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Abstract 

Decisions about what to eat recruit the orbitofrontal cortex (OFC) and involve the evaluation of 

food-related attributes, such as taste and health. These attributes are utilized differently by 

healthy individuals and patients with disordered eating behavior, but it is unclear whether these 

attributes are decodable from activity in the OFC in both groups and whether neural 

representations of these attributes are differentially related to decisions about food. We used 

fMRI combined with behavioral tasks to investigate the representation of taste and health in the 

human OFC and the role of these representations in food choices in healthy individuals and 

patients with anorexia nervosa (AN). We found that subjective ratings of taste and health could 

be decoded from patterns of activity in the OFC in both groups. However, health-related 

patterns of activity in the OFC were more related to food choices and the magnitude of 

preferences among patients with AN than healthy individuals. These findings suggest that 

maladaptive decision-making in AN is associated with more consideration of health information 

represented by the OFC during deliberation about what to eat. 
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Significance Statement 

An open question about the orbitofrontal cortex (OFC) is whether it supports the evaluation of 

food-related attributes during deliberation about what to eat. We found that health and taste 

information were decodable from patterns of neural activity in the OFC in both patients with 

anorexia nervosa (AN) and healthy controls. Critically, neural representations of health were 

more strongly related to choices in patients with AN, suggesting that maladaptive over-

consideration of healthiness during deliberation about what to eat is related to activity in the 

OFC. More broadly, these results show that activity in the human OFC is associated with the 

evaluation of relevant attributes during value-based decision-making. These findings may also 

guide future research into the development of treatments for AN.  
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1. Introduction 

Deciding what to eat involves the evaluation of multiple types of information and consideration 

of subsequent consequences and outcomes. Previous studies have shown that the orbitofrontal 

cortex (OFC) plays a central role in representing the subjective value of individual foods and 

food choice (Padoa-Schioppa and Assad, 2006; Plassmann et al., 2007; Clithero and Rangel, 

2014; Suzuki et al., 2017; Ballesta et al., 2020). Other studies have demonstrated that 

evaluations of taste and health—two food attributes that tend to be unrelated among healthy 

individuals—interact to determine food choices (Hare et al., 2009, 2011; Maier et al., 2015; 

Lloyd et al., 2020).  

 

The OFC has been further implicated in the integration of basic food-related attributes during 

the computation of the subjective value placed on foods (Suzuki et al., 2017), and it is often 

assumed that these computations also take place during decision-making. But how are these 

attributes represented at the neural level and how do they contribute to deliberation about what 

to eat? One approach to addressing these open questions is to compare neural activity and 

choices in populations that differ in the extent to which they rely on taste versus health when 

making food-related decisions. Individuals with anorexia nervosa (AN) are well-known to adhere 

to a low-fat, low-calorie diet even to the point of starvation (Arcelus et al., 2011; Walsh, 2011). 

Given this well-characterized behavioral profile, examination of the neural representations of 

taste and health and their link to behavior in AN may offer new insights into the mechanisms 

that perpetuate this devastating illness. This approach can also facilitate understanding of how 

food attributes are represented and related to choices, more generally. In the current study, we 

use multivariate analysis methods to better understand the representations of taste and health 

information in the OFC and how these representations contribute to food choice. Here, we use 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.441818doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.441818
http://creativecommons.org/licenses/by-nd/4.0/


6 

“taste” to denote subjective ratings of how tasty different foods are and “health” to denote 

subjective ratings of how healthy different foods are.  

 

Taste and health evaluations play different roles during food choices among individuals with AN 

as compared to healthy individuals (Foerde et al., 2015, 2018, 2020; Steinglass et al., 2015, 

2016; Uniacke et al., 2020). In an fMRI study, overall levels of activity in univariate analyses of 

taste and health ratings were differentially associated with choices across individuals, with 

choice-related ventromedial prefrontal cortex (vmPFC) activity correlated with taste-related 

activity among healthy controls (HC) and health-related activity among patients with AN (Foerde 

et al., 2015, supplementary Fig. 5). These findings hint at the possibility that neural 

representations of taste and health information differentially guide choices in individuals with AN 

and healthy individuals. Multivariate pattern analysis—which has greater sensitivity than 

univariate analyses in the detection of mental representations (Norman et al., 2006)—may 

provide deeper insights into differences between patients with AN and healthy controls (Frank et 

al., 2016). 

  

We conducted secondary analyses of neuroimaging data from Foerde et al. 2015 using 

multivariate pattern analyses. In Foerde et al. 2015, participants rated the tastiness and 

healthiness of a range of different foods and made food choices during fMRI scanning. The goal 

of the secondary analysis was to more directly test whether taste and health are represented in 

patterns of brain activity within the OFC. Furthermore, the behavioral relevance of such activity 

was tested by linking it to individuals’ choices. To do so, we first assessed whether taste and 

health information could be decoded using multivariate pattern analyses in the OFC during taste 

and health ratings in both HC and AN (within-task classification). Next, we applied this decoding 

of taste and health to a subsequent choice phase (cross-task classification) in order to test 
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whether evidence of taste- and health-related representations during choices was related to the 

actual choices made. 

2. Methods 

2.1. Participants 

Twenty-one hospitalized women with AN and 21 healthy control women (HC) completed this 

study. In the analyses described below, all HC participants were included. One individual with 

AN was missing a structural image and excluded from analyses because functional registration 

could not be performed. This resulted in a final sample of 41 participants. 

 

Participants were right-handed, between the ages of 16 and 39 years old, taking no 

psychotropic medications, not pregnant, with no history of significant neurological illness, and no 

contraindication to MRI. HC were normal weight women (BMI between 18 kg/m2 and 25 kg/m2) 

and were excluded from participation if they were taking psychotropic medications, had any 

history of psychiatric illness, or were currently dieting. All participants provided written informed 

consent and the New York State Psychiatric Institute Institutional Review Board approved the 

study.  

 

Eating disorder diagnoses were made via the Eating Disorder Examination (EDE) (Fairburn and 

Terence Wilson, 1993) and co-occurring diagnoses were assessed via the Structured Clinical 

Interview (SCID) for Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) 

(Spitzer et al., 1987). Ten patients met the DSM-5 (American Psychiatric Association, 2013) 

criteria for the restricting subtype of AN and 11 patients met the criteria for the binge-

eating/purging subtype of AN. For participants with AN, study procedures occurred the day after 
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hospital admission. Treatment at NYSPI is provided at no cost for those interested in and 

eligible for participation. HC received $125 as compensation for their time. 

