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Abstract 
Single cell transcriptomic approaches are becoming mainstream, with replicated experiments 
performed in the same single cell platform being more common. Methods that enable to 
integrate these datasets by removing batch effects while preserving biological information are 
required. Here we present Canek, a method that, leveraging information from mutual nearest 
neighbors, combines a local linear correction with a cell-specific non-linear correction using 
fuzzy logic. Using a combination of real and synthetic datasets we show that Canek corrects 
batch effects while introducing the least amount of bias when compared with competing 
methods. Canek is computationally efficient, being able to integrate single cell transcriptomes 
for thousands of cells from replicated experiments. 

Introduction 
Single-cell transcriptomic approaches are revolutionizing many fields in biology by enabling 
unbiased interrogation of transcriptional states at the single-cell level. The number of published 
single-cell genomics datasets is increasing rapidly [1]. Integration and reanalysis of these 
datasets have the potential to provide insight into biological processes by combining cells and 
conditions from different studies. However, this process is hindered by the existence of batch 
effects [2, 3]. 

Many methods exist that aim to integrate datasets obtained from the same tissues but using 
different technologies [4]. One of the pioneering techniques is the so-called Mutual Nearest 
Neighbors (MNN) correction method available in the R package batchelor [5]. In this method, 
MNN pairs are used to identify corresponding cells from the two batches. A pair-specific 
correction vector is calculated as the difference between expression profiles of the cells from 
each MNN pair. The correction vectors are then weighted using a Gaussian kernel to smooth the 
corrections between adjacent cells. A critical assumption is that at least one cell is shared among 
batches and that the batch effect is almost orthogonal to the biological space (see [5] for a 
discussion of these assumptions). Other tools have used the idea of using MNNs to integrate 
batches [6-8]. Another popular method is the one implemented in the Seurat R package, which 
finds MNN pairs in a correlated space using canonical correlation analysis (CCA) [6]. The 
identified pairs are used as “anchors” to correct batch effects on the input batches. Another 
interesting approach is the one available in Harmony, in which the batch effects are iteratively 
removed by clustering in a low dimensional space among input batches [9]. LIGER applies a 
similar clustering approach by segmenting cells using a shared factor neighborhood graph under 
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a low dimensional space defined with an integrative non-negative matrix factorization method 
[10]. 

Recently, a very comprehensive benchmarking of 14 batch correction methods including the 
ones mentioned above was published [4]. The methods were tested under different scenarios 
including the integration of different technologies, non-similar cells, large datasets, multiple 
batches, and simulated data. The top three scored methods were Harmony, Liger, and Seurat. 
However, they found that each method performed differently on each test with no superior 
method [4]. 

An open question is whether batch correction methods introduce biases in the data that disturb 
the biological information and alter the structure of the cell populations. As single-cell genomics 
technologies become mainstream, more laboratories will perform experiments consisting of 
different experimental conditions with biological replicates from the same technology. In this 
setting, integration of datasets with minimal impact to cell type identities is essential. Here, we 
present a new method called Canek that enables efficient integration of replicated experiments 
with minimum bias. Canek leverages information from MNNs and combines a hybrid linear/non-
linear framework to identify and correct cell type specific batch effects. Using a combination of 
real data and simulations we show that, unlike current batch correction/integration methods, 
Canek enables unbiased correction of single cell transcriptome data. 

Results 
Canek successfully corrects batch effects in the Jurkat/293T dataset 
We introduce a new method called Canek that enables efficient integration while preserving 
data structure (see Methods for a detailed description). We assume a mostly linear batch effect 
with small non-linearities between a pair of datasets to be corrected, which we treat as the 
reference batch and the query batch (Figure 1a). We define batch effect observations using 
mutual nearest neighbors (MNN) pairs [5] and distinguish cell groups from the query batch using 
clustering (Figure 1b). We estimate a correction vector for each cluster using the median gene 
expression differences between the cells in each membership of the query batch and the 
corresponding cells of the reference identified by the MNN pairs (arrows on Figure 1c). The 
correction vector can thus be used to remove the batch effect from each membership in the 
query batch. In this linear correction, the same correction is applied to all the cells from the 
same membership (Figure 1c). Then, we perform a non-linear correction by calculating a cell-
specific correction using fuzzy logic. This is done by defining a minimum spanning tree among 
memberships and then smoothing the transitions between the correction vectors (Figure 1d). 
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Figure 1 Overview of Canek workflow. a) We start with a reference batch and query batch, assuming a 
predominantly linear batch effect. b) Cell clusters are defined on the query batch and MNN pairs (arrows) 
are used to define batch effect observations. c) The MNN pairs from each cluster are used to estimate 
membership specific correction vectors. These vectors can be used to correct the batch effect or, d) a non-
linear correction is implemented by calculating cell-specific correction vectors using fuzzy logic. 

