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ABSTRACT: 

While the role of genomic risk for schizophrenia on brain gene co-expression networks has been 

described, the patterns of its manifestations are varied and complex. To acquire a deeper 

understanding of this issue, we implemented a novel approach to network construction by 

manipulating the RNA-Seq expression input to “integrate” or “remove” the “modulatory” effects 

of genomic risk for schizophrenia.  We created co-expression networks in DLPFC from the 

adjusted expression input and compared them in terms of gene overlap and connectivity. We used 

linear regression models to remove variance explained by RNA quality, cell type proportion, age, 

sex and genetic ancestry. We also created co-expression networks based on the genomic profile of 

a normative trait, height, as a “negative control”; we also applied the same analytical approach in 

two independent samples: LIBD Human Brain Repository (HBR) (N=78 brains, European 

ancestry) and Common Mind Consortium (CMC) (N=116 brains, European ancestry).   In addition 

to direct comparisons, we explored the biological plausibility of the differential gene clusters 

between co-expression networks by testing them for enrichment in relevant gene ontologies and 

gene sets of interest (PGC2-CLOZUK GWAS significant loci genes, height GWAS significant loci 

genes, genes in synaptic ontologies- SynGO and genes of the “druggable genome”).  We identify 

several key aspects of the role of genomic risk for schizophrenia in brain co-expression networks: 

1) Variability of co-expression modules with “integration” or “removal” of genomic profiles of 

complex traits (normal or pathological); 2) Biological plausibility of gene sets represented in the 

differential co-expression contrasts and potential relevance for illness etiopathogenesis; 3) Non-

preferential mapping of schizophrenia GWAS loci genes to network areas apparently influenced 

by the genomic risk score.  Overall, our study supports the notion that genomic risk for 

schizophrenia has an extensive and non-linear effect on brain gene co-expression networks that 

possibly manifests as a molecular background for gene-gene, gene-environment interactions that 

affect various biological pathways. 
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INTRODUCTION: 

 

Crystalized in the name of the most severe psychotic illness - schizophrenia (SCZ) - is the 

definitory feature of this condition, a failure of connectedness with profound consequences for a 

person’s individual and social life.  The fundamental notion - first proffered by Eugen Bleuler in 

his use of the term ‘schizophrenia’[1] - that thoughts and ideas are disconnected, has been 

abstracted at various biological levels, including macrocircuit level in neuroimaging connectivity 

studies [2-4] and  microcircuit level in gene co-expression studies in post mortem brain.  These 

approaches have been exploited as a foundation for understanding brain dysfunction in this 

disorder and its molecular origins [5-12]. 

Gene co-expression network analysis represented by one standard application, Weighted Gene Co-

expression Network Analysis (WGCNA), is a powerful tool for highlighting subjacent biological 

mechanisms associated with risk for neuropsychiatric disorders [13]. Previous studies with 

WGCNA on RNA-Seq data from postmortem DLPFC of affected and non-affected individuals 

found various degrees of association between genetic liability for SCZ and gene co-expression 

networks [5, 9-10, 12, 14-15]. Genetic associations have been used to prioritize clusters/modules 

of co-expressed genes with a link to risk for SCZ [5]. 

Notwithstanding the potential of gene co-expression analysis, however, this approach is not 

without important caveats. With its correlational nature, WGCNA inherently provides an output 

that represents an indirect association with a trait of interest and it, therefore, requires independent 

evidence for validation of results [16]. Furthermore, like any linear representation of complex traits 

with most likely non-linear architectures of poorly understood interactions of genes, co-expression 

network construction is sensitive to many biological factors (e.g. age, cell composition) and 

technical artifacts (e.g. degradation) [17-19]. 

While many of these factors in network construction are potential confounders or limitations, they 

might also be considered opportunities to systematically manipulate networks to extract novel and 

biologically plausible information about gene co-expression association with complex traits. For 

example, the variability in network construction related to diverse factors that influence gene 

expression might be intentionally utilized to leverage the effect of specific factors of interest and 
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to remove the effects of factors not of particular interest (e.g. technical artifacts or depending on 

the question, genetic risk), and thus “relatively isolate” specific effects. 

In the present study, we took this novel approach to explore the impact on co-expression network 

architecture of varying gene expression input based on genetic risk.  Among the possible drivers 

of RNA measures from bulk tissue co-expression networks are many biological factors in addition 

to genome profiles, including cell type composition [17], age [18], neuropathological factors (i.e., 

disease state [7-8]), as well as potential technical artifacts (i.e., RNA quality [19]).  Here we 

propose that individual genomic profiles of complex traits will have distinct signatures on the co-

expression network architecture that can be “relatively isolated” and this property can be used to 

contrast the contribution of genomic profiles of psychopathological versus normal traits. 

Specifically, we hypothesize that we can “extract” the influence of genomic risk for schizophrenia 

on co-expression network configuration from background network configuration. To test this 

hypothesis, we use statistical models of regression to adjust the input for co-expression network 

re-construction in a way that alternatively integrates or removes the potential effects of genomic 

profiles on gene expression. We then use the adjusted expression inputs to re-construct co-

expression networks and compare them directly.  

While the previous WGCNA studies addressing schizophrenia were designed to compare 

postmortem brain co-expression networks of patients and those of neurotypical individuals, to the 

best of our knowledge, no study described the architecture of the “generic background” co-

expression network and its zones that are vulnerable to genetic risk for SCZ.  To obviate the 

potential confounders of the state of illness and associated treatment, we focus these analyses on 

the DLPFC from neurotypical adult brain.  In this study, we have specifically tested for evidence 

of genomic modulatory effects on brain co-expression networks by our trait of interest, i.e. 

genomic risk for schizophrenia (SCZ), and we use a normative trait, height (Ht),  as a contrast for 

internal validation (“negative control”) and external comparator. Moreover, we apply the same 

methodological strategy to two independent gene expression datasets with the purpose of 

replication and external validation. 
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METHODS: 

Postmortem brain samples and RNA-Seq processing 

Data was acquired from assays of postmortem human brain tissue from the LIBD Human Brain 

Repository (HBR), collected under a protocol of standardized brain acquisition, processing, and 

curation (location, legal authorizations, informed consent, clinical review/ diagnosis) described 

elsewhere [4, 20]. The RNA pre-processing pipeline and tissue quality check also have been 

detailed previously- [20].  

