
1 
 

Predicting the effects of drug combinations using probabilistic matrix factorization 

 

Ron Nafshi1 and Timothy R. Lezon1,* 

 
1. Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA 

*Correspondence: lezon@pitt.edu 

 

Abstract 

Drug development is costly and time-consuming, and developing novel practical 

strategies for creating more effective treatments is imperative. One possible solution is to 

prescribe drugs in combination. Synergistic drug combinations could allow lower doses of each 

constituent drug, reducing adverse reactions and drug resistance. However, it is not feasible to 

sufficiently test every combination of drugs for a given illness to determine promising 

synergistic combinations. Since there is a finite amount of time and resources available for 

finding synergistic combinations, a model that can identify synergistic combinations from a 

limited subset of all available combinations could accelerate development of therapeutics. By 

applying recommender algorithms, such as the low-rank matrix completion algorithm 

Probabilistic Matrix Factorization (PMF), it may be possible to identify synergistic combinations 

from partial information of the drug interactions. Here, we use PMF to predict the efficacy of 

two-drug combinations using the NCI ALMANAC, a robust collection of pairwise drug 

combinations of 104 FDA-approved anticancer drugs against 60 common cancer cell lines. We 

find that PMF is able predict drug combination efficacy with high accuracy from a limited set of 

combinations and is robust to changes in the individual training data. Moreover, we propose a 

new PMF-guided experimental design to detect all synergistic combinations without testing 

every combination. 

 

Introduction 

 Despite recent advances in drug development and disease biology, the cost to develop a 

new effective drug remains prohibitively high; as of 2019, the estimated cost to develop new 

prescription medicine that gains marketing approval is estimated to be $2.6 billion. Furthermore, 

the approval rate of drugs in clinical testing is an abysmal 12 percent [2]. Thus, developing 

practical strategies for creating more effective treatments is imperative. One possible solution is 

to prescribe drugs in combination. The use of synergistic drug combinations has several major 

benefits: it can reduce development of drug resistance, and it can allow for lower dosages of each 

constituent drug, lessening the adverse effects of each [3]. However, it is simply not feasible to 

sufficiently test every combination of drugs for a given illness to determine promising 

synergistic combinations. Since there is a limited amount of time and resources available for 

testing of synergistic combinations, a model that can identify synergistic combinations from a 

limited subset of all available combinations could accelerate development of therapies. By using 

collaborative filtering algorithms, such as Probabilistic Matrix Factorization (PMF) [4], it may be 

possible to identify synergistic combinations from partial information of drug-drug interactions. 

 Imputing missing data values is a longstanding problem that has been addressed in a 

variety of ways, with algorithms such as pairwise deletion, mean substitution, and k-nearest 

neighbor. Pairwise deletion and mean substitution work efficiently in small datasets and are 

comparatively fast, but have several drawbacks, such as losing data, biasing the sample statistics, 

and not accounting for the correlation between features [5]. K-Nearest Neighbor, while simple, 

has several limitations, such as not handling sparsity well and being computationally expensive 
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as the input size grows. PMF has the advantage that its computation time scales linearly and it 

can make accurate predictions for sparse and imbalanced data sets [4].  

The PMF algorithm was developed to recommend movies to Netflix users based on the 

movies viewed by other users. Given that no Netflix user rated every movie, the core assumption 

of PMF is that attitudes or preferences that lead to each user’s score for a movie are based on a 

small number of unobserved factors. Thus, PMF models each user’s recommendations as a linear 

combination of item factor vectors using user-specific coefficients [4]. The method has since 

been applied to predict values from other large, sparse and imbalanced data sets. Biomedical 

applications of PMF include predicting diseases associated with transcription patterns [6, 7], 

recommending novel indications for drug repurposing [8, 9], and predicting novel targets from 

drugs [10-12]. Here, we use PMF to predict the effects of novel two-drug combinations based on 

information from other two-drug combinations. We train our model on phenotypic screening 

data from the NCI ALMANAC [1], a robust collection of pairwise drug combinations of 104 

FDA approved anticancer drugs against 60 common cancer cell lines. We find that knowing the 

effects of only 70% of drug combinations allows us to classify the effects of the missing 

combinations as efficacious with 95% accuracy, and we demonstrate how our method can be 

incorporated into optimal experimental design. 

