine to what extent 

103 the results are contingent on a specific orthology method. The results for Broccoli can be 

104 found in Supplementary figures and are overall in agreement with the results of 

105 Sonicparanoid.
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106 1. Lesser quality genomes have more effect on the prediction 

107 performance than higher-quality genomes

108 Phylogenetic profiles can be noisy due to multiple technical reasons, such as gene 

109 annotation and genome assembly errors. Consequently, the quality of genomes can be 

110 an essential factor, as profiles with a lot of noise would be akin to noisy gene expression 

111 or protein interaction measurements. We expect noisy genomes to give much weaker 

112 prediction performance. Given this expectation, the first meta parameter assessed was 

113 genome quality. We calculated genomes quality using two independent metrics, BUSCO 

114 [22] and one of our design (Supplementary figures and Methods and Materials). For 

115 clarity, we use only the BUSCO metric in the main text since both metrics generally agree 

116 with each other. 

117 The BUSCO metric assesses genome completeness based on the (in our case) 

118 absence of single-copy orthologs that are highly conserved among eukaryotic species. 

119 The absences of these orthologs can result from incomplete draft genomes or false 

120 negatives in gene prediction, which in both cases leads to false absences of orthologs. 

121 We selected 50 high-quality genomes with the lowest BUSCO values, i.e., genomes with 

122 the least number of unexpected absences. We also selected 50 lower quality genomes 

123 with the highest BUSCO values, i.e., genomes with the most number unexpected 

124 absences (Fig 1.A.). We compared the quality filtered genome sets with 1000 randomly 

125 generated genome sets of 50 genomes each to see if quality-based selection differs from 

126 any random sampling of genomes.

127
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128 Fig 1. Lesser quality genomes have more impact on protein interaction 

129 prediction performance. A. BUSCO absences as a function of retained Last Eukaryotic 

130 Common Ancestor (LECA) orthologous groups in different species. Filled data points are 

131 the selected genomes for the prediction accuracy calculations. B. Receiver-operator 

132 Curve of two species sets (n = 50) with the most and least BUSCO absences. The inset 

133 gives the Area Under the Curve (AUC) values compared with the random backdrop of 

134 1000 random species sets (violin plot) and the initial species set (teal diamond).

135

136 The results show that the performance using the highest quality genomes with the 

137 least suspect absences falls within the distribution of random genome prediction 

138 performance (AUC: 0.765). In contrast, the lower quality genomes fall below the 

139 distribution of random prediction performance (AUC: 0.748) (inset Fig 1.B.). This suggests 

140 that it is more beneficial to filter out lesser-quality genomes than it is to select for high-

141 quality genomes. This result is consistent between two independent scores of genome 

142 quality (S1 Fig).

143 With these results, it seems prudent to select genomes only based on quality when 

144 applying phylogenetic profiles. However, there is an inherent bias between genome 

145 quality and phylogenetic distribution (Fig 1.A). For instance, eukaryotes belonging to the 

146 Opisthokonta supergroup have overall lower BUSCO absences, biassing the selection of 

147 good genomes towards one eukaryotic supergroup. A priori, species diversity seems 

148 another meta parameter in genome selection with potential impact. In the next section, 

149 we will look at the diversity of species and how that influences phylogenetic profiling.
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150 2. Genome diversity has little effect on prediction 

151 performance in eukaryotes 

152 The diversity of species plays a role in the performance of phylogenetic profiles in 

153 prokaryotes [16].  We also expect high species diversity to improve how informative 

154 profiles are by giving high-resolution information on how genes co-evolve in different 

155 organisms. More species diversity allows to maximally discern the effect of evolutionary 

156 forces shaping co-evolving proteins, which might not be apparent in, e.g., an animal only 

157 data set. There will be no discernible and informative phylogenetic pattern in a 

158 homogeneous species set where most ancestral protein complexes are not frequently 

159 lost. A previous study showed that the maximum phylogenetic diversity in Bacteria gives 

160 the best predictive performance [18]. Here we want to test how maximal and minimal 

161 diversity affects prediction performance in eukaryotes. 

162 We analysed the impact of eukaryotic diversity by selecting two sets of 50 

163 genomes, one containing the most similar species (Fig 2.A.) and the other the most 

164 diverse species (Fig 2.B.) from our initial species set. The (dis)similarity was measured 

165 using an iterative all-vs-all comparison using the cosine distance between genomes and 

166 their orthologous group content. We started with the most diverse or similar species pairs 

167 and iteratively added to this set the species with the highest (dis)similarity until we 

168 obtained 50 genomes (Materials and Methods). We recalculated the protein-interaction 

169 prediction performance for both these sets. The prediction performance is lower than the 

170 initial set for both sets, but not worse than any randomly selected genome sets (AUC: 

171 0.760 for the dissimilar set and AUC: 0.764 for the similar set) (Fig 2. C. inset).