To illustrate the ability of Canek to correct batch effects we use a dataset consisting of three 
batches, one made of 293T HEK cells, one of Jurkat cells, and the last one being a 50:50 mixture 
of 293T and Jurkat cells [11]. Principal component analysis (PCA) of the uncorrected data shows 
that although 293T cells align almost perfectly, there is a considerable separation in the Jurkat 
cell population (Figure 2a PCA). This bias is also clear from the Uniform Manifold Approximation 
and Projection map (UMAP) [12] (Figure 2a UMAP). Looking at cell specific markers we can see 
that the aligned cells express XIST whereas the unaligned cells express CD3D, indicating they are 
293T cells and Jurkat cells respectively. We consider this bias to be due to batch effect. We 
applied batch correction with Seurat, MNN, scMerge and Combat [5, 6, 13, 14]. MNN corrected 
the batch effect and enabled the identification of the expected cell population clusters (Figure 
2b). However, other methods like the ones implemented in the Seurat package and scMerge, 
resulted in mixed cell populations (Figure 2c,d). Even a linear method like Combat incorrectly 
mixed cell types (Figure 2e). Canek was able to successfully correct the batch effect in this 
scenario (Figure 2f). 
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Figure 2 Batch effect correction methods may incorrectly mix dissimilar cell types. Batch effect correction 
of three batches, two containing pure Jurkat and HEK293T cells, and one with a 50:50 mix of Jurkat and 
HEK293T cells. Jurkat and HEK293T cells are characterized by the expression of CD3D and XIST genes 
respectively. a) Before correction Jurkat cells grouped by batch. b-f) shows the results of batch effect 
correction using MNN, Seurat, scMerge, ComBat and Canek. MNN and Canek correctly integrated the 
Jurkat cells. Other methods like Seurat, scMerge and ComBat incorrectly mixed Jurkat and HEK293T cells. 
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Evaluation of correction bias 
One goal of Canek is to integrate datasets coming from replicated experiments while preserving 
as much as possible the original biological structure. We define batch correction bias as 
undesired correction that may alter the original biological structure. To quantify how much bias 
batch correction methods introduce, we use a pseudo-batch approach. Starting from a single 
dataset we identify clusters and generate pseudo-batches by sampling cells without 
replacement. We argue that batch correction methods should not correct in this scenario since 
no batch effect exists, and identification of clusters from the integrated batches should preserve 
as much as possible the clusters from the uncorrected dataset. To tests this hypothesis, we 
generated pseudo-batches from public datasets and applied batch correction using several 
methods. To measure how much bias was introduced we computed kBET and silhouette scores 
for the uncorrected dataset and after correction. Since there is no batch effect, the metric scores 
for the uncorrected dataset corresponds to the best possible values to be obtained after 
correction. 