 

Methods 

NCI ALMANAC 

 The NCI ALMANAC is a novel, easy-to-use resource created to help researchers identify 

new combination therapies. The NCI ALMANAC database [1] is a collection of pairwise 

combinations of 104 FDA approved anticancer drugs against the NCI-60, a set of 60 common 

human tumor cancer cell lines collected by the National Cancer Institute. A total of 5,232 drug-

drug pairs were evaluated in each of the cell lines; 304,549 experiments were performed to test 

each drug at either 9 or 15 combination dose points, for a total of 2,809,671 dose combinations. 

At each dose combination, the percent growth after two days was measured and recorded, and 

combination efficacy derived. The synergy of each combination is reported by a “ComboScore” 

that measures the difference between the recorded growth rate after testing and the growth rate 

expected by Bliss Independence[13]. A positive ComboScore indicates a synergistic 

combination, whereas a negative ComboScore indicates an antagonistic combination. For each 

cell line, the ComboScores and combination efficacies are arranged into a symmetric matrix, 

𝐌104𝑥104, where each element represents the ComboScore or efficacy of a unique drug-drug 

combination on that cell line. For purposes of PMF, diagonal elements are ignored. The data is 

then mean-zero standardized for input into the PMF algorithm.  

PMF 

 Probabilistic Matrix Factorization (PMF) is a collaborative filtering algorithm that factors 

the low-rank input matrix 𝐌𝑛×𝑚 into the product of two low-rank matrices, 𝐀𝑛×𝑑 and 𝐁𝑚×𝑑 

such that 𝐌𝑖𝑗 = 𝐀𝑖𝐁𝑗
𝑇. Thus, PMF reduces to estimating the two matrices 𝐀 and 𝐁. The core 

assumptions of this are that the values of 𝐌 are independent, normally distributed and share a 

common variance 𝜎2. Thus the conditional probability of entries of 𝐌 can be expressed as: 

𝑝(𝐌|𝐀, 𝐁, 𝜎2) = ∏ ∏ 𝑁(𝐌𝑖𝑗|𝐀𝑖𝐁𝑗
𝑇 , 𝜎2)

𝐼𝑖𝑗𝑚
𝑗=1

𝑛
𝑖=1 , where 𝐼𝑖𝑗 is the indicator function equal to 1 if 

𝐌𝑖𝑗 is known and 0 otherwise [4].  

To solve for the matrices A and B, we use gradient descent with gradient acceleration. 

Stochastic gradient descent methods are a critical component of machine learning, and methods 

incorporating momentum and acceleration play an important role when used in conjunction with 
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stochastic gradients [14]. Momentum methods help accelerate stochastic gradient descent in the 

relevant direction and dampen oscillations as a minimum is approached by incorporating the 

momentum constant 𝛾. The update step with respect to the parameters 𝜃 can be expressed as 

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝜃𝐽(𝜃), 𝜃 = 𝜃 − 𝑣𝑡. However, simple momentum methods can be insufficient 

for complex surfaces. The Nesterov Accelerated Gradient (NAG) [14] improves on this method 

by “looking ahead” to where the parameters will be to calculate the gradient and is formalized as 

followed: 𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝜃𝐽(𝜃 − 𝛾𝑣𝑡−1), 𝜃 = 𝜃 − 𝑣𝑡. Rather than computing the gradient at 

parameters 𝜃, NAG looks ahead at a rough approximation of where the parameters will be, 

computing the gradient at 𝜃 − 𝛾𝑣𝑡−1. This anticipatory update greatly increases optimization and 

performance of PMF as it approaches a minimum. 