 

2.2. Behavioral Task Procedures 

Pre-scan intake was standardized and controlled, as follows: at 12pm, participants were served 

a research lunch consisting of ~550 kcal (turkey sandwich, Nutrigrain bar, 8 ounces of water). In 

between lunch and scanning at 2pm, participants were instructed not to eat or drink anything 

with the exception of water. 

 

Participants completed three tasks in the scanner: taste rating, health rating, and food choice. 

The order of the taste and health rating tasks was counterbalanced and randomized across 

participants. Food choices always followed the two rating tasks. The details of the behavioral 

task procedures are described in detail in Foerde et al., 2015.  

 

2.2.1. Stimuli 

Seventy-six food items were presented in each task (Fig. 1). Half of the food items were low fat 

(<30% of total calories from fat, as determined by our staff research nutritionist) and half of the 

food items were high fat. In each task, the food items were presented on white plates against a 

black background in high-resolution color photographs. These stimuli are included in the Food 

Folio by Columbia Center for Eating Disorders stimulus set (Lloyd and Foerde, 2020; Lloyd et 

al., 2020; Schebendach et al., 2020). The order of stimulus presentation was randomized in 

each task. A rating scale was shown below the food item on each trial. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.441818doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.441818
http://creativecommons.org/licenses/by-nd/4.0/


9 

2.2.2. Taste Rating 

In the taste rating task (Fig. 1a), participants were asked to rate the tastiness of 76 food items 

on a five-point Likert scale from “bad” to “neutral” to “good.” The direction of the rating scale was 

counterbalanced and randomized across participants. They were instructed to rate the food 

items only on taste.  

2.2.3. Health Rating  

In the health rating task (Fig. 1b), participants were asked to rate the healthiness of 76 food 

items on a five-point Likert scale from “unhealthy” to “neutral” to “healthy.” The direction of the 

rating scale was counterbalanced and randomized across participants.  

2.2.4. Food Choice 

The food choice task was completed after the taste and health rating tasks (Fig. 1c). For each 

participant, a reference food item that had been rated by that participant as neutral in taste and 

health in the rating tasks was selected at random by a computer program. If no food items were 

rated as being neutral in taste and health, an item that was neutral on health and positive on 

taste was selected to minimize biasing choices based on taste value. For 20 HC and 18 AN, the 

reference item was rated by participants as neutral in taste and health. For 1 HC and 1 AN, the 

reference item was neutral on health and rated 1 step toward “good” on taste. For 1 AN, the 

reference item was neutral on health and rated 1 step toward “bad” on taste.  

 

During the food choice task, participants were presented the reference food and a trial-unique 

food on 76 trials. The reference food was always presented on the left side of the screen and 

was the same on every trial. The trial-unique food was always presented on the right. 

Participants were instructed to choose the food they would like to eat and indicated their 

preference on each trial using a Likert scale with “strongly prefer” anchoring each end of the 
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scale. The side-by-side presentation of the foods ensured that participants were aware their 

choices were relative to the reference food. 

 

To incentivize participants to make choices according to their preferences, participants were told 

that they would receive a snack-sized portion of one of their chosen foods, selected at random, 

after the task. Participants were served a snack-sized portion of one of their chosen foods at 3 

p.m., observed by staff. 

 

 

Figure 1. Task design and behavioral results. During taste and health ratings (a and b), 
participants viewed and rated 76 foods on a Likert scale from 1 to 5. The order of the taste and 
health rating tasks was counterbalanced across participants. (a) Taste rating distributions are 
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shown for all HC participants in green and all AN participants in purple. Median splits were 
performed on taste ratings for each participant. The dashed black lines indicate the group-level 
median across each group of participants (HC=3.95±0.59, AN=2.90±0.83). For the purposes of 
multivariate pattern analysis, each food was assigned a “low” or “high” taste label according to 
participant-specific median splits. (b) Health rating distributions are shown for all HC participants 
in green and all AN participants in purple. Median splits were performed on health ratings for 
each participant. The dashed black lines indicate the group-level median across each group of 
participants (HC=3.19±0.60, AN=2.60±0.66). Each food was assigned a “low” or “high” health 
label according to participant-specific median splits. (c) The rating tasks were followed by a food 
choice task in which participants were asked to choose between a reference food on the left 
(rated neutral in taste and health) and a trial-unique food on the right. The reference food was 
the same on every trial. Participants rated their choice preference on a Likert scale from 1 to 5. 
The distribution of choice ratings is shown on the right for HC (in green) and AN (in purple). 

2.3. fMRI Acquisition   

Neuroimaging was conducted at Columbia University’s Program for Imaging and Cognitive 

Sciences on a 3.0T Phillips MRI system with a SENSE head coil. Functional data were acquired 

using a gradient echo T2*-weighted echoplanar (EPI) sequence with blood oxygenation level-

dependent (BOLD) contrast (TR=2,000ms, TE=19ms, flip angle=77, 3×3×3mm voxel size; 46 

contiguous axial slices). To allow for magnetic field equilibration during each functional scanning 

run, four volumes were discarded before the first trial. Structural images were acquired using a 

high-resolution T1-weighted magnetization prepared rapid gradient echo (MPRAGE) pulse 

sequence.  

2.4. Imaging Data Preprocessing  

Preprocessing of the raw fMRI data was performed using fMRIPrep 1.4.0 (Esteban et al., 

2018a, 2018b), which is based on Nipype 1.2.0 (Gorgolewski et al., 2011). 

2.4.1. Anatomical Data Preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants et al., 2008), 

and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped 
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with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration 

(ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w template. The 

following template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical 

template version 2009c (Fonov et al., 2009). 