Figure 3a shows the results from applying this strategy to the spleen data from Tabula Muris 
[15]. The first plot shows the cell clusters with colors and the next two show the two pseudo-
batches. In Figures 3b-i we show the pseudo-batches after integration with several methods. 
Except for MNN, that clearly shows a failure to integrate the pseudo batches, it is difficult to 
judge from these plots how well the different methods performed. Therefore, we show the 
performance of each method using two metrics: kBET and silhouette scores. Figure 3j shows the 
scatterplot of the silhouette and kBET scores obtained in this experiment. In this plot, the dashed 
lines indicate the values for the uncorrected dataset. The crossing point represents the values 
obtained when no bias exists and so is the optimal value. This shows that ComBat, Harmony, 
and Canek are the methods that lead to scores closer to the target. To estimate the variability 
of the results due to pseudo-batch sampling, we repeated each experiment 10 times. In 
Supplementary Figure 1a, we show silhouette vs. kBET scores for the 10 experiments together 
with the average of each kBET/silhouette replicates, as well as an ellipse indicating the 
dispersion. Supplementary Figure 1b is a zoom into the target values and shows that Canek is 
the method that obtained scores closest to the values of the uncorrected dataset. This 
demonstrates that Canek introduces the least amount of bias when no batch effect is present. 
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Figure 3 Correction methods may introduce biases when there is no batch effect. Analysis of pseudo-
batches using the Tabula Muris spleen dataset. The uncorrected batch serves as the gold standard to 
compare the integrations. An unbiased integration would retain the cell mixing and clustering from the 
gold standard. a) The uncorrected data is clustered and pseudo-batches are created by sampling. b-i) The 
pseudo-batches are integrated with different batch effect correction methods. j) Using kBET and silhouette 
metrics, the mixing among batches and the cluster preservation are evaluated. The scores from the gold 
standard are shown as gray dashed lines, while the scores from the correction methods are indicated as 
colored points. Unbiased methods are those whose metrics are closest to the intersection of the gray lines. 
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Evaluation of integration in simulated data 
To estimate the ability to correct batch effects when the batch effect is known, we compared 
Canek with other methods using simulated data. We simulated three batches with some shared 
cell types using the splatter package [16]. One advantage of using splatter is that it allows us to 
remove the batch effect and obtain an integrated dataset to use as a gold standard (GS). Batch 
1 is composed of two shared and one unique cell type, whereas batch 2 and 3 have one shared 
and one unique cell types (see Table 2 for a complete description). Figure 4a shows the PCA and 
the UMAP from the GS, Figure 4b the uncorrected datasets, and Figures 4c-f the results from 
four correction methods. The colors represent the batches and the cell type composition. We 
calculated the kBET and silhouette scores from the GS, the uncorrected data, and the integrated 
datasets. We expect the best correction methods to be close to the metrics from the GS. 
Supplementary Figure 2 shows the silhouette/kBET scatterplot where the dashed lines represent 
the scores from the GS, and the points represent the scores from the uncorrected and the 
corrected datasets from eight correction methods. Canek is the method closest to the scores of 
the GS. This is consistent with the PCA and UMAP plots in Figure 4c, where Canek has corrected 
the differences from the shared cell types. Interestingly, Harmony returned scores very close to 
the uncorrected data, suggesting that performed almost no correction (Supplementary Figure 
2). 
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Figure 4 Batch effect correction on simulated data with a known gold standard. Three batches were 
simulated to test the integration methods in a scenario with a known gold standard a). Only two cell types, 
Cell-1 and Cell-2, are shared among batches. b) Uncorrected datasets. c-f) Batch effects correction with 
four methods. Canek c) stands as the best method in this scenario correctly integrating the shared cell 
types and maintaining the non-shared ones. d) MNN correction failed to integrate cells from the same 
type. e,f) Seurat and scMerge incorrectly mixed non-shared cell types. 
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Application to real datasets 
Next, we compared Canek with other methods on 3 real datasets: Tabula Muris spleen, human 
pancreatic islets, and interferon beta stimulation [15, 17-22]. We used a standardized pipeline 
in which the top variable features selected by Seurat for the integration were used with all 
methods. 

First, we wanted to test the scenario in which the same sample is used with two different 
technologies simultaneously. Therefore, we integrated the Drop-seq and FACS batches from the 
Tabula Muris spleen datasets [15]. Supplementary Figure 3 shows the uncorrected data, and the 
correction done by Canek and four other correction methods. Except for Combat-seq, all the 
methods shown successfully integrated the datasets with cells from the same type found in the 
same clusters. This suggests Canek can integrate datasets from different technologies. 

Next, we wanted to test the scenario in which similar tissues are used with different 
technologies. For this we integrated eight human pancreatic islets datasets from five different 
technologies. Figure 5a shows the uncorrected data, where the batch effect caused the cells to 
cluster by batch. Figure 5b-f shows the result of different integration methods. We can observe 
that methods like MNN and Seurat mix the datasets almost perfectly. Canek is able to integrate 
the batches but some differences between datasets are shown. We notice that these differences 
are correlated with disease state (Figure 6), with some of the samples containing type 2 diabetes 
whereas other containing only healthy individuals. Therefore, the observed differences can be 
due to biological differences. 
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Figure 5 Integration datasets from different technologies. Eight pancreatic datasets obtained using 
different technologies were corrected. a) Batch effects caused the cells to cluster by batch instead of by 
cell type. c-f) The batches were integrated using different methods. 
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Figure 6 Latent conditions in the pancreatic integration. Differences in the integration of some batches in 
Canek are correlated with disease state, suggesting that differences in batch integration are due to 
biological differences. 