172
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173 Fig 2. Both high and low diversity sets have little impact on protein 

174 interaction prediction performance. A. The most similar species form more clusters 

175 and are overall more similar to each other. B. The most diverse species show no 

176 clustering and are overall less similar to each other. C. Receiver-operator Curve of two 

177 species sets (n = 50) with the most diverse and most similar species. The inset gives the 

178 Area Under the Curve (AUC) values compared with the random backdrop of 1000 random 

179 species sets (violin plot) and the initial species set (green diamond).

180

181 Similar species will naturally show more cohesion in profiles, with little separation 

182 of protein co-evolution. Highly diverse species will naturally show more discordance, with 

183 little information left to see protein co-evolution. In both cases, there will not be a gene-

184 specific signal. A combination of the two should give good separation of actual co-

185 evolving genes. Together with the effects of genome quality, genome diversity can be an 

186 important factor for the performance of phylogenetic profiles. However, the interplay 

187 between these two factors is complex, and as we previously determined, high genome 

188 quality corresponds with lower phylogenetic diversity. To look into this further, we 

189 investigate the influence of single genomes on predictive performance.

190 3. Single influential genomes and their combined effect on 

191 prediction performance reveal the importance of the type of 

192 information in the profiles

193 Diversity and quality both impact performance and we expect it to have a combined 

194 influence on phylogenetic profiling. Instead of a priori selecting genomes based on a 
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195 measure for each of these two criteria, we can also objectively evaluate the prediction 

196 performance by removing genomes from the initial species set one-by-one (Fig 3. A.). 

197 Genomes that decrease prediction performance when removed from the initial set we can 

198 consider as advantageous to phylogenetic profiling, while genomes that increase 

199 prediction performance when removed from the initial set we can consider as 

200 disadvantageous to phylogenetic profiling. We selected the top 50 advantageous and top 

201 50 disadvantageous genomes to see whether these genomes together in their respective 

202 sets also influence the prediction performance. 

203

204 Fig 3. Influential genomes and their combined effect. A. Recalculated Area 

205 Under the Curve (AUC) values when a single species is removed from the initial species 

206 set. Genomes that increase the AUC value when removed can be considered 

207 disadvantages compared to the initial set when predicting protein interactions with 

208 phylogenetic profiles. Genomes that decrease the AUC value when removed can be 

209 considered advantageous for predicting protein interactions. Top 50 advantageous and 

210 top 50 disadvantageous genomes shown with the black fill in the scatter plot. B. Receiver-

211 operator Curve of two species sets (n=50) with the most advantageous and 

212 disadvantageous genomes. The inset gives the Area Under the Curve (AUC) values 

213 compared with the random backdrop of 1000 random species sets (violin plot) and the 

214 initial species set (green diamond). C. Comparison of the counts (histogram) and kernel 

215 density estimates (line plot) of (I) illogical absence ratios (illogical absences divided by 

216 total interaction absences (co-absences + illogical absences)), (II) present interactions, 

217 (III) the cosine distance to human, and (IV) total shared orthologous groups with human.  
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218

219 For both the advantageous and disadvantageous set we can see a large difference 

220 in prediction performance (Fig 3. B.) and a larger difference than the selection based on 

221 the measures for either quality or diversity. With the advantageous genome set, the 

222 performance increases (AUC: 0.801). In contrast, for the disadvantageous set the 

223 performance drops (AUC: 0.730). Both values fall well outside the distribution of 1000 

224 randomly generated genome subsets.

225 Although a large cumulative effect on performance because we used the genomes’ 

226 performance to select the genomes, it is still very interesting to see what these genomes 

227 share if it is not quality or diversity. We therefore examined the role of different genomes 

228 in these genome sets. Comparison of a large number of factors (S5 Fig) revealed that 

229 that the difference in prediction performance of the advantageous and disadvantageous 

230 genome sets is related to the (human) interactions retained in the genomes (Fig 3. C. and 

231 S5. A. Fig). The illogical absence ratios and the complete interactions present (or co-

232 presences) (Fig 3. C. I & II) show intermediate values for the disadvantageous genome 

233 set. At the same time, these values are either high or low for the advantageous genome 

234 set. 

235 We can also directly relate the differences between these genome sets to how 

236 close the genomes in the sets are to the human genome. The cosine distance and the 

237 shared orthologous groups of the genomes with the human genome (Fig 3.C. III & IV) 

238 show intermediate values for the disadvantageous set, while the values are either high or 

239 low for the advantageous genome set. For the orthologous groups inferred by Broccoli 
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240 this signal is even more pronounced (S5. B. Fig). A surprising finding is that the 

241 advantageous set contains numerous parasitic organisms (S1 Table).