2.4.2. Functional Data Preprocessing 

For each of the 3 BOLD runs per subject (across all tasks), the following preprocessing was 

performed. First, a reference volume and its skull-stripped version were generated using a 

custom methodology of fMRIPrep. The BOLD reference was then co-registered to the T1w 

reference using bbregister (FreeSurfer) which implements boundary-based registration (Greve 

and Fischl, 2009). Co-registration was configured with nine degrees of freedom to account for 

distortions remaining in the BOLD reference. Head-motion parameters with respect to the BOLD 

reference (transformation matrices, and six corresponding rotation and translation parameters) 

are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 

2002). The BOLD time-series (including slice-timing correction when applied) were resampled 

onto their original, native space by applying a single, composite transform to correct for head-

motion and susceptibility distortions. These resampled BOLD time-series will be referred to as 

preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were 

resampled into standard space, generating a preprocessed BOLD run in 

‘MNI152NLin2009cAsym’ space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Several confounding time-series were 

calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three 

region-wise global signals. FD and DVARS are calculated for each functional run, both using 

their implementations in Nipype (following the definitions by Power et al., 2014). The head-
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motion estimates calculated in the correction step were also placed within the corresponding 

confounds file. All resamplings can be performed with a single interpolation step by composing 

all the pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion 

correction when available, and co-registrations to anatomical and output spaces). Gridded 

(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 

Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Many 

internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham et al., 2014), mostly within the 

functional processing workflow. For more details of the pipeline, see the section corresponding 

to workflows in fMRIPrep’s documentation. 

2.5. ROI Definitions 

We anatomically determined regions of interest (ROIs) using the Automated Anatomical 

Labeling (AAL) Atlas for SPM12 and transformed them from MNI 6th generation space to 

MNI152NLin2009cAsym space (Tzourio-Mazoyer et al., 2002; Rolls et al., 2015). The lateral 

orbitofrontal cortex (lOFC) ROI was created by combining the orbital parts of the left and right 

middle frontal gyrus, superior frontal gyrus, and inferior frontal gyrus (Suzuki et al., 2017). The 

medial orbitofrontal cortex (mOFC) ROI was created by combining the medial orbital part of the 

left and right superior frontal gyrus (Suzuki et al., 2017). The orbitofrontal cortex (OFC) ROI was 

created by combining the lOFC and mOFC ROIs. The V1 ROI was created by combining the left 

and right calcarine cortex, as defined by the AAL Atlas. 

2.6. Imaging Data Analysis 

The classification analyses of interest required several steps. 1) Standard univariate GLM 

analyses were run to generate the patterns of activity on each trial of each task. 2) Behavioral 

labels were assigned for every trial and used for classification. 3) Multivariate pattern analysis 

(MVPA) was used to train a classifier by providing it with patterns of activity in regions of interest 
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along with their labels. 4) The trained classifier was fed a new pattern of activity it had not been 

trained on to predict the label that ought to be assigned to the pattern. 5) The predicted label 

was verified as a match with the actual label or not. 6) Steps 3 to 5 were repeated multiple times 

to determine the classifier’s accuracy. 7) Finally, statistical significance of classification accuracy 

was determined using non-parametric permutation tests.  

 

 

Figure 2. Multivariate pattern analysis approach. (a) Univariate analyses were conducted to 
extract BOLD activity patterns from ROIs from each trial of each task. 3D activity patterns were 
transformed into vectors of voxel activity, which constituted the features used in subsequent 
classification analyses. (b) Each trial was assigned a class label. Median splits on taste and 
health ratings were conducted for each participant and used to assign each rating trial to a high 
taste/health class or a low taste/health class. Two labels were assigned to each choice trial: one 
for the high/low tastiness of the chosen food and another for the high/low healthiness of the 
chosen food. (c) For within-task classification of taste, the taste rating trials were split into four 
partitions. One fold was left out for classifier testing (green) and three folds were used for 
classifier training (teal). A different fold was used for testing during each iteration of the cross-
validation procedure. The same steps were taken for health rating trials. (d) For within-task 
classification of taste, classifiers were trained on labeled activity patterns from three folds and 
tested on activity patterns from the left-out set of trials. The taste classifiers’ predicted high/low 
taste label for each test trial was compared to actual test trial labels. Classification accuracy for 
the test fold was defined as mean accuracy across test trials in the corresponding fold. This 
procedure was repeated three times with a different test fold on each iteration. Taste 
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classification accuracy was defined as mean classification accuracy across test folds. Separate 
taste classifiers were trained and tested for each participant and classification accuracy was 
averaged across participants in the HC and AN groups (Fig. 3a). The same procedure was 
performed for within-task classification of health, except health rating trials and labels were used 
instead of taste rating trials and labels (Fig. 3b). (e) The taste classifiers for cross-task 
classification of taste were trained on labeled activity patterns from all taste rating trials and 
tested on activity patterns from all choice trials. These classifiers predicted the level of taste 
evidence in each choice trial’s activity pattern. A logistic regression model (rightmost box titled 
“Regression”) was run to test the relationship between taste classifier evidence and the high/low 
tastiness of the chosen food (Fig. 4a; Table 1). To validate this cross-task classification 
approach, the continuous measure of taste classifier evidence (x-axis in Fig. 4a) was converted 
to a binary score and compared to the high/low taste label of the chosen food. Cross-task 
accuracy was defined as mean accuracy in predicting the taste label of the chosen food. 
Separate taste classifiers were trained and tested for each participant. Mean cross-task 
accuracies for taste across participants in the HC and AN groups are reported in Fig. 4c. The 
same procedures were performed for cross-task classification of health, except health rating 
trials and labels were used instead of taste rating trials and labels (Fig. 4b and 4d). 

2.6.1. Univariate Data Analysis to Generate Input for MVPA 

We first conducted separate general linear model (GLM) analyses on the preprocessed imaging 

data for each task to generate input for the multivariate analyses described below. All models 

were estimated using FSL’s FEAT (Woolrich et al., 2001).  

2.6.1.1. GLM Taste 

GLM Taste for the taste rating task included three regressors of interest: (i) onsets for valid trials 

(where participants responded before the response window ended), (ii) onsets for timing of the 

button presses (valid trial onsets + reaction times), and (iii) onsets for missed trials (where 

participants did not respond within the response window). On average, HC had 75.2±1.2 valid 

taste rating trials and AN had 74.0±4.2 valid taste rating trials (out of 76 total). The two groups 

had a similar number of valid taste trials (t(39)=1.35, p=0.184). 

2.6.1.2. GLM Health 

GLM Health for the health rating task included three regressors of interest: (i) onsets for valid 

trials (where participants responded before the response window ended), (ii) onsets for timing of 

the button presses (valid trial onsets + reaction times), and (iii) onsets for missed trials (where 
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participants did not respond within the response window). On average, HC had 75.6±0.6 valid 

health rating trials and AN had 74.4±2.0 valid health rating trials (out of 76 total). The number of 

valid health trials differed significantly between groups (t(39)=2.60, p=0.013). 