As an independent replication sample, we used the Common Mind Consortium (CMC) DLPFC 

RNA-Seq data (release 1) processed with SPEAQeasy (methodological details about brain 

collection and RNA-Seq treatment in supplementary methods- SM1; of note, for space economy 

and organization purposes, we further label supplementary methods by the numbered acronym 

SM).  

After pre-processing, two final gene expression data sets from LIBD (78 DLPFC samples) and 

CMC (116 DLPFC samples) from neurotypical adults of European ancestry were retained for 

further analysis (demographic characteristics in figure 1A).  

  

Generating variables for gene expression adjustment 

This step included: a) estimation of variables used for data cleaning (quality surrogate variables or 

expression principal components); b) calculation of cell type proportions; c) computation of 

genomic scores for SCZ risk and height. 

A prominent source of bias in re-constructing co-expression networks is RNA quality (i.e. 

technical or biological artifacts). To minimize the unwanted variance associated with this potential 

confounder, we implemented the recently described qSVA approach [22] (details in SM2). The 

resultant quality surrogate variables (qSVs) were subsequently used in the downstream analyses 

for adjusting the input for co-expression network analysis.  

Cell type composition represents another factor that contributes to construction of co-expression 

networks from bulk RNA-Seq data, while modules of co-expression are likely to be significantly 

driven by cellular type [17]. Because in this study we sought to identify more subtle changes in 

gene correlatability associated with the genomic risk for schizophrenia, we opted to remove the 
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variance explained by the relative cell type proportion. For this purpose, we used an approach 

implemented in the R package BRETIGEA (BRain cEll Type specIfic Gene Expression Analysis) 

[17, 23] (details in SM3). A resultant Nsamples X Mcell proportion matrix, where the cellular types are 

represented by neurons (neu), astrocytes (ast), oligodendrocytes (oli), endothelial cells (end), 

microglia (mic) and precursors of oligodendrocytes (opc) was also used in the downstream 

analyses to adjust the input for co-expression network analysis. 

c) Genomic scores from two GWAS studies- PGC2-CLOZUK [24] and height meta-analysis [25] 

- were calculated as previously described [5]. We used in this study the set of scores computed 

from SNPs that reached a significance level of p≤0.05 in each GWAS study. This is the 6th set of 

standard scores based on GWAS p values, and although not representing the threshold of 

significance at GWAS level, it has the advantage of including a larger number of genetic variants 

potentially accounting for phenotypic variance in SCZ risk and height and generally assumes the 

asymptote of maximum risk accounted for by GRS. Accordingly, two scores were used in 

downstream analyses: Genomic Risk Score 6 (GRS6) for SCZ and Genomic Score 6 (GS6) for 

height (details in SM4).  

Variance analysis 

We used functions from the variancePartition package [26] to assess the contribution of multiple 

variables to the expression variation of each gene (i.e., genomic risk score for schizophrenia (SCZ) 

and genomic score for height, age, sex, cell type proportion, qSVs (for LIBD data) or PCs (for 

CMC data), ethnicity (10 genomic principal components- snpPCs calculated from the genotype 

data), and technical parameters).  Specifically, a multivariate linear (fixed effects) regression 

model was fit for each gene in the two data sets and the summary statistics were computed with 

the function fitExtractVarPartModel, including the variance fractions explained by each variable 

when controlling for all the other variables (figure 1A). 

Integration or depletion of genomic scores effects from the input for co-expression network 

construction 

We used a data cleaning function- cleaningY available in the jaffelab package [27, 28] that allows 

removing the unwanted variance explained by variables of no interest and/ or technical 

confounders, while preserving the effect of variables of interest (SM5). 
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Residuals calculated from four models were used as expression input sets in weighted gene co-

expression network analysis (WGCNA). 

Accordingly, the four fitted models were: 

1. Intercept and GRS6 schizophrenia “protected” (P=2 in cleaningY function ); 

2. Only intercept “protected” while GRS6 SCZ is removed with the other variables (P=1 in 

cleaningY function), i.e., GRS6 schizophrenia removed. 

Equation for the above 1-2 SCZ models: 

Expression ~ β0 + β1GRS6SCZ + β2Age + β3Sex + β4neu + β5ast + β6mic + β7oli + β8end + β9opc 

+ β10RIN + β11totalAssignedGene + β12mitoRate + ∑𝜂𝑖𝑠𝑛𝑝𝑃𝐶𝑠 + ∑𝛾𝑗𝑞𝑆𝑉𝑠        (Eq.1) 

3. Intercept and GS6 height “protected” (parameter P=2 in cleaningY function); 

4. Only intercept “protected” while GS6 height is removed with the other variables (P=1 in 

cleaningY function). 

Analogous equations for the above 3-4 height models: 

Expression ~ β0 + β1GS6height + β2Age + β3Sex + β4neu + β5ast + β6mic + β7oli + β8end + β9opc 

+ β10RIN + β11totalAssignedGene + β12mitoRate + ∑𝜂𝑖𝑠𝑛𝑝𝑃𝐶𝑠 + ∑𝛾𝑗𝑞𝑆𝑉𝑠         (Eq.2) 

For both equations, i=10 snpPCs and j=8 qSVs.  