242 In other words, genomes boosting the performance share either a lot or a little 

243 similarity with the reference interactome across a range of dimensions. Thus, 

244 phylogenetic profiling in eukaryotes benefits from genomes with a little or a lot of 

245 interactions present with regards to the reference interactome. These results reveal the 

246 importance of selecting genomes based on the evolutionary information contained within 

247 them relative to the query species, and is critical for high performance when predicting 

248 interacting proteins. 

249 4. Orthologous group (pre-)selection improves prediction 

250 performance by (inadvertently) enriching co-evolving 

251 proteins in profiles

252 Phylogenetic profiling benefits from clear modular co-evolution of proteins and 

253 subsets of proteins showing similar evolutionary behaviour [16,23]. A myriad of factors 

254 limit the modular co-evolution of interacting protein [24–26]. In previous research [19], 

255 which provides the starting meta parameters of this study, we evaluated orthology 

256 methods by their ability to recapitulate gene family dynamics in the Last Eukaryotic 

257 Common Ancestor (LECA). Consequently, the results so far are based on orthologous 

258 groups estimated to be in LECA. To see if this selection criterion was a factor in the strong 

259 performance, we performed phylogenetic profiling with other orthologous groups 

260 selections: groups estimated to be post-LECA, or groups not filtered on any criteria (post-

261 LECA + LECA), i.e., the raw output of the orthology inference methods. We compared 
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262 these orthologous group sets with 1000 subsets of randomly selected LECA orthologous 

263 groups. The prediction performance was indeed reduced (AUC: 0.691 post-LECA and 

264 AUC: 0.734 all orthologous groups) compared to that of LECA orthologous groups or any 

265 randomly selected set of orthologous groups (Fig 4.). After some reflection, a myriad of 

266 explanations likely factor into this effect. Profiles of LECA proteins have many losses, and 

267 thus a lot of information (entropy) (S6 and S8 Figs). Profiles of post-LECA proteins have 

268 less loss and, by definition, are restricted to specific lineages, and thus contain less 

269 information. Combining LECA and post-LECA orthologous groups produce a set of 

270 phylogenetic profiles with an overall much lower similarity. 

271

272 Fig 4. Orthologous group selection has a large impact on prediction 

273 performance. Receiver-operator Curve of post-LECA orthologous groups and unfiltered 

274 orthologous groups. The inset gives the Area Under the Curve (AUC) values compared 

275 with the random backdrop of randomly selected LECA OGs (violin plot) and the initial 

276 species set (green diamond).

277

278 We now have identified a key meta parameter choice explaining why our previous 

279 research found such high performance. However, it is unclear what the reason for this 

280 effect is and why for specific pairs of proteins, one protein was in LECA and the other not. 

281 This separation could be biological reality, i.e., innovations in the evolution from LECA to 

282 human, or issues in orthology assignment, i.e., one protein is evolving much more rapidly 

283 that causes the protein’s predicted orthologous group to give an artifactually lineage-

284 specific distribution in the profile. Consequently, the protein is falsely inferred as a more 
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285 recent addition or innovation. Manual inspection of this set (S9 Fig) does not obviously 

286 point towards one of the explanations. It is likely a combination of factors, including 

287 orthology prediction errors (e.g., oversplitting) and actual lineage-specific 

288 additions/inventions. In any case, the meta parameter of orthologous group selection is 

289 perhaps easily overlooked or made implicitly in the OG creation itself. Still, it is highly 

290 impactful, and our results show that OG selection improves prediction performance by 

291 enriching co-evolving proteins in profiles.  

292 5. Choice of reference interactome and interaction filtering 

293 improves prediction performance by increasing the amount 

294 of co-evolving proteins and quality of interactions

295 Phylogenetic profiling attempts to predict which pairs of proteins are part of the 

296 same function, pathway, or complex. The performance of phylogenetic profiles can be 

297 measured using a data set of proteins that interact or are otherwise functionally linked. 

298 For example, we can take KEGG pathways as measuring units, as done in the STRING 

299 database [27]. However, these pathways often have an excess of 30 proteins and not all 

300 of them are expected to have the mutual functional dependence that results in co-

301 evolution. This unwantedly biases the predictor by having supposedly interacting proteins 

302 with little correlation. Similarly, if we would take a very small well-curated set of 

303 compact/short linear metabolic pathways as was used to seed the CLIME searches [11], 

304 then the choice of what protein pairs to count as false negatives becomes difficult. Hence, 

305 our decision in previous work was to parse human interactions from BioGRID to contain 

306 only interactions found in at least five independent studies (Methods and Materials). This 
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307 filtering of interactions has been repeatedly demonstrated to effectively increase the 

308 quality and reduce the noise in the interaction data [27,28]. Moreover, the same data set 

309 contains a very good indication of which proteins are not functionally related. Proteins 

310 that are well studied and repeatedly surface in high throughput assays and are subject to 

311 repeated investigations are indeed likely to have no functional relation since these 

312 proteins are evidently never identified to interact.