2.6.1.3. GLM Choice 

GLM Choice for the food choice task included three regressors of interest: (i) onsets for valid 

trials (where participants responded before the response window ended), (ii) onsets for timing of 

the button presses (valid trials onset + reaction times), and (iii) onsets for missed trials (where 

participants did not respond within the response window). There were on average 75.4±1.2 valid 

food choice trials for HC and 74.3±1.9 valid food choice trials for AN (out of 76 total). The 

number of valid food choice trials differed between groups (t(39)=2.35, p=0.024). 

2.6.1.4. GLM Regressors 

For all three GLMs, regressor (i) was modeled with a boxcar with a duration equal to the trial 

duration (reaction time), regressor (ii) was modeled with a delta function, and regressor (iii) was 

modeled with a fixed boxcar with a duration equal to that of the response window (4 seconds). 

Confound regressors included the six x, y, and z translation and rotation parameters. As noted 

in Foerde et al., 2015, quality control analyses indicated that discarding four volumes was 

insufficient to allow for magnetic field equilibration, so we also included a confound regressor to 

remove the effects of the first volume by adding a regressor with a 1 for the first volume and 0s 

elsewhere. No spatial smoothing was applied. All regressors were entered into the first level 

analysis and all (but the added confound regressors) were convolved with a canonical double-

gamma hemodynamic response function. The models were estimated separately for each 

participant. The parameter estimates from the contrast for valid trials (contrast [1 0 0]) were 

used for subsequent multivariate analyses (Fig. 2a). 
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2.6.2. Multivariate Data Analysis: Within-Task Classification 

2.6.2.1. Taste Classification 

Decoding analyses were conducted to examine whether taste information was represented in 

fMRI response patterns in the lOFC and mOFC. A two-class support vector machine (SVM) 

classifier was trained separately for each participant on patterns of neural activity during taste 

ratings. This analysis was conducted using PyMVPA with the trade-off parameter (between 

margin width and number of support vectors) C = 1 (Hanke et al., 2009).  

2.6.2.1.1. Definition of Features 

The neural activity patterns used as classification samples were raw parameter estimates for 

the effect of valid rating trials on BOLD (regressor (i) from GLM Taste described above). The 

raw parameter estimate values from voxels within each region of interest (see ROI Definitions 

above) were the features used to train taste classifiers for each participant (Fig. 2a and 2d).  

 

  2.6.2.1.2. Definition of Classes 

To maximize the number of trials that could be used during training and ensure a balanced 

number of classification samples in each class, a median split was performed on the taste 

ratings (Fig. 2b). The median taste rating was calculated separately for each participant. 

Median taste ratings were on average 3.95±0.59 for HC and 2.90±0.83 for AN (Fig. 1a). The 

group-level medians differed significantly between groups (t(39) = 4.71, p < 0.0001). Foods 

rated below the participant’s median rating were assigned to the “low” taste class. Foods rated 

above the participant’s median rating were assigned to the “high” taste class. Foods with the 

median rating value were assigned to the “low” or “high” taste class depending on which 

assignment minimized the difference in the number of trials between classes. For HC, taste 

ratings were skewed toward the “good” tasting end of the rating scale, raising concerns that the 
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definitions of high/low taste classes may not have been suitable for participants with skewed 

taste rating distributions (Fig. 1a). For ten out of 21 HC individuals, the “high” taste class only 

consisted of foods that had the maximum rating of five. For these individuals, classifiers were 

trained to distinguish “good” tasting foods from “somewhat good,” “neutral,” “somewhat bad,” 

and “bad” tasting foods. Although “somewhat good” tasting items were placed in the low taste 

class, cross-validation accuracies were not poorer for HC participants with a median taste rating 

of five. Instead, a permutation test showed that across ROIs (lOFC and mOFC), cross-validation 

accuracies for these participants outperformed cross-validation accuracies for participants with 

lower median taste ratings (p=0.001). Despite many skewed taste rating distributions among HC 

participants, defining high/low taste classes using a median split produced separable neural 

activity patterns. 

 

  2.6.2.1.3. Cross-Validation Procedure 

Classifier training and testing were performed using a four-fold cross-validation procedure (Fig. 

2c). On each fold, the classifiers were trained on three-fourths of taste rating trials. To 

determine whether the patterns of activity input to the classifiers contained information about 

taste, we tested whether the trained classifiers could accurately classify each left-out activity 

pattern from the remaining one-fourth of trials as being high/low in taste. The samples of data 

used in the left-out partition on each fold were unique and randomly selected. Mean accuracy 

scores across folds were calculated for each participant and then averaged across participants.  

   

  2.6.2.1.4. Determining Statistical Significance 

To determine whether taste information was represented in the lOFC and mOFC, the statistical 

significance of the cross-validation accuracies was tested using permutation tests: the class 

labels of the trials in the training set were shuffled, four-fold cross-validation was performed, and 
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cross-validation scores were averaged across participants. This procedure was repeated 1000 

times to generate a null distribution of mean cross-validation accuracies. For all permutation 

tests, p-values were the proportion of permuted cross-validation accuracies in the null-

distribution greater than the cross-validation accuracies of interest. Mean cross-validation 

accuracies were considered significant if they were greater than the 95th percentile of the null 

distribution.  

 

The statistical significance of differences in cross-validation accuracies between groups (HC 

and AN) and ROIs (lOFC and mOFC) was also tested using permutation tests. A null 

distribution for group differences was generated by computing group differences 1000 times 

after shuffling the group labels of cross-validation scores calculated for each participant. The 

null distribution for ROI differences was generated similarly, but with shuffled region labels 

instead of shuffled group labels. P-values were calculated as described above.  

2.6.2.2. Health Classification 

To test whether health information could be decoded from fMRI response patterns in the lOFC 

and mOFC, the procedures described for taste classification were followed. Any differences in 

procedure are detailed below. 

   

  2.6.2.2.1. Definition of Features 

The procedure used to extract neural activity patterns for health classification was identical to 

the procedure for taste classification, except that raw parameter estimates for the effect of valid 

rating trials on BOLD were from regressor (i) from GLM Health (Fig. 2a). 

 

2.6.2.2.2. Definition of Classes 
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Median health ratings were calculated separately for each participant (group-level median 

health ratings: HC=3.19±0.60, AN=2.60±0.66, Fig. 1b). The group-level medians differed 

significantly between groups (t(39)=3.05, p=0.004). Foods rated below the participant’s median 

rating were assigned to the “low” health class. Foods rated above the participant’s median rating 

were assigned to the “high” health class. Foods with the median rating value were assigned to 

the “low” or “high” health class depending on which assignment minimized the difference in the 

number of trials between classes. The suitability of the “low” and “high” class assignments was 

not assessed here because the health ratings, unlike the taste ratings, were fairly evenly 

distributed in both groups (Fig. 1b). 