 

Results and Discussion 

PMF accurately recovers drug synergies from partial data 

We first investigated the ability of PMF to recover hidden elements in the drug 

combination efficacy matrix. For each cell line, we randomly hid a fraction of the combination 

efficacy matrix and used PMF to predict the hidden values. To guarantee a solution, we included 

only cases where all drugs were present in a single connected component; that is, where a path 

could be made from any drug to any other drug using common combination partners. PMF 

recovered training data to arbitrary precision (Fig. 1a) and recovered test data well, provided a 

sufficiently large training set (i.e., small fraction of data hidden). Using empirically determined 

hyperparameters, we found that knowing only 30-50% of the drug-drug interactions was 

sufficient to recover the remaining values in the matrix to within 10% (Fig. 1b,c).  

 

Figure 1. PMF recovers the values of hidden elements of the drug efficacy matrix from only a fraction 

of interactions. The mean-squared error of PMF in recovering values of a) known, b) hidden, and c) all 

elements is plotted against the fraction of hidden data. In all panels, the shaded area represents the 

standard deviation of the mean-squared error over 25 trials across all cell lines. 
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When selecting combinations with efficacies above a given threshold, PMF performance did not 

vary strongly with the threshold value (Fig. 2); that is, the method can predict whether a 

combination has an effect over 0.9 nearly as well as it can predict whether a combination has an 

effect over 0.2.  

 

PMF performance is largely independent of individual drug efficacies  

Assuming compounds act independently (i.e., Bliss independence), the most efficacious 

compound combinations will be combinations of the independently most efficacious compounds. 

Reasoning that efficacious drugs are more likely to influence pathologically relevant 

mechanisms, we next investigated whether PMF performed better when trained on combinations 

involving highly efficacious drugs. For each cell line, we rank-ordered the compounds by 

efficacy and compared the accuracy of PMF using only the top 52 individually efficacious drugs 

and PMF using only the bottom 52 individually efficacious drugs. 

PMF was slightly more accurate at predicting smaller subsets of the drug-efficacy matrix 

using only highly efficacious drugs rather than weakly efficacious combinations (Suppl. Fig. 1). 

However, on aggregate the differences were small, and PMF performance was largely 

independent of the individual efficacies of the starting set outside of this edge case. More 

generally, we found that the most efficacious compounds neither led to the most efficacious 

combinations, nor were they the best at predicting the values of missing efficacies (Suppl. Fig. 

Figure 2. The area under the ROC curve (AUROC) of PMF is shown as the fraction hidden and 

efficacy cutoff vary on the 786-0 cell line, which is representative of all cell lines. The efficacy cutoff 

describes the efficacy at which a drug-drug combination is considered active, with combination 

efficacy defined as 100 minus the percent growth as described in the standard NCI-60 testing 

protocol [1]. As the fraction hidden decreases, the performance of the model remains high until it 

drops sharply at 70% hidden and performs with similar accuracy regardless of the efficacy cutoff, 

decaying to random guesses when the full matrix is hidden. The smooth surface indicates PMF 

reproduces all elements with equal accuracy and is not heavily affected by outliers. 
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1). In fact, individual drug identities did not greatly affect the accuracy of the prediction. We 

generated an occupancy matrix by randomly selecting 10% of the elements in the combination 

efficacy matrix. We then randomly shuffled the identities of the drugs while keeping the 

occupancy matrix static. Repeating this 1000 times for 1000 different occupancy matrices, we 

found PMF predicted the missing values of each matrix with a mean squared error of 0.938+/-

0.0145, and thus performed equally well regardless of the individual drug identities for a given 

occupancy matrix. 