313 The results in section 3 (Fig 3.C.) reinforce the notion that the reference interaction 

314 set plays a role in the performance of predicting interacting proteins. For these reasons, 

315 we analysed how the filtering and choice of reference interactome influences protein 

316 interaction prediction performance in eukaryotes. Using an unfiltered human protein 

317 interaction dataset reduces the prediction performance from an AUC of 0.779 to an AUC 

318 of 0.638 (Fig 5. A.). This performance is also lower than any set of randomly selected 

319 LECA orthologous groups (inset). The quality of the interaction data used clearly plays a 

320 role in prediction performance, i.e., if we take a noisy “ground truth” it turns out to be 

321 difficult to predict this truth. It is difficult to predict interactions with a set littered with false, 

322 virtually random, pairs.

323

324 Fig 5. Interactome selection is important for prediction performance. A. 

325 Receiver-operator Curve of post-LECA orthologous groups and unfiltered orthologous 

326 groups. The inset gives the Area Under the Curve (AUC) values compared with the 

327 random backdrop of randomly selected LECA orthologous groups (violin plot) and the 

328 initial species set (green diamond). B. GO-enrichment analysis for genes enriched in 

329 interactions present in only human compared to interactions present in human and yeast. 
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330 Orthologous groups can contain multiple genes. We randomly selected genes from an 

331 orthologous group to generate a new sample and population sets ten times and 

332 recalculated the enrichment (shown by multiple points in the figure rows).

333

334 We further analysed the choice of reference organism for protein interactions. 

335 Specifically for eukaryotes, the prediction performance was sensitive to the reference 

336 species for protein interactions [21]. Yeast has been the organism of choice as the 

337 reference interaction set for eukaryotes. Yeast is a popular model organism that has been 

338 extensively researched, and it is with yeast that many protein-protein interaction high 

339 throughput methods were pioneered. As a result, we also expect the interaction data of 

340 yeast to be of higher quality than that of human and, consequently, interaction predictions 

341 to be better. 

342 We used Saccharomyces cerevisiae interactions from BioGRID (Materials and 

343 Methods) filtered with the same number of publications strictness criterion. Surprisingly, 

344 and contrary to for instance [6], the human interaction set performed better with an AUC 

345 of 0.779 compared to the yeast interaction set with an AUC of 0.713 (Fig 5. A.). One reason 

346 could be that ascomycete fungi and yeast in particular, has lost many co-evolving LECA 

347 complexes found in most eukaryotes [29,30]. These losses include Complex I, essential 

348 functions in chromatin modification [31], spliceosomal introns and RNAi machinery giving 

349 patchy patterns of canonical Dicer and Argonaute [32], ciliary genes [8,33], and the 

350 WASH complex [9,11,34]. These observations prompted us to look at the GO term 

351 enrichment of interacting LECA orthologous groups that contain only human genes 

352 versus interacting LECA orthologous groups that have both human and yeast genes.
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353 We indeed find evidence of multiple genes belonging to ancestral complexes 

354 enriched in the human interaction set (Fig 5. B.), including enrichment in more 

355 straightforward GO terms related to mitochondria and respiration (e.g., GO:0005747, 

356 GO:0006120, GO:0032981 and GO:0070469), cilium (e.g., GO:0005929) and 

357 spliceosomal components (e.g., SMN complex GO:0032797). We also find evidence in 

358 higher-level GO terms that at lower levels reflect complexes known to be present in 

359 human and absent in yeast (S2 Table), such as chromatin modification (e.g., 

360 GO:0042127). For the broccoli inferred orthologous groups, more enriched GO terms 

361 reflect at lower-level complexes known to be present in human and not in yeast: 

362 Argonaute and Dicer (GO:0010629, GO:0048471 and GO:0030426), WASH 

363 (GO:0005814, GO:0005856 and GO:0043005) and chromatin modification (e.g., 

364 GO:0007399) (S10 Fig and S3 Table). 

365 Even though there are more yeast than human interactions present in multiple 

366 species, the entropies of the profiles participating in yeast interactions are lower (S11 

367 Fig). This observation and the GO analysis reveal a clear reason why the performance 

368 we reported is high relative to others. Namely, we use the human reference interaction 

369 set with ancestral complexes that have been frequently lost throughout eukaryotic 

370 evolution and are absent in yeast.

371 Discussion

372 Phylogenetic profiling is complicated due to many biological and technical issues. 

373 These issues include the complex histories of proteins and the choices in the meta 

374 parameters for phylogenetic profiling, such as the quantity, quality and diversity of 
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375 reference genomes and annotations. Meta parameter choices in phylogenetic profiling 

376 has been extensively studied in mostly prokaryotes, where generally the focus is on the 

377 choice of reference genomes, phylogenetic profile methods, and/or the amount of data. 