2.6.2.3. Luminance Classification 

Control analyses based on decoding of objective visual information were undertaken to evaluate 

the classification approach (Suzuki et al., 2017). The analysis steps were identical to those 

performed for taste and health within-task classification, except for the ROI used. Any deviations 

in procedures are noted below. 

2.6.2.3.1. Definition of Features 

The procedure for extracting features were identical to those used for taste and health 

classification, except these features were extracted from V1. 

2.6.2.2.2. Definition of Classes 

The luminance of each food image was determined by extracting the mean red, blue, and green 

intensities across pixels and computing a weighted sum (0.2126*red + 0.7152*green + 

0.0722*blue) (Suzuki et al., 2017). Each image was assigned to a “high” luminance or “low” 

luminance class based on a median split. This analysis was conducted separately for neural 

activity during the taste and health ratings.  
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2.6.2.2.3. Cross-Validation Procedure 

The cross-validation procedure for taste and health classification was also performed for 

luminance decoding from patterns of neural activity during the taste and health ratings. Cross-

validation accuracy scores were averaged across rating types. 

 2.6.2.2.4. Determining Statistical Significance 

Permutation tests as described for the taste and health classification analyses were also 

conducted to assess statistical significance. The null distributions computed for luminance 

decoding from the taste and health rating activity patterns were averaged across rating types for 

each iteration of the permutation test, yielding 1000 permuted cross-validation accuracies for 

luminance decoding from V1. The 95th percentile was calculated from the resulting null 

distribution and p-values were calculated as described above. 

2.6.2.4. Exploratory Searchlight Analyses 

To examine whether brain regions other than the lOFC and the mOFC contain information about 

taste and health, we conducted exploratory searchlight analyses. The searchlight analyses were 

conducted with a searchlight diameter of 5 voxels (i.e. 15mm) and four-fold cross-validation 

using PyMVPA (Hanke et al., 2009). The resulting searchlight maps were spatially smoothed 

with a 6mm full width at half maximum (FWHM) Gaussian kernel. To assess the statistical 

significance of the searchlight maps and to compare the searchlight maps for HC and AN, we 

used a non-parametric two-sample unpaired t-test against zero and corrected for multiple 

comparisons using threshold-free cluster enhancement (TFCE) with 5000 permutations. These 

statistical tests were performed using FSL’s randomise (Winkler et al., 2014). 
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2.6.3. Multivariate Data Analysis: Cross-Task Classification of Taste and Health 

During the Choice Phase 

2.6.3.1. Cross-Task Classification 

Once it was determined that taste and health information could be decoded from neural activity 

patterns in the lOFC and the mOFC, we examined whether neural representations of taste and 

health information were evident in fMRI responses during the choice phase. This classification 

analysis was conducted using scikit-learn with the regularization parameter C = 1 (Pedregosa et 

al., 2011).  

 

 2.6.3.1.1. Definition of Features 

There were no differences between the lOFC and mOFC in the results of the taste and health 

decoding analyses and subsequent analyses involving the choice task were conducted on the 

combined OFC ROI (Fig. 3a and 3b). Separate taste and health classifiers were trained on all 

valid taste and health trials for each participant and the classifiers were tested on raw parameter 

estimates for the effect of valid choice trials on BOLD (regressor (i) from GLM Choice described 

above; Fig. 2e).  

 

 2.6.3.1.2. Cross-Task Classification Output 

For each choice task trial, the classifiers output a classifier evidence score between 0 and 1, 

where a score less than 0.5 indicated evidence of low taste/health and a score greater than 0.5 

indicated evidence of high taste/health (Fig. 2e). The classifier evidence scores were obtained 

from the predict_proba function from scikit-learn (Pedregosa et al., 2011).  

 

 2.6.3.1.3. Predicting Choices from Taste and Health Brain Patterns 
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To examine whether classifier evidence of taste/health information was related to participants’ 

choices, we ran a mixed-effects logistic regression model using the lme4 package in R (Bates et 

al., 2015). For taste and health separately, we tested the interaction between classifier evidence 

scores (continuous) and participant group (HC was coded as 0 and AN was coded as 1) on 

choices (coded as 0 if chosen item had a low taste/health label and 1 if chosen item had a high 

taste/health label). As described above, whether the chosen item was high/low in taste/health 

was determined based on a median split for each participant. The models included a random 

intercept and random slope for each participant. 

 

 2.6.3.1.4. Definition of Classes for Cross-Task Accuracy 

During the choice task two food images were presented simultaneously (Fig. 1c), leaving 

ambiguity about how the images were represented in the neural response. In the choice models 

relating classifier evidence to behavior, we assumed that the chosen item was more saliently 

represented than the unchosen item in the neural response and labeled the choice trials with 

the high/low taste/health of the chosen items (Fig. 2e). The alternative possibility, that the trial-

specific item (i.e., item on the right) was more saliently represented than the reference item (i.e., 

item on the left, which was the same on every trial) during each choice trial, was also tested. 

Here, the choice trials were labeled with the high/low taste/health of the trial-specific items.  

 

After removing choice trials with a neutral choice rating, on which neither the reference nor the 

trial-specific item was selected, and trials where the taste rating of the trial-specific item was not 

provided, there were 69.9±4.9 choice trials for HC and 60.8±8.1 choice trials for AN (t(39) = 

4.39, p < 0.0001). The number of choice trials with health ratings for the trial-specific items and 

non-neutral choice ratings was 70.3±4.7 for HC and 61.4±8.6 for AN (t(39) = 4.15, p < 0.0002).  
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 2.6.3.1.5. Cross-Task Accuracy Calculation 

Classifier evidence scores were converted to binary predictions (scores of less than 0.5 to 0; 

scores of greater than or equal to 0.5 to 1; Fig. 2e) and compared with the high/low taste/health 

label of the chosen item, as determined by a median split (Fig. 2b). To examine whether mean 

cross-task classification accuracy across participants for each group was significantly above 

chance performance (50%), we used one-tailed one-sample t-tests. Cross-task accuracies 

calculated using the ratings of the chosen items and trial-specific items were compared in a 

mixed-effects linear regression model in R (Bates et al., 2015).  