Of note, for the CMC dataset, the first five principal components (calculated by prcomp function 

in R) for the expression data were used instead of qSVs in the above equations. 

Co-expression network analysis with WGCNA 

The four new input datasets from each set of 78 LIBD and 116 CMC NT DLPFC tissue, 

representing the manipulation and variation of the effects of genomic risk for SCZ (as test) and 

genomic score for height (as negative control) on gene expression, were used for generating co-

expression networks with WGCNA package [29] as previously described [5]. Briefly, gene 

pairwise correlations were computed (method = “bi-weight”), adjacency matrices were calculated 

(parameters: β power =6 estimated with the sft function, network type = “signed hybrid”), and 

modules of co-expressed genes were detected with hierarchical clustering (details about network 

construction in SM6). 
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By using the residuals from the models described above, two patterns of the co-expression 

networks were generated: 1. Networks of “preserved” genomic risk score (in statistical modelling 

jargon); in a more general sense networks “integrative” of susceptibility to modulatory influences 

by genomic signatures: “SCZ Genomic Risk co-expression Network” (SCZ_GRNet) and “Height 

(Ht) Genomic profile co-expression Network” (Ht_GNet); 2.  Networks of “regressed out” 

polygenic risk score (again, in statistical modelling jargon); in a more general sense networks 

“depletive” of potential modulatory influences by the genomic signatures: “SCZ non- Genomic 

Risk co-expression Network” (SCZ_nonGRNet) and “Height (Ht) non- Genomic profile co-

expression Network (Ht_nonGNet). 

Of note, we further refer to the four networks as being either “integrative” or “depletive”, terms 

closer to their biological connotation. 

We then interrogated the resultant co-expression networks with five aims:  

I. Identification and general characterization of the “invariant” network structure (gene sets 

with the same gene content configuration in the “background” network irrespective of 

genomic modulatory effects). 

II. Identification and characterization of areas in the “background” co-expression network that 

are “flexible,” i.e. show modulatory effects of polygenic risk. 

III. Exploration of the biological plausibility of the network areas “flexible” or “invariant” with 

genomic signatures of SCZ risk and height within each dataset (intra-group validation). 

IV. Evaluation of the networks’ relevance for SCZ pathophysiological mechanisms or drug 

targetable pathways.  

V. Testing the consistency of “invariant” co-expression network architecture and areas 

“flexible” with genomic effects by comparisons between LIBD and CMC datasets (inter-

group validation). 

A general pipeline of the study design is presented in figure 1. We emphasize that, although we 

further refer to four networks per data set, they actually represent variant patterns of the same 

DLPFC gene co-expression network. 

I. Profiling the “invariant” background network  
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To isolate an “invariant” network architecture independent of the influence of the GRSs explored 

here, we used a cross-tabulation method implemented in the WGCNA matchLabels function. This 

function calculates the overlap between genes present in modules from a “source” and a 

“reference” network by computing a Fisher’s exact test. The modules of the “source” network are 

then re-labeled by the “reference” modules with which they have the most overlap. The source 

modules without a significant overlap in the reference network are considered specific for the 

source network and are given distinct labels. We applied this function by taking each network as 

reference one at a time and the other three as “source” networks. Consequently, a pairwise gene 

overlap was performed across the modules of the four networks and matched/ non-matched 

modules were identified for each network relative to the others. After matching the modules from 

the four networks, we extracted an “invariant” structure of the “background” network putatively 

unaffected by the genomic modulatory effects of SCZ and height, defined as all sets of minimum 

twenty genes overlaps from the matched modules across the four networks. The “invariant 

network” was extracted separately within each dataset, LIBD and CMC. 

II. “Flexible” gene sets of the co-expression network 

To identify network areas that are “flexible” with the modulatory effects of genomic signatures of 

SCZ risk and of height, we planned “between traits” (BT) and “within traits” (WT) comparisons 

across the four networks for each dataset (LIBD and CMC) by using the gene overlap calculated 

with the matchLabels function and one network based statistics- connectivity - calculated with the 

WGCNA modulePreservation function. The planned comparisons are schematically represented 

in figure 1B. 

Importantly, the contrasts used for differential network analysis should be regarded as context-

dependent in which one network plays a dual and alternate role as “baseline” and “test” in reference 

to another network. Therefore, the outcome of a contrast is not necessarily network specific and 

rather singles-out patterns interpretable only in the context of how both networks are used for a 

comparison.  

By pairwise gene overlap, we identified as “between traits” differential modules those modules 

that were unmatched modules from the contrasts SCZ_GRNet vs. H_GNet and reverse, which 

represent network differential configurations based on these specific genetic risk differences. The 

unmatched modules from the contrasts SCZ_nonGRNet vs. H_nonGNet and reverse represented 
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network differential configurations based on residual variance of expression unexplained by the 

genomic signatures of traits of interest (SCZ or Ht) and nuisance covariates.  

From the “within traits” contrasts, unmatched modules of “integrative” vs. “depletive” networks, 

respectively SCZ_GRNet vs. SCZ_nonGRNet and Ht_GNet vs. Ht_nonGNet contrasts were 

indicative of areas of network architecture vulnerable to modulatory genomic effects specifically 

of SCZ risk or height. Conversely, unmatched modules from SCZ_nonGRNet vs. SCZ_GRNet, 

respectively H_nonGNet vs. H_GNet contrasts were considered network architecture areas 

unexplained by modulatory effects from SCZ genomic risk or height genomic profile.  

From an inferential perspective, the results of “between traits” contrasts represent patterns that 

show how far the modulatory effects of SCZ genomic risk on co-expression network deviate from 

those of a normative trait, i.e., height.   Likewise, the outcome from contrasting SCZ_GRNet and 

SCZ_nonGRNet, likely carry the most relevant information about the effects of schizophrenia 

genomic risk on co-expression networks, i.e., illness risk element.  