378 We focus on eukaryotes and investigate qualitative different meta parameters for 

379 phylogenetic profiling. We showed that phylogenetic profile performance when predicting 

380 protein interactions is influenced by a complex interplay of multiple technical and 

381 biological parameters.

382 Genome diversity plays an important role in prediction performance for prokaryotes 

383 [16,18]. In contrast, our measures of eukaryotic diversity did not significantly influence 

384 prediction performance. Selecting lesser-quality genomes has a larger effect on 

385 prediction performance, while selecting higher-quality genomes does not. Genome 

386 selection and the interplay between quality and diversity does matter. However, other 

387 meta parameters have a much larger impact on prediction performance, such as the 

388 amount of information in the phylogenetic profiles in relation to the reference interaction 

389 dataset. This discrepancy suggests that more complex feature selection procedures 

390 should be explored for reference genome set selection, especially since (non-linear) 

391 interactions between subsets of genomes and combinations of subsets could drastically 

392 boost performance.

393 Other meta parameters, such as orthologous group and reference interactions, 

394 have a much larger effect than genome selection. Some results make a lot of sense from 

395 a technical point of view. For example, low quality/noisy functional data (unfiltered 

396 BIOGRID) or mixing phylogenetic profiles that are at least 50% inconsistent (post-LECA 

397 + LECA orthologous groups) have poor performance. A drawback to filtering out post-
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398 LECA orthologous groups is that we remove lineage-specific interactions that are still a 

399 part of a protein complex and show clear co-evolution. Our analysis shows that we should 

400 consider these often hidden choices when encountering large differences in performance 

401 between reported studies.

402 One very counterintuitive finding is that the yeast interaction set showed lower 

403 predictive performance. Compared to the human interaction set, yeast should be of equal 

404 quality by all accounts, arguably even better. Together with the observation that LECA 

405 orthologous groups performed better than post-LECA orthologous groups, this suggests 

406 that the performance of phylogenetic profiles in eukaryotes is optimal for modules that 

407 fulfil a very particular set of conditions. These modules (i) were present in LECA, (ii) were 

408 repeatedly lost in eukaryotic lineages, and (iii) the genes in the module conserved most 

409 of their function. This observation fits with notable examples from the WASH complex and 

410 cilium [8,9,11], or proteins with great success in predicting its components like the minor 

411 spliceosome [5] and RNAi machinery genes including Dicer and Argonaute [32]. These 

412 biological patterns should explain the very strong signal found by studies such as [9,11]. 

413 Note, both studies show very strong signals for complexes as well as pathways, which 

414 we excluded due to the problem of defining a quality negative interaction set.

415 In conclusion, we find that for eukaryotes more genomes and better-quality 

416 genomes are not necessarily better. It is instead the type of information in the genomes. 

417 The information in these genomes is not directly related to larger genomes, for instance 

418 parasites increase prediction performance. Instead, the information is related to the 

419 interactions of the reference species present in a given genome. Genome selection has 

420 a minor influence compared to orthologous groups selection and interactome selection, 
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421 which both greatly improve the performance when predicting protein interactions. 

422 Interactome and orthologous group selection is likely the major source for the large 

423 variance in reported performances. Ancestral complexes that are repeatedly lost are 

424 responsible for the strong performance of phylogenetic profiles in eukaryotes and it is 

425 these hidden choices in orthologous group selection that we should consider when we 

426 find large differences in performance between studies.

427 Material and Methods

428 1.Initial datasets and methods

429 We started our investigation from the analysis done in our previous work [19], to 

430 investigate the influence of different parameters on the performance of predicting protein-

431 protein interactions using phylogenetic profiles. We showed a relatively high prediction 

432 performance using a large set of diverse eukaryotes and orthologous groups inferred to 

433 be in the Last Eukaryotic Common Ancestor (LECA). This reference set is called the initial 

434 set. Any changes that we made are changes in this initial set. In the sections below, we 

435 will briefly describe the composition of this initial set and the methods we used to obtain 

436 it.

437 1. 1. Large scale eukaryotic dataset and LECA orthologous groups

438 We inferred orthologous groups on a diverse genome set of 167 eukaryotes using 

439 different orthologous group inference methods in our previous work. For this analysis, we 

440 chose the best performing method regarding protein interaction prediction, Sonicparanoid 
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441 (version 1.3.0) [13]. To rule out any large orthology specific issues during our current 

442 analyses, we chose at least one other method: Broccoli (version 1.0) [14]. 