 

2.6.3.1.6. Classifier Evidence and Choice Preferences 

To examine whether classifier evidence was related to choice preferences, we used mixed-

effects linear regression models. In the taste model, we tested the three-way interaction 

between taste classifier evidence scores (continuous), participant group (HC was coded as 0 

and AN was coded as 1), and the tastiness of the trial-unique item (tasty: previous rating of at 

least 4 on taste; not tasty: previous rating of less than 4 on taste) on choice ratings (1 to 5, with 

1 indicating a strong preference for the reference item on the left, 3 indicating no preference, 

and 5 indicating a strong preference for the trial-unique item on the right). In the health model, 

we similarly tested the interaction between health classifier evidence scores, participant group, 

and the healthiness of the trial-unique item (healthy: previous rating of at least 4 on health; not 

healthy: previous rating of less than 4 on health) on choice ratings. The models included a 

random intercept and random slope for each participant. 

 

2.7. Code Accessibility 

Analysis code and outputs are available at https://github.com/alicexue/FCT_MVPA.  
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3. Results 

3.1. Participant characteristics 

The mean age of the HC group was 22.7±3.1 years and the mean age of the AN group was 

26.4±6.5 years. Age differed significantly between groups (t(39)=-2.30, p=0.03). The HC group 

had a mean Body Mass Index (BMI) of 21.5±1.9 and the AN group had a mean BMI of 15.7±2.1. 

BMI differed significantly between groups (t(39)=9.19, p<0.0001). 

3.2. Representations of Taste and Health in the OFC 

3.2.1. Neural Representations in the OFC Reflect Information About Taste and 

Health in Both Healthy Controls and Patients with Anorexia Nervosa 

To test whether activity patterns in the OFC reflect high/low taste and health ratings, we trained 

classifiers to decode high/low taste ratings from brain activity during evaluation of the tastiness 

of foods and high/low health ratings from brain activity during evaluation of the healthiness of 

foods. In both groups, taste information could be decoded from the OFC (Fig. 3a, all p≤0.001). 

We found no differences between groups (p=0.21) or subregions of the OFC (p=0.76). Similarly, 

health information could be decoded from the OFC in both HC and AN (Fig. 3b, all p≤0.002), 

again with no differences between groups (p=0.10) or subregions (p=0.33). Permutation tests 

indicated that all classification scores were significantly above chance level, and the magnitude 

of scores was similar to the range of scores reported in a study that employed the same 

methods (Suzuki et al., 2017). Furthermore, a control analysis decoding objective visual 

information (luminance) from V1 resulted in mean cross-validation scores that fell in the same 

range (Fig. 3c).  
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These findings extend prior work showing that the OFC is involved in the evaluation of taste and 

health in healthy individuals (Hare et al., 2009, 2011; Londerée and Wagner, 2020) by 

demonstrating that taste and health ratings could be decoded from neural activity patterns. 

Additionally, these basic attributes of food could be decoded among individuals with AN, who 

make very different food decisions. 

 

3.2.2. Neural Representations of Taste and Health are Differentially Distributed in 

Healthy Controls and Patients with Anorexia Nervosa 

The representation of taste and health throughout the brain in HC and AN was examined in 

exploratory whole-brain searchlight analyses. Searchlight maps can be viewed on NeuroVault 

(https://neurovault.org/collections/MHPZTYJS/). Taste information was decodable from more 

brain regions among HC compared to AN, and taste decoding in HC outperformed taste 

decoding in AN in several regions. The distribution of above-chance accuracy for health 

decoding across the brain did not differ significantly between groups. These analyses suggest 

that outside of the OFC, there are differences between groups in the decodability of taste 

information but not health information.  

 

 

Figure 3. The OFC represents information about taste and health. (a) Mean within-task 
cross-validation accuracy for decoding of taste from the lOFC (left) and mOFC (right) for HC (in 
green) and AN (in purple). There were no differences between groups (p=0.21) or subregions 
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(p=0.76). (b) Mean within-task cross-validation accuracy for decoding of health from the lOFC 
(left) and mOFC (right) for HC and AN. Within-task cross-validation accuracies did not differ 
between groups (p=0.10) or subregions (p=0.33). (c) Mean cross-validation accuracy for 
decoding of luminance in V1 from patterns of activity during taste and health ratings. Gray 
dashed lines indicate chance performance. Short gray horizontal lines denote the 95th 
percentiles of the null distributions obtained from permutation tests (all p≤0.002).  

3.3. Relationship Between Neural Representations of Taste/Health and Choice 

Behavior 

3.3.1. Neural Representations of Health Are a Better Indicator of Choice in 

Patients with Anorexia Nervosa Than in Healthy Controls 

To test whether taste representations in the OFC are related to food choices, a classifier was 

trained on neural activity patterns from all taste trials and tested on patterns of neural activity 

during food choices (cross-task classification; Fig. 2e). Cross-task classification was conducted 

on the entire OFC given that there were no differences in within-task decoding performance for 

taste and health in the lOFC and mOFC (Fig. 3a and 3b). The cross-task taste classifier 

provided a continuous measure of evidence that the pattern of neural activity on a particular 

choice trial was consistent with the pattern elicited during the evaluation of a highly tasty food. 

To relate this evidence of taste neural representations to behavior, we used a mixed-effects 

logistic regression model to relate classifier evidence of taste to the likelihood that the chosen 

item was high in taste (1 = chosen high / 0 = chosen low). A similar procedure was undertaken 

for health by training a classifier on neural activity patterns from all health rating trials and 

testing those classifiers on patterns of neural activity during food choices. A mixed-effects 

logistic regression model was used to test the relationship between classifier evidence of health 

to the likelihood that the chosen item was high in health. 

 

While the relationship between taste classifier evidence and choices of highly tasty items was 

not significant for HC and did not differ between groups (no main effects or interaction; Fig. 4a; 
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Table 1), there was an interaction between health classifier evidence and group on the selection 

of highly healthy foods (Fig. 4b; Table 1). In HC, health classifier evidence was not predictive of 

choices (no main effect of classifier evidence, Table 1) and the two groups did not differ in their 

choices of highly healthy foods when health classifier evidence equaled zero (no main effect of 

group; Table 1). Health classifier evidence was a stronger predictor of choices in AN than in 

HC, suggesting that neural representations of perceived health in the OFC are related to the 

prominent role of health in the deliberation of food choices among patients with AN. 