Finally, we wanted to evaluate the scenario in which two samples are assayed using the same 
technology. For this we integrated a dataset obtained from PBMCs with and without interferon-
beta stimulation [22]. In this scenario, differences between cell types are expected. 
Supplementary Figure 4a shows that in the uncorrected data, cells separate by batch. 
Supplementary Figures 4b-f shows the correction done by Canek and four other methods. After 
integrating with Canek, B cells and T cells are almost completely integrated but some differences 
remain. Differences in monocytes and dendritic cells in the stimulated vs. non-stimulated cells 
are more prominent. This is in agreement with experiments showing that interferon beta 
induces stronger changes in gene expression in monocytes compared to T cells [23]. 

Computational performance 
To compare the computational performance and scalability of the different integration methods, 
we simulated datasets using splatter and recorded the integration time of Canek and other eight 
batch correction methods. We fixed the number of genes to 2,000 and varied the number of 
cells in the range of 10k to 100k. Figure 7 shows running time as a function of the number of 
cells. The fastest method was Combat, followed by Scanorama, Harmony, and Canek, all of them 
showing near linear increase in running time and able to integrate 100k cells in under 20 min. 
On the other side of the spectrum MNN, Seurat, and CombatSeq showed a non-linear increase 
in running time. These results demonstrate that Canek is a scalable method that can integrate 
hundreds of thousands of single-cell transcriptomes efficiently. 
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Figure 7 Runtime benchmark of Canek and other eight batch correction methods. Each method was run 5 times on 
different datasets with the number of genes fixed to 2k and the number of cells varying in a range of 5k to 100k. The 
color code differentiates each of the methods, the dots represent the runtime, and the lines represent the time 
increasing trends. Canek displayed a linear time increase over these conditions. 

Discussion 
Existing batch effect correction methods focus on integrating single-cell transcriptomics 
datasets obtained from different technologies and/or species, minimizing the differences 
among batches to obtain correlated cell types. While these frameworks offer a powerful solution 
to integrate datasets with strong differences between batches, they may introduce significant 
biases to favor a global integration. This could be a potential problem when these methods are 
applied to, e.g. replicated experiments obtained with the same technology, where we would like 
to preserve biological differences for downstream analyses such as clustering and differential 
gene expression. Canek provides an unbiased batch effect correction method for single-cell 
transcriptomics data that is suited for the integration of replicated experiments. We focused on 
preserving the inherent biological structure while being flexible enough to deal with small non-
linear differences that might appear on heterogeneous datasets. We applied Canek on 
simulated and real datasets showing its ability to correct batch effects without masking local 
differences. We also tested Canek on a pseudo-batch scenario with no batch effect, being the 
method that best preserved the biological structure and introduced the least amount of bias. 

We showed that Canek can successfully integrate datasets from different technologies (e.g., the 
Tabula Muris spleen dataset). Depending on the nature of the dataset Canek does not 
necessarily lead to the best batch mixing (e.g., in the human pancreatic islet integration). 
However, a more detailed analysis shows that latent variables other than batch may be 
influencing the mixing of datasets (e.g., including cells from healthy and disease donors, or 
unstimulated and stimulated cells). 

We conservatively chose Canek's default parameters to work under diverse scenarios, but these 
might not be always optimal. For instance, a drawback of correction methods that use MNNs 
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pairs to define batch observations (i.e., MNN, Seurat, and Canek) is the assumption of having at 
least a shared cell type among batches. When this assumption is violated or the number of 
shared cells is low, it might be difficult to correctly integrate the datasets. 

As single-cell RNA-seq from replicated experiments using the same technology become more 
common, batch effect correction methods that conserve local differences will be required. 
Canek provides a solution to this problem with an unbiased and computationally efficient batch 
effect correction. 

Methods 
Canek workflow 

Figure 2 shows the workflow for correcting a pair of batches. We define one of the 
batches as the query batch and the other one as the reference batch. We correct the cells from 
the query batch to match the cells from the reference batch. When correcting more than two 
batches we perform an optional hierarchical optimization of batch order (see Hierarchical 
integration section). The main steps of Canek's workflow are: 

1. Obtaining batch effect observations using mutual nearest neighbors (MNN) pairs. 
2. Clustering the query batch to define local memberships. 
3. Calculating a batch effect correction vector for each membership. 
4. Obtaining a fuzzy correction by smoothing the transitions between the local correction 

vectors. 