443 Ancestral eukaryotic complexes have been lost together multiple times [35]. 

444 Phylogenetic profiles should benefit from this clear modular evolution of proteins. 

445 Therefore, we selected orthologous groups estimated to be in LECA. Briefly, we inferred 

446 LECA orthologous groups using the Dollo parsimony approach [36] with additional strict 

447 inclusion criteria [19]. The Dollo parsimony method assumes that genes can be gained 

448 only once while minimizing gene loss. Before we assigned an orthologous group to LECA, 

449 it must be in at least three supergroups (See Supp. Table X) distributed over the 

450 Amorphae and Diaphoretickes (previously known as opimoda and diphoda) [37].

451 1. 2. Phylogenetic profiling and measuring co-occurrence of proteins

452 We constructed phylogenetic profiles by determining the presence (1) and 

453 absence (0) of orthologous groups in 167 species. To evaluate prediction accuracy, we 

454 obtained a higher quality reference interaction set by filtering the human BioGRID 

455 interaction database (version 3.5.172 May 2019) [38,39]. BioGRID contains physical 

456 interactions between proteins. We filtered this interaction set to keep non redundant 

457 interaction pairs found in at least five independent studies (PubMed ID’s). The number of 

458 independent studies is a measure of how thoroughly these proteins were investigated 

459 and how receptive the proteins are to high-throughput measurements. We mapped the 

460 interacting genes to their corresponding orthologous groups.

461 We used the best performing negative protein interaction set from our previous 

462 analyses [19]. We inferred this negative set by taking pairs of interacting proteins that 

463 were found to be interacting at least five times, but not with each other. This excludes the 
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464 possibility that the negative set contains interacting proteins that were not found due to 

465 manifold technical reasons. 

466 To calculate the (dis)similarities between phylogenetic profiles we used the from 

467 our previous analysis best performing distance measure, the cosine distance.

468 2. Genome selection procedures

469 We compared the results of all the genome selection procedures to 1000 sets of 

470 genomes randomly selected to exemplify that the differences in prediction accuracies are 

471 not due to random variations in genome composition. We calculated the protein 

472 interaction prediction performance for each of these random genome sets.  

473 2. 1. Selecting better and worse quality genomes

474 To measure the quality of the genomes, we used two quality metrics. The first 

475 metric is the out of the box BUSCO metric that works by calculating the absences of highly 

476 conserved single-copy orthologs [22]. The BUSCO Eukaryota database (odb9) was 

477 aligned to the genomes using the hmmsearch alignment tool from the HMMER package 

478 3.1b2 (dated February 2015) [40]. We took the HMM specific quality score given by 

479 BUSCO to validate the hits in the alignments. 

480 The second metric is of our own devising. The second quality metric we used was 

481 the Illogical absences (IA) metric of our design. We added this second independent metric 

482 to remove the dependence of quality on a single measure to establish the completeness 

483 of the genomes and gene prediction. The IA metric calculates the number of absences of 

484 protein interaction partners, which we termed Illogical absences. Illogical absences follow 

485 from the assumption underlying phylogenetic profiling that interacting proteins are often 
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486 evolutionary conserved. Therefore, it can be considered suspect when a protein 

487 interaction partner is absent. A possible reason could be that the absence is due to gene 

488 prediction, genome annotation or even homology detection errors.

489 We selected the strongest interacting orthologous group pairs by selecting their 

490 phylogenetic profiles with the least cosine distance. This selection removes the complex 

491 interplay between interacting groups of orthologs. For every interacting orthologous group 

492 pair, we calculated the absences of interaction partners in every species. These absences 

493 we termed illogical absences or the IA metric. 

494 We can consider the genomes with the most BUSCO absences and illogical 

495 absences as lesser quality genomes. In contrast, we can consider the genomes with the 

496 least BUSCO absences and illogical absences as higher-quality genomes. We selected 

497 50 genomes of lesser-quality and 50 genomes of higher-quality for each of the metrics 

498 and recalculated the protein-protein interaction prediction performance.

499 2. 2. Selecting highly diverse and similar genomes

500 We calculated the pairwise cosine distance between all species with the presence 

501 and absence profiles of LECA orthologous groups to obtain species sets of maximum 

502 diversity and maximum similarity. We then iterated through the resulting pairwise distance 

503 matrix and selected the maximally distant pairs for the diverse set or minimally distant 

504 pairs for the similar set. Before adding a species of a species pair to a set, we checked 

505 to see if the species also had a distance above a certain arbitrary threshold to the other 

506 species in the growing set (cosine value ≥ 0.38 for the dissimilar, cosine value ≤ 0.58 for 

507 the similar set). We did this until we obtained the desired amount of 50 genomes per set. 
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508 The maximum diverse and maximum similar genome sets were each used to recalculate 

509 the protein-protein interaction prediction performance.

510 2.3. Selecting single influential genomes and their combined effect on 

511 prediction performance

512 We removed genomes one-by-one from the initial species set of 167 eukaryotes 

513 to see how the different genomes influence the performance of protein interaction 

514 prediction with phylogenetic profiling. We recalculated the performance for each of these 

515 167 sets. The 50 genomes that increased the performance compared to the initial species 

516 set the most when removed from the initial set were labelled as disadvantageous. The 50 

517 genomes that decreased the performance the most when removed from the initial set 

518 were labelled advantageous. For both the disadvantage and advantageous set we 

519 recalculated the protein interaction prediction performance. 