While calculating the gene overlap between network modules represents a simple and intuitive 

differential network analysis, other network-based statistics provide complementary and perhaps 

more nuanced qualitative differences between networks. Therefore, we also calculated the 

preservation statistics for the planned BT and WT contrasts by using the WGCNA 

modulePreservation function [30] (details in SM7).  

From the module preservation connectivity output, we selected the median rank statistics 

recommended for modules with a wider range of sizes, while it does not depend on module size 

[30]. We selected connectivity, while it evaluates metrics related to degree, a well-known network 

parameter [30], showing to what extent the patterns of between-nodes connections are similar in a 

test versus a reference network [30-31]. Specifically, a higher value of median rank connectivity 

is indicative of lower similarity between the test and reference network [30]. Reference and test 

networks were designated in accordance with the planned comparisons (figure 1), respectively, 

we tested for the preservation of “integrative” networks’ modules in the “depletive” networks and 

vice-versa. Based on these contrasts, we selected as modules with evidence of lower preservation 

in the test network those within the 95th percentile of the median rank connectivity scores. Of note, 

median rank preservation statistics generate relative measures, and therefore our cut-off should be 

regarded as exploratory and arbitrary. Moreover, while connectivity is rather a qualitative measure 
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of similarity, it is possible for modules with high median rank connectivity to be part of the 

“invariant” co-expression sets, which are defined by different metric- the degree of gene overlap. 

Consequently, the modules selected based on preservation statistics were added to the unmatched 

modules from the cross-tabulation step only if they were not contributing to the “invariant 

network”. 

In summary, the differential network analysis by cross-tabulation and module preservation 

statistics generated a total of 16 gene sets (unmatched modules and the less preserved modules 

based on the planned BT and WT comparisons), representatives of co-expression network areas 

variable with the presence or absence of modulatory effects from the genomic signatures of SCZ 

risk and height (figure 1). The 16 contrasts are henceforth referred as “flexible sub-network” sets. 

Each of the 16 contrasts includes the gene members of the differential modules for the 

corresponding contrast and represents an individual “flexible” sub-network set.  

III. Assessing the biological plausibility of the “invariant” and “flexible” sub-network sets  

To identify potentially relevant biological mechanisms related to “invariant” and “flexible” sub-

networks, we performed functional enrichment analysis with the g:GOSt function implemented in 

the gProfiler2 R package [32] (SM8).  To highlight more specific “trait” related mechanisms, we 

also performed systematic comparative evaluations of the gene ontologies enriched in the 16 

“flexible” sub-network sets.  To this end, we used metrics of Gene Ontology Semantic Similarity, 

which allow comparisons of GO terms and GO annotated gene products [33]. Specifically, we 

compared the 16 “flexible” sub-networks in a pairwise manner by using the “Best Match Average” 

(BMA), a composite measure of similarity between GO lists, calculated with the “Wang” 

algorithm that leverages the Gene Ontology structure of Directed Acyclic Graph (DAG). For this 

analysis we used functions implemented in the GOSemSim R package [34] (details in the SM9). 

Briefly, we calculated the BMA between each “flexible” sub-network and all others and generated 

matrices of semantic similarity subsequently clustered and visualized through heatmaps created 

with the pheatmap R package [35]. 

IV. Mapping gene sets of interest to “invariant” and “flexible” sub-networks 

In addition to the exploratory research of biological plausibility associated with the “invariant” 

network architecture and “flexible” sub-network sets, we tested for enrichments in genes putatively 
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more related to the two complex traits, respectively: PGC2-CLOZUK GWAS significant loci 

genes [24] (in short PGC2 genes), height GWAS significant loci genes [25] (in short “height” 

genes), and synaptic genes ontologies- in short SynGO genes [36]. Further, we aimed to map 

potentially druggable pathways to the networks by testing for enrichments in genes of the 

“druggable genome” [37]. Therefore, we used permutations to test hypotheses that “invariant” and 

“flexible” sub-networks are significantly enriched in several of the above genes of interest (details 

about permutations tests in SM10).  

V. Consistency and functional convergence of “invariant” and “flexible” sub-networks 

across datasets 

For the inter- RNA-Seq dataset validation step we evaluated: 

a) The overlap between LIBD and CMC “invariant” co-expression networks and between LIBD 

and CMC 16 “flexible” sub-networks, by using again permutation tests (N=10,000 iterations) 

(SM10). 

b) The GO:BP semantic similarity between LIBD and CMC “invariant” co-expression networks 

and between LIBD and CMC 16 “flexible” sub-networks, by measuring the BMA as explained in 

section III and SM9. 

The general assumption was that a significant overlap between pairs of corresponding LIBD and 

CMC “invariant”/ “flexible” sets, and/ or higher GO semantic similarity for the same comparisons, 

indicate consistency and functional convergence of the genomic profiles modulatory effects on the 

co-expression network architecture. 

 

 

RESULTS 

LIBD and CMC samples’ demographics and expression data characteristics are represented in 

figure 1. 

Variance partition analysis (supplementary table 1, supplementary figures 1-2) showed that in 

both data sets, GRS6 and GS6 accounted for minimal proportions of expression variance across 
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the whole set of genes (LIBD- median variance by GRS6 SCZ = 0.59%; max = 26.6%; median 

variance by GS6 Ht = 0.32%, max = 12.6%; CMC- median variance by GRS6 SCZ = 0.45%, max 

= 11.4%, median variance by GS6 Ht = 0.46%, max = 13.4%); however, the explained variance 

was not uniformly distributed, with genes that significantly deviated from the median values for 

both scores.  Moreover, the increasing variance explained by GRS6 or GS6 implicated different 

genes as suggested by the decreasing number of genes with higher variance explained by both 

genomic scores (supplementary figure 2).  