We expect the input datasets to be log normalized. The output dataset retains the same 
dimensionality (number of genes) as the input batches. 

Batch effect Observations 
The first step is to identify what we call batch effect observations. This is the gene expression 
differences of a set of cells from the reference and query batches that will enable us to estimate 
the batch effect. 

To speed up computation we calculate the first 50 principal components (PCs) [24] using the 
prcom_irlba function from the ilrba R package [25]. This lower dimensional space is used to 
identify MNNs, and in the clustering and fuzzy correction steps. However, during the calculation 
of the correction vector step, we use the original input datasets. 

We calculate mutual nearest neighbors (MNN) pairs [5] using 50 PCs to obtain batch effect 
observations. We assume that at least one cell is shared between the batches to integrate. The 
MNN pairs are defined by the intersection of the crossed k nearest neighbors for each cell of two 
input batches. For example, for a cell 𝑐!from batch one, we find the k closest cells from batch 
two, and for cell 𝑐"from batch two, we find the k closest cells from batch one. If 𝑐! and 𝑐"are 
mutually contained on each other’s nearest neighbor set, they are considered as a MNN pair. In 
Canek, to identify MNN pairs we first find the crossed 30 nearest neighbors of the query and 
reference batches using the get.knn function from the FNN R package [26]. We then select those 
cells that fulfill the MNN criteria to form cell pairs. We treat the gene expression differences 
from these pairs as observations of the batch effect. 
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Clustering 
Following Haghverdi et al. (2018) [5] we assume that the batch effect is almost orthogonal to 
the biological space, and that the variations due to the batch effect are smaller than the 
biological variation (see Supplementary material of [5] for a deeper discussion of these 
assumptions). Small variations to this orthogonality assumption can be caused by noise or by 
non-linearities. A common way to deal with non-linear dynamics is to linearize over bounded 
regions [27], to solve each of these local problems, and, if necessary, to join all the pieces back 
into a non-linear global solution. Following this idea, we partition the query batch into 
memberships, which we define as a bounded set of related cells, using the Louvain algorithm 
implemented in the igraph R package [28]. By default, clustering is done using the first 10 PCs. 

Correction Vector 
Following our local orthogonal batch effect assumption, for each membership we state the 
relation: 

𝑔#!
$ = 𝑔%!	

$ + 𝑔'(!	
$ + 𝜖 

where 𝑔$ , 𝑖 = 1,… , 𝑛, is the log-normalized gene expression level of the 𝑛 genes from the input 
batches. The batch effect 𝑔'(!  is represented as an additive value in the query batch 𝑔#) in 
terms of the same gene in the reference batch 𝑔%!, 𝑘 = 1,… , 𝑝, being 𝑝 the number of MNN 
pairs from the membership under analysis. Finally, 𝜖 represents a normally distributed random 
error term with mean zero and standard deviation 𝜎, which we assume to be independent of 𝑔$  
on each membership. Thus, using 

𝑔#! −	𝑔%!	
	 = 𝑔'(!	

	 + 𝜖 

on each gene 𝑖 , the term 𝑔'(! + 𝜖  would be normally distributed with mean 𝜇 = 𝑔'(  and 
standard deviation 𝜎. Accordingly, a good estimation of the batch effect would be the mean of 
the gene expression subtraction between MNN cells pairs (e.g. 𝑔2'( =

!
*
∑ 4𝑔#! − 𝑔%!5
+
),! ). But 

there is a complication with this approach, since erroneous pairs between cells from distinct but 
related cell types could be formed, resulting in the incorrect integration of dissimilar 
subpopulations [6]. To tackle this problem, reasoning that abnormal pairs would appear as 
outliers to the normal distribution of 𝑔'(! + 𝜖, we estimate a correction vector  

𝐶𝑉 = − 9
𝑔2'(!
! = 𝑀𝑒𝑑4𝑔#!

! − 𝑔%!
! 5

⋮
𝑔2'(!
* = 𝑀𝑒𝑑4𝑔#!

* − 𝑔%!
* 5

>	  

where the function 𝑀𝑒𝑑 represents the statistical median, which is less affected by outliers than 
the mean. Canek uses this approach by default to reduce the impact from outliers, but it is 
possible to perform an optional filtering step (with extra computational cost) based on the 
interquartile range to detect MNN outliers (see Filtering section). 