520 3. Gene and interactome selection procedures

521 We compared the results of the orthologous group selection procedures to 

522 randomly selected LECA orthologous groups to exemplify that the differences in 

523 prediction accuracy is not due to random variations in orthologous group composition. 

524 We made a thousand LECA orthologous group sets containing a random selection of 

525 63% of the orthologous groups. We calculated each of these set’s protein interaction 

526 prediction performance. 
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527 3. 1. Selecting orthologous groups 

528 In our initial species set, we used orthologous groups estimated to be in LECA 

529 (Methods section 1.1.). We took the raw output of the orthology inference methods and 

530 filtered out the LECA orthologous groups to get a set that contains post-LECA orthologous 

531 groups. We also recalculated the prediction performance with the raw output of the 

532 orthology prediction methods, which is all inferred orthologous groups.

533 3.2. Selecting different reference interactomes

534 We compared the five PubMed ID filtered human BioGRID set with the unfiltered 

535 human BioGRID dataset. Every interaction with less than five pubIDs is now included as 

536 well. Removing the five PubMedID filter should indicate how quality filtering of reference 

537 interactions influences prediction performance. 

538 We selected next to the human interactions the Saccharomyces cerevisiae 

539 BioGRID interaction database (version 3.5.175 July 2019) [39] to analyse the influence 

540 of the reference interactome. We filtered the interactions to keep only the interaction pairs 

541 found in at least five publications (PubMed ID’s). We followed the same procedure as with 

542 the human interaction set (Methods section 1.2.). 

543 Following this analysis, we hypothesized that the drop in prediction performance 

544 for yeast is caused by the loss of ancestral protein complexes in yeast. To test this, we 

545 chose interacting LECA orthologous groups that contained only human genes (sample 

546 set) and calculated the enrichment to the set with interacting LECA orthologous groups 

547 containing human and yeast genes (population set). We calculated the enrichment using 

548 the following equation: 
𝑛
𝑚 ÷

𝑘
𝑞 , where n is the total number of genes associated with a GO 
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549 term (Downloaded GO terms Januari 2021 biomart) in the sample set (overlap), m is the 

550 total numbers of genes in the sample set, k is the total number of genes associated with 

551 a specific GO term in the population set, and q is the total number of genes in the 

552 population set. Since enrichment does not work well for small overlaps, we filtered for a 

553 minimum overlap (n) of 3. Enrichment was considered significant for p-values below 0.01. 

554 Since orthologous groups can contain multiple genes, we randomly selected genes from 

555 an orthologous group to generate a new sample and population sets ten times and 

556 recalculated the enrichment.
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673 Supporting information

674 S1 Fig. Illogical absences and genome quality selection based on illogical 

675 absences using Sonicparanoid inferred orthologous groups (OGs). A. Illogical 

676 absences as a function of retained LECA OGs in different species. We see that where 

677 most Opisthokonta scores similarly low with the BUSCO metric, they score lower with the 

678 IA metric indicating a difference between the two metrics. However, the performance of 

679 genomes selected with both metrics are similar to each other. Filled data points are the 

680 selected genomes for the prediction accuracy calculations. B. Receiver-operator Curve 

681 of two species sets (n = 50) with the most and least illogical absences. The inset gives 

682 the Area Under the Curve (AUC) values compared with the random backdrop of 1000 

683 random species sets (violin plot) and the initial species set (teal diamond). Human has a 
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684 perfect score of 0 illogical absences since the interactions are from the human reference 

685 interactome. Therefore, we did not select human for the genome set.

686

687 S2 Fig. Lesser quality genomes have more impact on protein interaction prediction 

688 performance also for Broccoli inferred orthologous groups (OGs). A. BUSCO and 

689 Illogical absences as a function of retained LECA OGs in different species. Filled data 

690 points are the selected genomes for the prediction accuracy calculations. B. Receiver-

691 operator Curve of two species sets (n = 50) with the most and least BUSCO and illogical 

692 absences. The inset gives the Area Under the Curve (AUC) values compared with the 

693 random backdrop of 1000 random species sets (violin plot) and the initial species set (teal 

694 diamond). 

695

696 S3 Fig. Both high and low diversity sets have little impact on protein interaction 

697 prediction performance also for Broccoli inferred orthologous groups. A. The most 

698 similar species form more clusters and are overall more similar to each other. B. The most 

699 diverse species show no clustering and are overall less similar to each other. C. Receiver-

700 operator Curve of two species sets (n = 50) with the most diverse and most similar 

701 species. The inset gives the Area Under the Curve (AUC) values compared with the 

702 random backdrop of 1000 random species sets (violin plot) and the initial species set 

703 (green diamond).