WGCNA results 

The co-expression networks and modules based on expression inputs generated by varying the 

integration of GRS6 SCZ and GS6 height are summarized in figure 1 and represented in the cluster 

dendrogram- heatmap plot from supplementary figure 3. 

The “invariant” and “flexible” sub-networks profiles 

The output of cross-tabulation showed that 24 LIBD clusters (Total =2596 genes; set size: 23-380) 

and 38 CMC clusters (Total = 3344 genes; set size 20-375) qualified as “invariant”, potentially 

unaffected by modulatory effects of genomic profiles for SCZ risk and height (see supplementary 

table 2 for the gene membership in the “invariant” sets). Overall, the LIBD and CMC “invariant” 

sub-networks shared 582 genes representing a statistically significant overlap by permutation tests 

(supplementary figure 4).  

Planned comparisons generated 16 gene sets considered as areas of the co-expression network 

putatively influenced by SCZ genomic risk or height genomic profile (“flexible” network).  The 

LIBD flexible network associated contrasts (size = 104-768 genes) and CMC contrasts (size = 99-

1894) included a total of 3634 (LIBD), and 5211 (CMC) unique genes, respectively (the full gene 

composition of contrasts is presented in supplementary table 3).  A total of 1116 genes were 

members of “flexible” networks in both datasets (LIBD and CMC) and the overlap was significant 

by permutations test (p=0.0004). Of note, the contrasts were not perfectly distinct with roughly 

54% of genes in LIBD contrasts (N=1946) and approximately 28% of genes in CMC contrasts 

(N=1467) being members of more than one contrast. Collectively, these observations suggest again 

that both “invariant” and “flexible” sub-networks are context-dependent and relative; 
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consequently, their meaning is uncertain without evidence of biological plausibility and additional 

empirical data. 

 

Biological plausibility of the “invariant” sub-network 

The enrichment of “invariant” gene co-expression areas, i.e. areas not influenced by genetic risk 

for schizophrenia or for height, in meaningful ontologies suggested that they belong to functionally 

coordinated and critical pathways, which recapitulate biological motifs reported in earlier work [5, 

10, 38], methodological differences notwithstanding (i.e., the control for cell type proportion). In 

both datasets, “invariant” network sets were enriched for a) biological processes specific to the 

nervous system development and functionality (e.g., nervous system development, modulation of 

chemical transmission and signaling) and b) fundamental, tissue unspecific processes (e.g., 

transcription, translation and metabolism) (supplementary table 4). Moreover, permutations 

results showed that 15 LIBD and 20 CMC “invariant” clusters had significant overlap (figure 2A, 

supplementary table 5). Further, the GO biological processes associated with all but six 

overlapped clusters (4 LIBD and 2 CMC) indicated varying degrees of GO semantic similarity 

ranging from weak to strong (figure 2B). By GO semantic similarity, the “invariant” overlapping 

LIBD and CMC clusters aligned along three functional dimensions represented by pathways 

specific to nervous system intertwined with more general cellular processes (figure 2C, D, E).  

Interestingly, testing enrichments of “invariant” networks in gene sets of interest showed that no 

“invariant” cluster was significantly enriched in PGC2 CLOZUK genes. There were, however, 

various “invariant” clusters enriched in GWAS height genes, SynGO and druggable genome genes 

(supplementary table 6). 

Biological plausibility of the “flexible” sub-networks 

All 16 contrasts in LIBD and CMC datasets, i.e., those contrasts illuminating network features that 

are modulated by genetic risk for either schizophrenia or height and deemed as “flexible” sub-

networks, were enriched for gene ontologies of reasonable interest. Interestingly, by GO:BP 

(biological processes), only the “flexible” sub-networks having SCZ_GRNet as one term of 

comparison, respectively three LIBD (WT contrasts 1C, 2A and BT 5A) and one CMC “flexible” 

sub-networks (BT 6A) were enriched for CNS ontologies previously highlighted in genetic and 
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molecular studies of schizophrenia (i.e., synaptic signaling and ion transport, neuron development 

and axon genesis, etc.) [39]. In both RNA-Seq datasets, “within traits” contrasts related to height, 

i.e. GS6_Ht vs. GS6_nonHt networks, were enriched for general cellular processes mainly related 

to mRNA metabolic processes and protein translation (see supplementary table 7 for complete 

gene ontology enrichment), GO terms not generally associated with schizophrenia. 

Perhaps surprisingly, none of the LIBD or CMC contrasts based on flexible areas were 

significantly enriched for PGC2 CLOZUK GWAS loci genes (figure 3). Further, only two WT 

contrasts were significantly enriched for meaningful gene sets of interest across the two datasets: 

Con2A (SCZ_nonGRNet vs. SCZ_GRNet) was enriched for SynGO genes and Con 3A (Ht_GNet 

and Ht_nonGNet) was enriched for height GWAS genes (figure 3).   

To assess the potential consistency between LIBD and CMC “flexible” sub-networks, we used two 

criteria: significant gene overlap by permutations tests and global BMA ≥ 0.5 in at least one gene 

ontology domain.  Based on these criteria, we identified three WT and one BT contrast: Con 1A, 

3A and 4C, respectively Con 8C.  