Fuzzy correction 
From the steps described above, each cell from the same membership will be assigned the same 
correction vector. We use fuzzy logic to smoothly join the membership-specific corrections into 
a cell-specific one, where each cell has a unique correction vector (see Supplementary Figure 5). 
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Using the PCs of the query batch, we create a minimum spanning tree (MST) over the 
memberships’ center points (𝑀𝐶 s) using the mst function from the R package igraph [28] 
(Supplementary Figure 5a,b). For each edge of the MST, we construct a pair of membership 
functions (𝑀𝐹s). These 𝑀𝐹𝑠 are used to calculate a fuzzy score for the cells (Supplementary 
Figure 5c,d). For example, let us consider an edge that joins the centers of memberships number 
1 (𝑀𝐶!) and 2 (𝑀𝐶"). For each cell 𝑗 that belongs to memberships 1 or 2, we define the vector 
𝑉-  as a vector for cell 𝑗  from 𝑀𝐶!  in the PCs embeddings. Similarly, let 𝑉./"  be the vector 
corresponding to 𝑀𝐶" . Then, we obtain the scalar projection 𝑝-  for each cell 𝑗 onto the line 
connecting 𝑀𝐶! and 𝑀𝐶" as: 

𝑝- = 𝑉- ∙
𝑉./"
C𝑉./"C

		 

where 	the operator ∙  denots the dot product, and C𝑉./"C	 is the length of 𝑉./" . We then 
construct the 𝑀𝐹s (i.e., 𝑀𝐹! and 𝑀𝐹") as 

𝑀𝐹!(𝑗) = 1 −
𝑝- − 𝑝0$*
𝑝012 − 𝑝0$*

 

𝑀𝐹"(𝑗) =
𝑝- − 𝑝0$*
𝑝012 − 𝑝0$*

 

Here, 𝑝012 and 𝑝0$* are the maximum and the minimum of the scalar projections of the cells 
in the memberships (𝑝012 = max

-
𝑝-  and 𝑝0$* = min

-
𝑝-). In this way, the membership function 

𝑀𝐹! (𝑀𝐹") takes the maximum value 1 (the minimum value 0) for 𝑝0$* and the minimum value 
0 (the maximum value 1) for 𝑝012, respectively, and linearly interpolates for the other values of 
the projections. (Supplementary Figure 6).  

We calculate cell specific correction vectors 𝐶𝑉-  by using the Takagi-Sugeno approach [29] to 
combine the membership's correction vector 𝐶𝑉(4)  (see Correction Vector section) with the 
membership functions: 

𝐶𝑉- =	
∑ 𝑀𝐹4(𝑗)𝐶𝑉(4)4
∑ 𝑀𝐹4(𝑗)4

 

When a membership 𝑙 is connected to several edges, we use the average of the membership 
functions 𝑀𝐹4  defined for all the edges associated with membership 𝑙. 

Even though the fuzzy scheme is applied in a low dimensional representation, the final output 
is in the original dimensionality of the input datasets. We recommend using Canek with the fuzzy 
step, but to skip it users can set the boolean parameter fuzzy to FALSE. In this case the final 
integration will be done using a membership-specific correction instead of a cell-specific one. 

Hierarchical integration 
We define a hierarchical integration when Canek is applied to more than two input batches. We 
first sort the batches by cell number in descending order and use the batch with the higher 
number of cells as the first reference batch. To determine the query batch, we prioritize to 
integrate first related batches as they would have a higher number of MNN pairs. The query 
batch is therefore chosen as the batch sharing the highest number of MNN pairs with the 
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reference. For this, we obtain their first three PCs using the prcomp_irlba function in the irlba R 
package [25], find the MNN pairs and select the query batch as the one with the highest number 
of pairs. Once the reference and the selected query batch are integrated, we define the 
integrated batch as the new reference, and again select the query batch following the same 
procedure as before. We continue this process until all the input batches are integrated. The 
hierarchical integration is optional and can be deactivated by setting the boolean parameter 
hierarchical to FALSE. In this case, the order of integration follows the order in the input list. 

Filtering 
We assume that erroneous MNN pairs would appear as outliers from the normal distribution of 
𝑔'(! + 𝜖 = 	𝑔#!