 

 Taste Health 
Fixed 
Effects Odds Ratio 95% CI p-value Odds Ratio 95% CI p-value 

Classifier 
evidence 2.04 [0.52, 8.07] 0.307 4.00 [0.31, 51.93] 0.290 

Group 1.07 [0.38, 2.99] 0.894 0.55 [0.04, 8.08] 0.661 
Classifier 
evidence x 
group 

2.23 [0.24, 20.43] 0.478 299.22 [1.38, 
65019.33] 0.038 

Table 1. The Effects of Classifier Evidence and Group on Food Choices. The relationship 
between taste/health classifier evidence and choices. For the group variable, HC was coded as 
0 and AN was coded as 1. 
 

3.3.2. Control Analysis to Validate Cross-Task Classification 

Participants viewed two items on each trial of the choice task and only one item on each trial of 

the rating tasks. Since the cross-task classifiers’ output for each choice trial was a continuous 

measure of evidence of taste/health, there was ambiguity as to which item this evidence was 

reflective of. To assess the validity of the cross-task classification approach, we tested whether 

the level of classifier evidence on each trial was reflective of the label of the chosen food (Fig. 

2e).  

 

Cross-task accuracy for the taste of the chosen food was defined as the proportion of trials 

where the high/low level of taste classifier evidence matched the high/low taste label of the 

chosen food. Note that the chosen food could have been the reference food (i.e., the same item 
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always presented on the left) or the trial-unique food (i.e., the item on the right). Cross-task 

classification accuracy for the taste of the chosen food was significantly above chance for HC 

(t(20)=5.27, p<0.0001), but not AN (t(19)=0.53, p=0.302) (Fig. 4c). Similarly, cross-task 

accuracy for the healthiness of the chosen food was defined as the proportion of trials where the 

high/low level of health classifier evidence matched the high/low health label of the chosen food. 

Cross-task classification accuracy for the healthiness of the chosen food was significantly above 

chance for both HC (t(20)=2.56, p=0.009) and AN (t(19)=2.44, p=0.012) (Fig. 4d). We also 

tested the alternative possibility that taste/health classifier evidence from patterns of neural 

activity during choices reflected attributes of the trial-specific items more so than those of the 

chosen items. Cross-task classification of the taste and health of the chosen items outperformed 

cross-task classification of trial-specific items (main effect of chosen/trial-specific item on cross-

task accuracy: β=6.01, 95% confidence interval (CI)=[1.22, 10.79], p=0.015). Together, these 

findings provide validation for the assumption in our choice models that classifier evidence was 

reflective of attributes of the chosen food (Fig. 4a and 4b).   

 

3.3.3. Neural Representations of Health Are More Strongly Related to the 

Magnitude of Food Preferences in Patients with Anorexia Nervosa Than in 

Healthy Controls 

Above, we assessed choice behavior by binarizing the choice responses provided in the task. 

However, participants provided continuous responses in the behavioral choice task indicating 

how much they preferred to eat the reference item (i.e., item neutral in taste and health, the 

same on every trial, and presented on the left) or the trial-unique item (i.e., item on the right) 

(Fig. 1c). We therefore sought to examine the extent to which neural evidence of taste/health 

information in the OFC was related to the magnitude of food preferences by entering the 

continuous choice responses into mixed-effects linear regression models.  
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Greater taste classifier evidence in the OFC in HC was associated with a stronger preference 

for tasty trial-unique items (main effect of classifier evidence; Fig. 4e; Table 2), suggesting that 

neural evidence of taste information in the OFC at decision time is related to choice preferences 

in normative decision-making. The relationship between taste classifier evidence and choice 

preferences did not differ between groups (no interaction between classifier evidence and 

group; Fig. 4e; Table 2).  

 

There was a stronger positive relationship between health classifier evidence in the OFC and 

choice preferences for AN compared to HC (significant interaction between classifier evidence 

and group; Fig. 4f; Table 2). Health classifier evidence in the OFC was not related to choice 

preferences in HC (no main effect of classifier evidence; Fig. 4f; Table 2). These findings 

provide additional support for the idea that the OFC plays an important role in the over-

consideration of health information during maladaptive decision-making. 
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Figure 4. Health classifier evidence in the OFC was related to choices in patients with 
anorexia nervosa. (a) Taste classifier evidence in the OFC was not related to choices for highly 
tasty items in HC and the effect of taste classifier evidence was not stronger for AN compared to 
HC (Table 1). (b) Health classifier evidence in the OFC had a stronger influence on choices in 
AN than HC (Table 1). In (a) and (b), lines indicate group-level effects and shaded areas depict 
95% confidence intervals. (c) Cross-task accuracy for the taste of the chosen item was 
significantly above chance for HC (in green; t(20)=5.27, p<0.0001) but not AN (in purple; 
t(19)=0.53, p=0.302). (d) Cross-task accuracy for the health of the chosen item was significantly 
above chance for HC and AN (HC: t(20)=2.56, p=0.009; AN: t(19)=2.44, p=0.012). In (c) and 
(d), error bars indicate standard error of the mean. **p<0.001, *p<0.05. (e) On trials with tasty 
trial-unique items, taste classifier evidence was related to HC participants’ preference for the 
trial-unique option. The relationship between taste classifier evidence and choice preferences 
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did not differ between HC and AN (Table 2). (f) On trials with healthy trial-unique items, health 
classifier evidence and choice preferences were more strongly related for AN compared to HC 
(Table 2). Plots in (e) and (f) depict mean choice ratings across participants for binned classifier 
evidence (errors bars indicate standard error of the mean). 
 

Taste Health 

Fixed Effects β 95% CI p-value Fixed Effects β 95% CI p-value 

Classifier 
evidence 1.08 [0.25, 1.90] 0.011 Classifier 

evidence -0.41 [-1.78, 0.95] 0.56 

Group 0.02 [-0.73, 0.78] 0.949 Group -1.02 [-2.19, 0.14] 0.09 
Trial-unique item 
was not tasty 0.32 [-0.05, 0.70] 0.093 Trial-unique item 

was not healthy -0.21 [-0.62, 0.20] 0.31 

Classifier 
evidence x group 0.24 [-1.04, 1.52] 0.711 Classifier 

evidence x group 2.51 [0.29, 4.72] 0.03 

Classifier 
evidence x trial-
unique item was 
not tasty 

-1.18 [-2.00, -0.37] 0.005 
Classifier 
evidence x trial-
unique item was 
not healthy 

0.07 [-0.80, 0.93] 0.88 

Group x trial-
unique item was 
not tasty 

-0.86 [-1.47, -0.26] 0.005 
Group x trial-
unique item was 
not healthy 

0.01 [-0.77, 0.79] 0.98 

Classifier 
evidence x group 
x trial-unique 
item was not 
tasty 

-1.49 [-2.70, -0.27] 0.016 

Classifier 
evidence x group 
x trial-unique 
item was not 
healthy 

-3.33 [-4.86, -1.81] <0.0001 

Table 2. The Effects of Classifier Evidence and Group on the Magnitude of Food 
Preferences. The relationship between taste/health classifier evidence and choice preferences. 
For the group variable, HC was coded as 0 and AN was coded as 1.  