 

Graph topology’s influence on PMF performance 

The combination efficacy matrix describes an undirected graph in which the N drugs are 

nodes and the edges represent two-drug combinations. The challenge of PMF is to reconstruct 

the fully connected graph from a seed network. By using different algorithms for selecting drug 

combinations for the training set, we investigated how seed network topology influences 

prediction accuracy. The method described above, where seed drug combinations are selected 

randomly and independently, results in an Erdős-Réyni graph [15] that has a Poisson degree 

distribution [16].  

An extension of the Erdős-Réyni graph is the Watts-Strogatz model [17]. This method is 

motivated by the observation that real networks often have the Small-World Property [18] and 

high clustering, and it generates random distributions following these ideas. The Watts-Strogatz 

graph is generated by attaching each node to its nearest 𝑘 neighbors, resulting in a regular lattice 

structure. Each edge is then randomly reassigned with probability β. When β is 0, no changes are 

accepted, and the method preserves the original lattice. As β increases, more links will be 

randomly assigned, and as β approaches 1, all links will be reassigned, resulting in a completely 

random Erdős-Réyni network. Intermediate values of β result in small-world networks of low 

diameter [16]. 

When training data was arranged in a Watts-Strogatz model topology, the performance of 

PMF increased with β (Fig. 3). We attribute the poor performance near β=0 to the difficulty of 

predicting combination effects of drugs that are separated by large distances on the seed network. 

The adjacency matrix for a regular lattice is banded, with the unknown values comprising a 

contiguous block. Performance improves for values of β near ½, where the small-world property 

emerges, and peaks at β=1, the Erdős-Réyni network. Whereas the small-world Watts-Strogatz 

graph provides a short path between any pair of nodes, the Erdős-Réyni graph contains multiple 

paths, each carrying evidence for the value of the inferred combination efficacy. 

Many real-world networks do not follow a binomial or Poisson degree distribution, and 

instead follow a power law or scale-free distribution. In a scale-free network, the probability that 

a node has k edges is proportional to k-γ, where γ is a scaling exponent between 2 and 3. We 

explored whether a scale-free distribution in the input data influences the accuracy of the 

prediction. Using the hidden parameter model [19-21], we generated scale-free seed networks for 

training PMF. The method performed equally well for scale-free distributions for all values of γ, 

and predicted unknown values with accuracy comparable to the Watts-Strogatz method (Fig. 3).  

Designing a combination screen using the above-described graph topologies may not be 

experimentally convenient; instead, screeners are more likely to select a few well-known 

compounds and test them in combination with other compounds in a large library. The adjacency 

matrix of the seed graph in this approach has several rows/columns in which every value is 

known, while the large majority of have few or no known values (Fig. 3c). The corresponding 

graph has several fully connected hubs, with the remaining nodes having very few connections. 
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We explored the accuracy of PMF by using a hub method construction defined as follows: First, 

we ensured that every node had exactly one connection. Then, we selected nodes at random to be 

hubs, and ensured that each hub was fully connected. Finally, the remaining edges were 

randomly assigned in an Erdős-Réyni random fashion. We found the PMF performed stronger on 

hub method topologies than random Erdős-Réyni topologies when more than 80% of the 

network was hidden and the graph was sparse. Moreover, when training data was arranged in a 

hub model topology, the performance of PMF increased as the number of hubs increased (Fig. 

3). 

Thus, we found that the specific seed topology of the training data did not greatly affect 

the accuracy of the prediction in identifying synergistic drugs if the topology was a random 

Erdős-Réyni graph or had a binomial degree distribution, such as the Watts-Strogatz for large β. 