* − 𝑔%!
* 	(see Correction Vector section). We use the median function to reduce 

the impact of these outliers on the correction vector estimation. In addition, the user can select 
an extra filtering step based on the interquartile range: 

𝐼𝑄𝑅 = 𝑄67 − 𝑄"7 

where 𝑄67  and 𝑄"7  are the 75th and 25th percentiles of the distribution of the 𝑝 MNN pairs’ 
Euclidean distance 𝑑(𝑘), 𝑘 = 1,… , 𝑝. Therefore, we will select and filter any outlier MNN pairs 
as: 

𝑀𝑁𝑁) 	𝑰𝑺	𝑜𝑢𝑡𝑙𝑖𝑒𝑟	𝑰𝑭	(𝑑(𝑀𝑁𝑁)) < (𝑄"7 − 1.5𝐼𝑄𝑅)	|	𝑑(𝑀𝑁𝑁)) > (𝑄67 + 1.5𝐼𝑄𝑅)). 

Analysis details 
Data pre-processing 
We performed the same data pre-processing for all the analyses. We implemented the 
“Standard Workflow” from the Seurat R package [13], which involves: 

• Normalization: using the function NormalizeData. Gene expression levels are divided by 
the total number of transcripts and multiplied by 10,000. The results are then log 
normalized. 

• Identification of high variable features: using the function FindVariableFeatures. Genes 
that show high variations among cells are selected using the vst method. 

Batch-correction algorithms 
Table 1 lists the batch correction methods used. 

 Method Batch effect corrected output Package version 
Seurat Normalized gene expression matrix Seurat version 3.2.2 [6] 
MNN Normalized gene expression matrix Bioconductor’s batchelor version 1.6.2 [5] 
Scanorama Normalized gene expression matrix Scanorama version 1.6 [8] 
ComBat Normalized gene expression matrix sva version 3.38.0 [30] 
Harmony Normalized feature reduction vectors Harmony version 1.0 [9] 
Liger Normalized feature reduction vectors Liger version 0.5.0 [10] 
ComBat-seq Normalized gene expression matrix sva version 3.38.0 [31] 
scMerge Normalized gene expression matrix scMerge version 1.6.0 [14] 
Canek Normalized gene expression matrix Canek version 0.1.7 

Table 1. Batch effect correction methods 

To objectively compare the batch effect correction methods, we used the same pre-processed 
data and the same variable genes on each method. We obtained the variable genes from 
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Seurat’s integration using the VariableFeatures(assay=“integrated”) function from the Seurat R 
package [13] and used them to subset the pre-processed uncorrected datasets. We 
implemented the integration methods as follows: 

Seurat. We used the FindIntegrationAnchors and IntegrateData functions with default 
parameters from the Seurat R package [13]. 

Canek. We used the RunCanek function from the Canek R package with default 
parameters. 

MNN. We used the mnnCorrect(cos.norm.out = FALSE) function with default parameters 
from the batchelor Bioconductor package [5]. 

Scanorama. We used the scanorama.correct(return_dense=TRUE) with default 
parameters from the scanorama Python library [8]. 

ComBat. We used the ComBat function with default parameters from the sva R package 
[30]. 

Harmony. We used the RunHarmony function with default parameters from the 
harmony R package [9]. 

Liger. We used the RunOptimizeALS(k=20, lambda=5) and the RunQuantileNorm 
functions with default parameters from the SeuratWrappers R package [10]. 

ComBat-seq. We used the ComBat_seq function with default parameters from the sva 
R package [31]. 

scMerge. We used the scMerge(k=3) function with default parameters from the 
scMerge R package [14]. 

After correcting batch effects, we scaled each of the integrated and uncorrected 
datasets using the ScaleData function from the Seurat R package, except for Harmony and Liger 
integrations, as their output is already a low dimensional space. 

Dimensionality reduction 
We obtained the principal components [24] from the corrected and uncorrected datasets using 
the RunPCA function from the Seurat R package. We used the first 10 PCs as the standard in all 
the tests. In the case of the UMAP representation [12], we applied the RunUMAP from the 
Seurat R package to the selected PCs. 

Simulated data 
We used the splatSimulate function from the splatter Bioconductor package [16] to simulate 
three batches with batch effect. Splatter allows us to simulate cell types whether as groups or 
paths. Because we wanted to assess cell type preservation on a mixed population scenario with 
clearly defined groups along with a differentiation process we simulated paths and groups 
separately and merged them. Then, we manually removed cells such that the batches shared 
only one cell type. The final cell type composition is: 

Method Path cells Group cells 
 Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Batch-1    - - 
Batch-2 -  -  - 
Batch-3  - - -  

Table 2. Cell type distribution on simulated data 

After removing the cell types, the number of cells per batch is: Batch 1 – 1,671 cells, Batch 2 – 
975 cells, and Batch 3 – 964 cells. All of them with the same 2,000 genes. 