4. Discussion 
The current study examined representations of key food-related attributes—taste and health—in 

the OFC, and the role of these representations in food choice. Taste and health information 

were represented in the OFC not only among healthy individuals, but also among patients with 

AN. The latter routinely make very different and maladaptive food choices as compared with HC 

(Hadigan et al., 2000; Steinglass et al., 2015; Schebendach et al., 2019). Notably, information 

about health in the OFC was a better indicator of choices and the magnitude of preferences 

among individuals with AN than HC. These findings demonstrate that representations of health 

in the OFC are differentially related to normative and maladaptive decisions about food. 
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Previous univariate analyses of this dataset suggested that taste representations in the vmPFC 

influence choices in HC while health representations in the same region influence choices in AN 

(Foerde et al., 2015). We leveraged multivariate pattern analyses in the current study to further 

examine the strength of these relationships. In our analyses of the behavioral relevance of OFC 

representations of taste and health, we found that neural evidence of taste information was 

related to a stronger preference for tasty items in normative decision-making (Fig. 4e). This 

result complements behavioral findings indicating that subjective ratings of taste predict choices 

in HC (Foerde et al., 2015, 2018, 2020; Steinglass et al., 2016) by providing evidence for the 

involvement of the OFC in the consideration of taste information during choice deliberation. 

When we binarized the continuous choice preference responses, neural evidence of taste was 

not related to choice behavior (Fig. 4a) even though we accurately decoded the high/low taste 

of the chosen foods from neural activity during the choice phase in HC (Fig. 4c). This 

discrepancy could potentially be explained by the skewed distribution of taste ratings among 

healthy individuals. Since median splits were used to determine which foods should be labeled 

as highly tasty foods, what was labeled as a highly tasty choice option in the logistic regression 

model (y-axis label in Fig. 4a) was incongruent with some HC participants’ taste ratings. Ten out 

of 21 HC participants had a high taste class that only included foods with a rating equal to the 

maximum rating of five (Fig. 1a). For these ten participants, when the trial-unique item was 

previously rated four on taste, the model labeled both the trial-unique and reference items as 

low-taste items, even though the trial-unique item was higher in taste than the reference item. 

This incongruity likely hindered our ability to detect the hypothesized relationship between 

neural evidence of taste in the OFC and binarized choices in HC. Future studies that employ 

food stimulus sets with more normally distributed taste ratings among participants may have 

more success in characterizing the contribution of OFC representations of taste to binary 

choices in normative decision-making (Lloyd et al., 2020). However, the association between 
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neural evidence of taste in the OFC and the more granular measure of choice preferences 

among HC provides support for the idea that the OFC plays an important role in the 

consideration of relevant attributes in normative decision-making.  

 

There was a stronger brain-behavior relationship for health information in AN compared to HC. 

Neural evidence of health information in patterns of activity in the OFC was predictive of choices 

as well as choice preferences made by individuals with AN, suggesting that the OFC has a 

fundamental role in using health information to guide food choices among these patients. This 

complements behavioral findings that patients with AN—more so than healthy individuals—

consider health more strongly in their food-related choices (Foerde et al., 2015, 2020; 

Steinglass et al., 2015, 2016; Uniacke et al., 2020). These findings point to an important role for 

the OFC in the over-consideration of health information during maladaptive decision-making in 

AN and complement previous work showing that the vmPFC is related to the ability to exert 

executive control and bias the influence of food-related attributes on choice in healthy 

individuals (Hare et al., 2009; Maier et al., 2015). Studying how health information is learned 

and encoded by patients with AN may provide additional insights into the neural mechanisms 

underlying maladaptive decision-making in this disorder. The contribution of hippocampal-based 

memory systems to the retrieval of knowledge about elemental attributes of foods during the 

deliberation of choices may be an interesting avenue of future research (Barron et al., 2013; 

Tang et al., 2014; Bakkour et al., 2019).  

 

The present study was not specifically designed to undertake the analyses presented here and 

some limitations warrant consideration. The distribution of taste ratings among HC was skewed 

relative to AN (Fig. 1a), resulting in high/low taste food labels that did not capture the well-

characterized influence of taste on choices among HC that was also previously observed in this 

sample (Foerde et al., 2015). This did not appear to alter the decoding results presented here, 
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but future studies that seek to employ classification methods could specifically select stimulus 

sets to address such concerns (Lloyd and Foerde, 2020; Lloyd et al., 2020; Schebendach et al., 

2020). It should be noted that the magnitude of decoding accuracies should be interpreted with 

caution because these measures can be influenced by ROI size, degree of voxel smoothing, 

and the size of training and test data sets, among other factors (Haynes, 2015). As is the case 

in most decoding studies, the question of interest concerned the prevalence of specific 

information in certain ROIs. Non-parametric permutation tests, which provide more valid 

population-level inference than t-tests, revealed that taste and health were decoded from lOFC 

and mOFC significantly above chance (Fig 3a and 3b; Allefeld et al., 2016).  

 

The results from the present study contribute to understanding the valuation process 

undertaken during food choices and provide insight into differences in the neural mechanisms 

that support how information about food is used during decision-making in healthy individuals 

and maladaptive decision-making in AN. These findings point to the importance and complexity 

of health information in food choice in AN. Recent advances in real-time fMRI neurofeedback 

technology or neuromodulation (e.g., rTMS) can perhaps be used in conjunction with 

multivariate analysis methods as promising avenues for understanding the mechanisms 

underlying the use of health and taste to guide food choices in individuals with AN (Thut and 

Pascual-Leone, 2010; Watanabe et al., 2017; Dalton et al., 2020). Ultimately, the aim of this 

work would be to downgrade the importance of health during food-related decisions among 

patients with AN. The current findings indicate that food decisions involve balancing different 

attributes of choice options (like health and taste), and that over-consideration of one attribute 

over others may cause disruptions in choice behavior and lead to persistent maladaptive 

behavior.  
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