However, PMF did perform worse when edges were evenly distributed following the Watts-

Strogatz model for small values of β or when edges were distributed following a scale-free 

distribution. Moreover, we found that PMF was more accurate under hub topologies mirroring 

Figure 3. The AUROC of PMF in identifying efficacious combinations as the fraction of the data 

hidden increases is measured for a) Watts-Strogatz graphs, b) Barabasi-Albert scale-free graphs,    

and c) graphs generated by the Hub Method. Included in each plot is a sample of the adjacency 

matrix and topology of each network. Error bars represent standard deviation over 25 repeated trials 

at the same value of β. a) Watts-Strogatz graphs with varying β. When β is near zero, each drug has 

k connections with its nearest neighbors in a lattice structure, and the model performs worse than 

reproducing from an Erdős-Réyni distribution of equivalent size. As β approaches 1 and the degree 

distribution of the graph converges to a similar Poisson Distribution of an Erdős-Réyni graph, the 

accuracy of the predictions begins to approach the level of accuracy seen with purely random 

topologies. b) Scale-free seed networks perform similarly, regardless of scaling exponent. On 

aggregate, scale-free graphs perform similarly for all values of γ, and slightly underperform compared 

to Erdős-Réyni topologies. c) Graphs generated using the hub method with random hubs produce 

more accurate predictions than other graph types. When most data are hidden, error and standard 

deviation of the prediction decrease as the number of hubs increases. 
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real drug combination assays when more than 80% of the network was hidden, which is exactly 

the region of interest if we want to test as few combinations as possible. 

PMF as a tool to guide combination screening 

In vitro phenotypic-based screens have several benefits for drug discovery, such as not 

needing to know the molecular target of a disease and being less restricted by hypotheses [22]. 

However, throughput can be low in such assays, and increasing the number of compounds to be 

screened causes experimental effort and cost to rise exponentially. PMF may help combat this 

issue by guiding combination screens through iterative prediction and testing in an active 

learning scheme.  

We simulated PMF being used in an active learning experimental design as follows. First, 

we created a random Erdős-Réyni graph topology with 10% of the total combinations known. 

Then, we used PMF to reproduce the entire combination efficacy matrix and identified the top 

5% greatest efficacies as predicted by PMF. We then “tested” these identified efficacious 

combinations by adding the actual values of the efficacies to the list of known combinations, and 

then repeated the procedure to discover the next 5%, until the entire matrix is recovered.  

PMF-guided screens identified efficacious combinations much more efficiently than naïve 

random tests (Fig. 4). In our simulated experiment, PMF identified efficacious combinations at 

three times the rate of random choice and identified as much as 95% of all highly efficacious 

combinations while only testing 50% of all available combinations. This finding was consistent 

across cell lines and was not sensitive to the details of the starting point. Our results suggest that 

screeners may be able to test a small number of relevant combinations of direct interest and 

Figure 4. The performance of PMF in a proposed experimental design to predict drug combinations 

with efficacy greater than 70 is plotted in orange and is compared against random choice plotted in 

black. Both the AUC of PMF’s predictions in blue as well as the percentage of known efficacious drugs 

with efficacy greater than 70 are plotted against the known fraction of the drug-drug efficacy matrix. 

The experiment following random choice takes a random sample of the graph, resulting in a linear 

relationship between the amount of the drug-synergy matrix known and the amount of known 

synergistic drugs. As the procedure described above is repeated, PMF identifies more than 95% of the 

most efficacious drugs while only knowing 50% of the full drug efficacy matrix, much greater than 

random choice. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442470doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442470


8 
 

obtain the remaining synergistic combinations following a PMF-guided design. Future studies 

could fruitfully explore this issue further by optimizing PMF-guided screens as well as 

investigating its accuracy applied in a physical assay experiment. 

Throughout the simulated experiment, we monitored the performance of PMF as 

measured by AUROC (Fig. 4). The dip in AUROC observed around the fourth step of the 

simulated experiment may be due to bias introduced by the active learning. Efficacious 

combinations are not uniformly distributed across all drugs, and indeed a small subset of drugs is 

likely to contribute to many of the efficacious combinations. As the experiment progresses, PMF 

preferentially selects combinations from an efficacious minority of the nodes, mirroring the 

construction of a scale-free graph. PMF performs worse on scale-free graphs compared to Erdős-

Réyni graphs (Fig. 3), causing the accuracy to decrease as nodes are preferentially tested, and 

then increase as these nodes are saturated and the rest of the matrix is tested. Future studies 

might investigate ways to counteract this drop in error by using a more complex method than 

simply testing the top 5% most efficacious combinations as predicted by PMF. 