To obtain the gold standard without batch effects, we used splatSimulate(batch.rmEffect = 
TRUE) and removed the same cells as the simulations with batch effects. 

Running time benchmark 
We used the splatSimulate function from the Splatter Bioconductor package [16] to 

simulate two datasets with a 2,000 genes and a varying number of cells in the range of 10k to 
100k. Each dataset contained three cell types with appearance probabilities of 0.3, 0.3, and 0.4 
respectively. We applied each of the correction methods five times on each of the simulated 
datasets and recorded the time. We used the geom_smooth function from the ggplot2 R 
package [32] to plot the time trend lines. 

 

Public datasets 
Table 3 lists the public datasets we used. 

Dataset Number of 
cells Technology Publication 

Jurkat cells 3,258 

10x Zheng. G.X. el al. [11] HEK293T 2,885 
Jurkat:HEK293T 
50:50 mixture 3,388 

Spleen 1,697 SMART-seq2 Tabula Muris [15] 9,552 10x 

Pancreatic 

8,569 inDrop Baron, M.,et al. [19] 
2,285 CEL-seq Muraro, M.J., et al. [17] 
1,004 CEL-seq2 Grün, D., et al. [21] 
638 Fluidgm C1 Lawlor, N., et al. [18] 

 2,394 Smart-seq2 Segerstolpe, A., et al. [20] 
Table 3. Public datasets. 

Jurkat/t293 data analysis 
 We used the following publicly available datasets: 

• 293T cells. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/293t_3t3 

• Jurkat cells. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/jurkat 

• 50:50 Jurkat:293T cell mixture. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/jurkat:293t_50:50 
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In the 50:50 Jurkat:293T cell dataset, we used the kmeans function from the stats R package 
[33] with k = 2, checked the expression of the XIST and CD3D3 genes and assigned the 
appropriate cell type labels. 

Spleen data analysis (pseudo-batch) 
• We use the publicly available dataset from Tabula Muris [15]. 

https://ndownloader.figshare.com/files/13090478 

Pancreatic data analysis 
• We obtained the five public datasets [17-21] from the SeuratData R package[6] and used 

the provided cell type labels.  

PBMC unstimulated and IFN-β-stimulated data analysis 
• We obtained the public datasets [22] from the SeuratData R package [6] and used the 

provided cell type labels.  

Metrics 
We evaluated the results from the batch-correction methods by scoring the mixing between 
batches with the k-nearest-neighbor batch effect test (kBET) [34], and the cell purity 
preservation with the average silhouette width (Silhouette) [35]. We used the kBET and 
batch_sil functions from the kBET R package [34]. 

The kBET metric provides a rejection rate within 0 and 1 after testing batch mixing at the local 
level. The kBET’s score could be affected by the choice in the number of k-nearest neighbors 
(kNN). To objectively assess the different integration methods, following the idea of Tran et al. 
[4], we obtained the mean cell number of the datasets and performed the scoring by fixing the 
kNN size as the 5%, 15%, and 30% of this mean. To ease the interpretation of this metric, we 
calculated an “acceptance rate” by subtracting the rejection rate from 1. 

We used the silhouette coefficient to assess cell purity after integration. This metric analyzes 
the separation among cells from the same cluster as compared with cells from other clusters 
[35]. Let 𝑎(𝑖) be the average Euclidean distance of cell	𝑖 to all other cells from the same cluster 
as 𝑖, then the silhouette width 𝑠(𝑖) is defined as: 

𝑠(𝑖) = 	
𝑏(𝑖) − 𝑎(𝑖)

max4𝑎(𝑖), 𝑏(𝑖)5
 

where 𝑏(𝑖) is calculated as 

𝑏(𝑖) = min
/
𝑑(𝑖, 𝐶) 

being 𝑑(𝑖, 𝐶) the average distance of cell 𝑖 to all the other cells assigned to different clusters 𝐶. 
A higher score means a longer separation between clusters and a lower score means a shorter 
separation. We used the cell type labels provided for each dataset as inputs to the silhouette 
coefficient, except on the pseudo-batch experiment, where we obtained the cluster labels using 
the FindNeighbors and FindClusters(resolution = 0.5) functions from the Seurat R package. 

Data availability 
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Code availability 
Canek is implemented as an R package and is available from GitHub 
(https://github.com/MartinLoza/Canek). 
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