Overall, the three WT contrasts (1A, 3A and 4C) showed an apparently weaker degree of 

consistency between LIBD and CMC (table 1). However, when comparing the GO:CC between 

them and across datasets, in spite of the seemingly negligible differences in BMA, Con 1A LIBD 

and CMC clustered together, while Con 3A and 4C (both WT contrasts based on Ht_GS6 and 

Ht_nonGS6) formed a separate cluster (figure 3A left top panel). To further understand what 

cellular component distinguishes between Con 1A and Con 3A, 4C across datasets, we examined 

the GO:CC with higher similarity (BMA ≥ 0.5) in each cluster (1A LIBD - 1A CMC, respectively 

3A, 4C LIBD - 3A, 4C CMC) and we found that GO:CC “spliceosomal complex” is specific to 

the 1A LIBD - 1A CMC cluster (figure 3A bottom left panel). We then isolated the genes 

associated with GO:CC in 1A LIBD - 1A CMC cluster and examined them in STRING PPI 

database to identify participants in protein-protein physical interactions as indicated by 

experimental evidence [40] (figure 3B). Notably, four of the PPI members are within PGC2 

GWAS loci genes (CTDP1, EP300, MSL2 and KAT5) and six PPI members are within the GWAS 

height loci (CLIP1, SLBP, CNOT4, HMGN1, BPTF and CDK5RAP2), underscoring the 

interactive contribution of genomic risk for SCZ and the genomic profile for height to the brain 

co-expression and subsequently protein-protein interaction networks. 
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In summary, the results of our novel approach in constructing brain co-expression networks by 

varying the expression input with genomic profiles of schizophrenia risk and height generated 

several key observations: 1) Non-negligible variability of co-expression modules with integration 

or removal of residual variance explained by GRS6 SCZ and GS6 height; 2) Biological plausibility 

and potential relevance for illness etiopathogenesis of gene sets isolated by comparing co-

expression networks; 3) The lack of clustering of GWAS loci genes in specific modules or sub-

networks and 4) The sparse replicability of findings in the two independent datasets. 

 

DISCUSSION 

The purpose of this study was to explore how integration of particular genetic contexts in gene 

expression inputs would modulate the co-expression network architecture in the neurotypical 

brain.  Specifically, we tested this approach to gain deeper and possibly novel perspectives about 

the likely modulatory effects of polygenic risk for schizophrenia on co-expression networks in 

contrast with a normative control trait, i.e., height. If the co-expression network from the 

postmortem brain is conceptualized as a combination of dynamic signaling interactions, it is 

conceivable that its construction will capture specific aspects depending on modelling various 

contexts including genomic profiles for pathological or normative traits. Furthermore, contrasting 

networks with different genetic signatures would isolate network characteristics relevant for 

various traits. However, we emphasize the particular and qualitative nature of such comparisons, 

dependent on the entire context of expression input manipulation and consequently the difficulty 

of generalizations.  Therefore, we regard this approach as exploratory for uncovering snapshots of 

context-dependent network configurations whose findings need to be interpreted through the angle 

of biological plausibility and validated by further experimental approaches. 

In light of this perspective, the main findings of our study are as follows: 1) a consistent pattern of 

gene co-expression in DLPFC of neurotypical brain unmodulated by genetic risk for schizophrenia 

or height (i.e., “invariant” gene sets) combined with subtle conformational variability owing to 

slight changes in the expression input; 2) the presence of network areas susceptible to and 

“flexible” with genomic variation associated with schizophrenia or height; 3) notwithstanding the 

expression input manipulation, the “invariant” and “flexible” sub-networks displayed biological 

plausibility as suggested by gene ontology analysis and/ or enrichments in gene sets of interest; 4) 
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organization of biological ontologies associated with “flexible” sub-networks/ contrasts along 

contiguous dimensions varying between low GO semantic similarity (which tag “distinct” 

contrasts) and high GO semantic similarity (related to more “fuzzy” contrasts); 5) a degree of gene 

overlap between “flexible” sub-networks (contrasts) modulated by schizophrenia risk and height 

genomic profiles, an observation consistent with their relative nature, and possibly explained by 

the pleiotropic character of genes that can affect multiple complex traits by overlapping 

mechanisms; 6) in spite of differences in methodology and gene expression characteristics, several 

results demonstrated various levels of consistency in an independent dataset, though consistency 

is notably limited.   Several “invariant” network sub-sets consistent across LIBD and CMC datasets 

demonstrated gene overlap more significant than expected by chance, but most importantly 

showed biological plausibility by three clusters of Gene Ontology semantic similarity that captured 

fundamental biological processes in combination with specialized CNS functions. 

A similar but less consistent pattern of mixed GO:BP also characterized the “flexible” sub-

networks. This observation is potentially important for two reasons: 1) it suggests that at least 

fragments of biological pathways are “modulated” by polygenic profiles of complex traits; 2) the 

potentially affected pathways are not circumscribed to one mechanism, nor do they segregate, but 

are rather intermixed and show “fuzzy” boundaries. The admixture of cellular biological processes 

associated with the “flexible” sub-networks underscore the plausible “omnigenic” profile of 

schizophrenia risk [41], embedded within the mesh of multiple other complex traits. 

Notwithstanding the pattern of mixed biological processes, the more CNS related GO:BP were 

rather enriched in LIBD/ CMC contrasts derived from the GRS6 “integrative” network 

(SCZ_GRNet) as term of comparison.  

As mentioned above, the within trait (WT) contrasts/ “flexible” sub-networks that capture the 

modulatory effects of GRS6 SCZ are potentially the most informative from a biological 

perspective related to schizophrenia. While at first blush the biological processes consistency 

across our two datasets looks disappointing, at closer inspection Con 1A shows relative specificity 

toward the “spliceosomal complex”, a cellular component plausibly disrupted in schizophrenia and 

other neuropsychiatric disorders, as highlighted in previous work from our group and others (12, 

42-46). Whereas the transcriptional regulation through alternative splicing is a pervasive 

mechanism affecting hundreds of genes on different pathways, perhaps underwriting some of the 
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heterogeneity of schizophrenia, it should come as no surprise that the “flexible” sub-networks 

“integrative” of genomic risk for SCZ show less consistency in terms of biological processes 

across the two different datasets that we explored.  The LIBD and CMC brain RNAseq data come 

from brains significantly different by mean age and from analyses with differing approaches to 

mRNA quality correction and other QC procedures. 