 

PMF predicts efficacy, but not synergy 

The desired output of most phenotypic combination screens is an efficacious and non-

toxic combination; however, de novo development of combination therapeutics will benefit from 

identifying synergistic drug combinations, whether or not they are efficacious. For example, two 

drugs that individually have no efficacy may have a moderate effect in combination. Although 

such a combination may not be clinically useful, it carries structure and pathway information that 

may serve as the starting point for rational development of combination therapeutics.   

PMF was able to recover missing values much less accurately when predicting synergy rather 

than efficacy. Just as with efficacies (Fig. 1), PMF recovered training data to arbitrary precision 

(Fig. 5a), but it did not recover test data well, unless it had a sufficiently large training set (i.e., 

small fraction of data hidden) (Fig. 5b-c). While the accuracy of PMF on predicting synergy was 

much weaker than PMF predicting efficacy, we still found that the model is robust and 

performed well in cases where 50-70% of the total matrix was known. 

This stark decrease in accuracy and predictive power may result from the lopsided 

definition of synergy. The ComboScore of each drug combination represents the difference 

between the observed effect of the combination and the expected effect assuming each drug acts 

independently. Because the upper bound on efficacy is the same for individual drugs and 

combinations, a combination of highly efficacious drugs cannot have a high ComboScore, even 

if it has optimal efficacy. Similarly, combinations with identical efficacies may have different 

ComboScores, depending on the efficacies of the individual drugs used in the combinations. 

Thus, a low ComboScore reveals nothing about the efficacy of the combination, but a high 

ComboScore indicates the combination’s component drugs individually have low efficacy 

(Suppl. Fig. 2). As ComboScores are calculated from individual and combination efficacies, one 

can still use PMF to predict combination efficacies, and use these to calculate ComboScores.  

 

Conclusion 

We have shown that PMF can accurately impute missing values into the drug 

combination efficacy matrix for a screen, and that the performance of PMF does not depend on 

the efficacies of the drugs being tested. We further showed that PMF performs best when the 

input drug combination network has an Erdős-Réyni topology. Finally, we used simulated 
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experiments to demonstrate that alternating PMF inference with experiments can efficiently 

identify the most efficacious two-drug combinations in a phenotypic screen.  

There have been many other attempts at predicting the effects of drug combinations, and those 

that perform best include additional data, such as chemical structures, target profiles, or OMICS 

data[23-25]. Our method is simpler by comparison, but it provides a baseline of performance 

against which more complicated prediction methods may be assessed. Indeed, not relying on 

additional information endows our method with flexibility: Instead of predicting the effects of 

combinations of drugs, it can be used to predict the effects of combinations of combinations, and 

we have no reason to believe that it will perform worse on unannotated compounds. On the 

contrary, our method may contribute to identifying mechanisms of action for novel compounds. 

The very ability of PMF to predict efficacies of combinations points to hidden mechanistic 

similarities within the set of compounds. By interpreting the PMF in terms of underlying 

biochemistry, we may gain insight into the nature of disease. 
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Figure 5. Similar to Fig. 1, the mean-squared error of PMF in recovering combination synergy of a) 

known, b) hidden, and c) all elements is plotted against the fraction of hidden data. In all panels, the 

shaded area represents the standard deviation of the mean-squared error over 25 trials across all cell 

lines. Once again, PMF recovers all known data to arbitrary precision. PMF performs with much less 

accuracy when predicting ComboScores rather than efficacies (Fig. 1). Error is much greater and more 

uncertain overall in hidden indices and thus across all indices. 
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