704

705 S4 Fig. Influential genomes and their combined effect for Broccoli inferred OGs. A. 

706 Recalculated Area Under the Curve (AUC) values when a single species is removed from 
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707 the initial species set. Genomes that increase the AUC value when removed can be 

708 considered disadvantages compared to the initial set when predicting protein interactions 

709 with phylogenetic profiles. Genomes that decrease the AUC value when removed can be 

710 considered advantageous for predicting protein interactions. Top 50 advantageous and 

711 top 50 disadvantageous genomes shown with the black fill in the scatter plot. B. Receiver-

712 operator Curve of two species sets (n=50) with the most advantageous and 

713 disadvantageous genomes. The inset gives the Area Under the Curve (AUC) values 

714 compared with the random backdrop of 1000 random species sets (violin plot) and the 

715 initial species set (green diamond). C. Comparison of the counts (histogram) and kernel 

716 density estimates (line plot) of (I) illogical absence ratios (illogical absences divided by 

717 total interaction absences (co-absences + illogical absences)), (II) present interactions, 

718 (III) the cosine distance to human, and (IV) total shared orthologous groups with human.

719

720 S5 Fig. Correlations between multiple parameters in the advantageous and 

721 disadvantageous genome set. Given for A. Sonicparanoid and B. Broccoli inferred 

722 orthologous groups (OGs). From top to bottom (or left to right) the interactions that are 

723 co-absent; illogically absent; and present; the ratio of illogical absences to total absences; 

724 number of OGs shared with the human genome; the cosine distance to the human 

725 genome; LECA OGs loss (Dollo parsimony inferred); species (lineage) specific loss; 

726 (clade) ancestral loss; and the difference in AUC from the initial set AUC when a genome 

727 is removed. 

728
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729 S6 Fig. Entropy of phylogenetic profiles that have interactions. Given for A. 

730 Sonicparanoid and B. Broccoli inferred orthologous groups (OGs). From top to bottom, 

731 the entropy is shown in profiles for LECA, post-LECA and all OGs. Median entropy is 

732 presented with a black arrow. Mann-Whitney U test shows significant difference between 

733 distributions of LECA, post-LECA and all OGs, p-value < 0.001.   

734

735 S7 Fig. Orthologous group selection has a large impact on prediction performance 

736 also for Broccoli inferred orthologous groups (OGs). Receiver-operator Curve of 

737 post-LECA orthologous groups and unfiltered orthologous groups. The inset gives the 

738 Area Under the Curve (AUC) values compared with the random backdrop of randomly 

739 selected LECA OGs (violin plot) and the initial species set (green diamond).

740

741 S8 Fig. Dollo parsimony inferred loss of LECA and post-LECA orthologous groups 

742 (OGs). Given for A. Sonicparanoid and B. Broccoli inferred OGs. Mann-Whitney U test 

743 shows significant difference between distributions.  

744

745 S9 Fig. Groups of interacting orthologous groups (OGs) where one is in LECA 

746 (always the last row in a group subplot) and the others are not. The profiles are 

747 sorted according to the species tree. 

748

749 S10 Fig. Interactome selection is important for prediction performance. A. Receiver-

750 operator Curve of post-LECA and unfiltered orthologous groups (OGs) of Broccoli. The 

751 inset gives the Area Under the Curve (AUC) values compared with the random backdrop 
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752 of randomly selected LECA OGs (violin plot) and the initial species set (green diamond). 

753 B. GO-enrichment analysis for genes enriched in interactions present in only human vs. 

754 interactions present in human and yeast. OGs can contain multiple genes. We randomly 

755 selected genes from an OG to generate new sample and population sets 10 times and 

756 recalculated the enrichment (shown by multiple points in the figure rows).

757

758 S11 Fig. Interactions of human and yeast interactome present in different species 

759 (left) and entropy for LECA profiles that have interactions in human and yeast 

760 (right).  Given for A. Sonicparanoid inferred and B. Broccoli inferred orthologous groups 

761 (OGs). Median values are presented with the arrows. Mann-Whitney U test shows 

762 significant difference between distributions.  

763

764 S1 Table. Species table for species used in this study. Green marked species are the 

765 species that are in the advantageous set, and red marked species in the disadvantageous 

766 set (Sonicparanoid). The measured values are shown in S5 Fig.

767

768 S2 Table. GO-enrichment table for Sonicparanoid inferred orthologous groups 

769 (OGs). Since there can be multiple genes in an OG, we randomly selected one of the 

770 genes for the GO-enrichment analysis. We did this ten times, creating ten foreground and 

771 background sets (set_num). These values are shown in Fig 5. 

772

773 S3 Table. GO-enrichment table for Broccoli inferred orthologous groups (OGs). 

774 Since there can be multiple genes in an OG, we randomly selected one of the genes for 
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775 the GO-enrichment analysis. We did this ten times, creating ten foreground and 

776 background sets (set_num). These values are shown in S10 Fig.  

777
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