Of interest from the perspective of SCZ genomic risk and potentially drug target development, 

four genes in Con 1A involved in transcriptional regulation and implicated in protein-protein 

physical interactions, are within the PGC2 GWAS loci: KAT5 (Lysine Acetyltransferase 5), 

EP300 (E1A Binding Protein P300), MSL2 (MSL Complex subunit 2) and CTDP1 (CTD 

Phosphatase subunit 1). Moreover, these genes are implicated in various neurodevelopmental 

pathways or diseases [47].  We find it particularly noteworthy, however, that although several 

PGC2 loci genes were mapped to “flexible” sub-networks of interest as illustrated in the example 

above, we did not see a trend of clustering of GWAS genes in particular sub-networks. While 

perhaps surprising, as these flexible networks were constructed based on GRS, this observation 

underscores that genomic risk of schizophrenia is probably not limited to GWAS hits and 

represents an extensive background on which complex gene-gene, gene-environment or pathways 

interactions concur in the schizophrenia development.  Prior studies of gene co-expression 

networks and their relationship to GWAS genes were based on enrichment statistics and 

correlation with modules’ eigengenes [5, 14].  Our new approach proposed in this study is a 

potentially more granular view to understand how genetic risk influences the behavior of signaling 

pathways in cells because we created the networks based on the influence of genetic risk.  

Notwithstanding the broad co-expression network characterization, our study is not without 

limitations.  One important caveat is related to the generalizability of results. Although we used 

comprehensive regression models to control for multivariate effects on gene expression with 

further consequences on co-expression networks and independent datasets, by design unaccounted 

factors could explain better than genomic profiles the networks configurations.  For example, a 

possible limitation is related to the selection of the genomic profile of height as a “negative control” 

for comparison with genomic risk for SCZ in terms of effects on co-expression network 

architecture. While SCZ and height are seemingly two unrelated traits, they most probably share 

some common biological pathways. 
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We also used rather arbitrary, perhaps too lenient thresholds both for the selection of genomic 

scores (GRS6 SCZ and GS6 height) and for filtering the modules with “low preservation”. 

However, we chose these selections based on our interest to capture a larger proportion of 

variability and by the heuristic nature of our study. Also of note, the filtering procedure for 

connectivity preservation, combined with the not negligible number of grey genes resulted from 

the WGCNA, left a lower number of nodes/ genes as components of the network architecture. 

However, the strength of our study doesn’t come merely from proving the variability of brain co-

expression network with biological and technical factors, but it also suggests that novel, well 

designed network analysis methods will be necessary to better capture the complexity of the 

conceivable dynamic co-expression networks in the brain.  

Another potential limitation is the sample size of the postmortem brain data we used in our co-

expression network re-construction in comparison with studies based on consortium data (i.e., 

PsychENCODE)  [9, 12]). However, we used more homogeneous sample including only subjects 

with European ancestry in order to avoid population stratification confounds when creating the co-

expression networks; likewise, because of more consistent tissue processing procedure, we believe 

our findings are more robust. 

In conclusion, our study provides a novel characterization of postmortem, “neurotypical” DLPFC 

gene co-expression networks, part of which seems plausibly modulated by genomic signatures of 

normal or pathological complex traits. Further studies at various levels, conceptual, 

methodological (novel network analysis techniques), and especially experimental, are warranted 

for disentangling genomic and environmental interactions contributing to the risk of schizophrenia. 
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FIGURES AND TABLES LEGENDS:  

 

Table 1: Gene overlap (permutations tests) and Gene Ontology Semantic Similarity between 

LIBD and CMC “flexible” sub-networks. 

 

Figure 1: Analytical pipeline: A: Left panel- Demographic characteristics of the LIBD-CMC 

datasets; LIBD and CMC datasets significantly differ by age (Kruskal-Wallis chi-squared=16.118, 

df=1, p=5.951e-05), but not by gender (Pearson’s chi-squared=0.96649, p=0.326) (significance is 

calculated with Kruskal-Wallis test, respectively Pearson’s chi-squared test (for details see 

supplementary material); right panel: genome-wide violin plot that exemplifies the distribution 

of variance explained by each regressor across all genes. B: Left panel- Cluster dendrogram 

showing the correspondence between modules of a reference network and matched modules from 

the other three networks; modules from one network with no counterpart in the other three 

networks by gene overlap are part of the “flexible” sub-networks; conversely, modules of one 

network with correspondent in all other three networks are part of “invariant” sub-networks if gene 

overlap is greater than 20 genes. Right panel- Schematic representation of the 16 contrasts run for 

differential network analysis and characterization of the “flexible” sub-networks: 1A-4A = 

“Within traits” (WT) contrasts by matching modules from SCZ networks (Con 1A-2A: 

SCZ_GRNet vs. SCZ_nonGRNet and reverse), respectively “height” networks (Con 3A-4A: 

Ht_GNet vs. Ht_nonGNet and reverse); 5A-8A = “Between traits” (BT) contrasts by matching 

SCZ and “height” networks (Con 5A-6A: SCZ_GRNet vs. Ht_GNet and reverse; Con 7A-8A: 

SCZ_nonGRNet vs. Ht_nonGNet and reverse). Contrasts 1C-8C are connectivity based contrasts 

following the same directionality as 1A-8A (i.e., Con 1C-2C = SCZ_GRNet modules with lower 

preservation in SCZ_nonGRNet and reverse, Con 3C-4C = Ht_GNet modules with lower 

preservation in Ht_nonGNet and reverse, Con 5C-6C = SCZ_GRNet modules with lower 

preservation in Ht_GNet and reverse, Con 7C-8C = SCZ_nonGRNet modules with lower 

preservation in Ht_nonGNet and reverse). C: Schematic representation of exploratory analyses 

performed to add biological plausibility to the co-expression “flexible” and “invariant” sub-

networks: enrichments in gene ontologies (BP- biological processes, MF- molecular functions and 

CC- cellular components), PGC2- CLOZUK GWAS loci genes, height GWAS loci genes, SynGO 

and “druggable genome” genes.  

 

Figure 2: LIBD vs. CMC comparisons of “invariant” gene sets: contrast-wise gene overlap 

and GO semantic similarity. A: Heatmap representing LIBD-CMC corresponding “invariant” 

sets. B: Significantly overlapped “invariant” sub-networks were also tested for GO biological 

processes semantic similarity by comparing GO:BP terms enriched in LIBD and CMC “invariant” 

sets; cluster heatmap shows a relative hierarchization of corresponding LIBD-CMC “invariant” 

sub-networks by GO:BP semantic similarity measured with BMA, respectively LIBD-CMC 

“invariant” sets with BMA ≥0.5 are organized in three clusters; GO:BP terms enriched in the three 

clusters are represented in panels C-E. Visualization of heatmap plots in panels A-B was created 
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with R package pheatmap [35] and GO:BP scatter plots in panels C-E were created with R package 

rrvgo [48]. 

 

Figure 3: Mapping gene sets of interest to “flexible” sub-networks. Only two contrasts were 

significantly enriched for relevant gene sets in both LIBD and CMC datasets: Con2A (within traits: 

SCZ_nonGRNet vs. SCZ_GRNet) enriched in genes from synaptic ontologies and Con3A (within 

traits Ht_GNet vs. Ht_nonGNet) enriched in GWAS height loci genes. The Venn diagrams show 

the size of overlap and the genes shared by the two contrasts and the respective gene set of interest, 

i.e., SynGO and Con2A, height genes and Con3A.  

 

Figure 4: GO cellular component (GO:CC) semantic similarity between LIBD and CMC 

“flexible” sub-networks. A: SCZ and “height” based networks show a trend for segregation as 

suggested by the cluster heatmap of GO:CC semantic similarity (upper left panel). Upper right and 

bottom left panels: while the two clusters (Cl1 and Cl2) share several GO cellular components, 

one GO:CC term- spliceosome complex - differentiates between them. Visualization of heatmap 

plots was created with the R package pheatmap [35] and the treemap plots with the R package 

rrvgo [47]. B: Genes from the GO:CC ontologies differential between Cl1 and Cl2, implicated in 

protein-protein interactions (PPI) networks (see supplementary material for details about gene 

filtering criteria and PPI network calculation with STRING). 

 

Supplementary table 1: Gene-wise distribution of variance explained by the regressors from 

models used to adjust the expression input for WGCNA. 

Supplementary table 2: Sub-networks “invariant” with genomic profiles of SCZ and height, 

derived from LIBD and CMC co-expression networks. 

Supplementary table 3: Sub-networks “flexible” with modulatory effects of genomic profiles of 

SCZ and height, isolated from LIBD and CMC co-expression networks. 

 Supplementary table 4: “Invariant” sub-networks enrichment in Gene Ontology terms and 

annotations performed with gprofiler. 

Supplementary table 5: Consistency between LIBD and CMC “invariant” sub-networks by gene 

overlap tested with permutations tests. 

Supplementary table 6: “Flexible” sub-networks enrichment in Gene Ontology terms and 

annotations performed with gprofiler. 

 Supplementary table 7: “Flexible” sub-networks enrichment in PGC2-CLOZUK GWAS loci, 

“height” GWAS loci, SynGO and “druggable genome” genes. 
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Supplementary figure 1: Characterization of gene expression variance profiles converging from 

multifactorial effects on DLPFC transcriptome within the two data sets/ groups (LIBD, CMC). 

Supplementary figure 2: QQ plots and Venn diagrams showing the gene-wise divergence 

between the increasing variance explained by GRS6 SCZ and GS6 height. 

Supplementary figure 3: Matched modules across four co-expression networks calculated with 

WGCNA based on expression inputs that “integrate” or “deplete” effects of GRS6 SCZ and GS6 

height. 

Supplementary figure 4: The null distribution for the overlap of two gene sets with the size of 

“invariant” LIBD and CMC sub-networks (hypergeometric and 10,000 permutations tests). 

Supplementary figure 5: Venn diagram showing the total HGCN annotated genes overlap 

between LIBD and CMC data sets. 
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Table 1: 

 

 

 

 

 

 

 

 

Contrasts Set size (LIBD/CMC) Overlaps (p values) GO:BP GO:MF GO:CC
Con 1A 463/541 17 (0.017) 0.195 0.097 0.607

Con 1C 158/183 0 (1) NA 0.203 0.362

Con 2A 768/557 13 (0.74) 0.388 0.557 0.578

Con 2C 312/244 5 (0.18) 0.819 0.399 0.762

Con 3A 455/517 23 (0.004) NA NA 0.749

Con 3C 319/99 1 (0.74) 0.162 0.366 0.431

Con 4A 633/448 16 (0.06) 0.128 0.2 0.529

Con 4C 229/150 15 (0.004) 0.39 0.129 0.746

Con 5A 404/1894 24 (0.74) 0.354 0.411 0.575

Con 5C 104/124 1 (0.47) NA 0.143 0.506

Con 6A 543/1162 45 (0.004) 0.083 0.193 0.315

Con 6C 129/120 2 (0.173) 0.291 0.179 0.543

Con 7A 497/524 16 (0.04) NA 0.081 0.303

Con 7C 370/183 4 (0.28) 0.637 0.576 0.694

Con 8A 638/545 25 (0.02) 0.312 0.632 0.246

Con 8C 198/275 10 (0.004) 0.068 NA 0.866

Gene overlap GO Semantic Similarity (BMA)
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Figure 2: 
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Figure 3: 
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Figure 4: 
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