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Abstract 15 

Social interactions between animals can provide many benefits, including the ability to gain useful 16 

environmental information through social learning. However, these social contacts can also facilitate 17 

the transmission of infectious diseases through a population. Animals engaging in social interactions 18 

must therefore face a trade-off between the potential informational benefits and the risk of 19 

acquiring disease. In order to understand how this trade-off can influence animal sociality, it is 20 

necessary to quantify the effects of different social structures on individuals’ likelihood of acquiring 21 

information versus infection Theoretical models have suggested that modular social networks, 22 

associated with the formation of groups or sub-groups, can slow spread of infection by trapping it 23 
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within particular groups. However these social structures will not necessarily impact the spread of 24 

information in the same way if its transmission is considered as a “complex contagion”, e.g. through 25 

individuals copying the majority (conformist learning). Here we use simulation models to 26 

demonstrate that modular networks can promote the spread of information relative to the spread of 27 

infection, but only when the network is fragmented and group sizes are small. We show that the 28 

difference in transmission between information and disease is maximised for more well-connected 29 

social networks when the likelihood of transmission is intermediate. Our results have important 30 

implications for understanding the selective pressures operating on the social structure of animal 31 

societies, revealing that highly fragmented networks such as those formed in fission-fusion social 32 

groups and multilevel societies can be effective in modulating the infection-information trade-off for 33 

individuals within them.   34 

Key words: social network, infectious disease, conformist learning, social learning rule, 35 

transmissibility  36 
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Significance statement 50 

Risk of infection is commonly regarded as one of the costs of animal social behaviours, while the 51 

potential for acquiring useful information is seen as a benefit. Balancing this risk of infection with the 52 

potential to gain useful information is one of the key trade-offs facing animals that engage in social 53 

interactions. In order to better understand this trade-off, it is necessary to quantify how different 54 

social structures can promote access to useful information while minimising risk of infection.  We 55 

used simulations of disease and information spread to examine how group sizes and social network 56 

fragmentation influences both these transmission processes. Our models find that more subdivided 57 

networks slow the spread of disease far more than infection, but only group sizes are small. Our 58 

results demonstrate that showing that fragmented social structures can be more effective in 59 

balancing the infection-information trade-off for individuals within them.   60 

  61 
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Introduction 62 

 Most animals engage in some form of social interaction (Krause et al. 2002; Frank 2007; 63 

Clutton-Brock 2016). These interactions frequently provide opportunity for gaining social 64 

information (Danchin et al. 2004; Laland 2004; McGregor 2005; Allen et al. 2013; Aplin et al. 2015), 65 

whether it be the location of new food sources (Aplin et al. 2012; Kendal et al. 2015; Berdahl et al. 66 

2018; Nöbel et al. 2018) or predation risk (Beauchamp et al. 2012; Crane and Ferrari 2013; Frechette 67 

et al. 2014). However, interacting with others can also be costly, with one of the primary costs being 68 

the risk of infection with pathogens or parasites (Daszak et al. 2000; Stattner and Vidot 2011). 69 

Balancing risk of infection with the potential to gain useful information is therefore one of the key 70 

trade-offs facing animals that engage in social interactions (Evans et al. 2020; Romano et al. 2020). In 71 

order to better understand this trade-off, it is necessary to quantify how different social structures 72 

can promote access to useful information while minimising risk of infection (Evans et al. 2020; Firth 73 

2020; Romano et al. 2020). Individuals occupying particular positions in these social structures can 74 

have higher fitness (Cameron et al. 2009; Wey et al. 2013) and certain social structures can also help 75 

maximise the benefits of sociality for their members, promoting the persistence of social units (Ilany 76 

and Akcay 2016; Kramer and Meunier 2019). Therefore social behaviours that influence emergent 77 

social structures will be target for selection, and finding the aspects of sociality that promote the 78 

spread of disease or information represents an important advance that contributes to our 79 

understanding of social evolution. 80 

 Animal social systems vary widely among species (Krause et al. 2002). Social networks offer a 81 

useful toolkit to capture and quantify this diversity (Krause et al. 2007; Wey et al. 2008; Pinter-82 

Wollman et al. 2014), and can help distinguish species that, for example, live in multi-level societies 83 

(VanderWaal et al. 2014; Cantor et al. 2015; Papageorgiou et al. 2019), stable social groups 84 

(Weinrich 1991; Wey et al. 2013; Shizuka et al. 2014), fission-fusion groups (Kerth and Konig 1999; 85 

Couzin and Laidre 2009; Silk et al. 2014), or whose interactions and associations are more 86 

constrained by other factors such as shared space or resource use (Davis et al. 2015; Spiegel et al. 87 
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2016; Evans and Morand-Ferron 2019). Social network structure plays a critical role in governing 88 

both pathogen and information transmission (Aplin et al. 2012; Godfrey 2013; Webster et al. 2013; 89 

Silk et al. 2017; Evans et al. 2020). For example, variability in the connectedness of individuals can 90 

drive a superspreader effect in infectious diseases, causing more explosive outbreaks (Lloyd-Smith et 91 

al. 2005). Global properties of the network such as the number (or density) of connections and how 92 

these are distributed are also important. The efficiency of information transfer is maximised when 93 

social networks show intermediate levels of subdivision into different modules or communities 94 

(Romano et al. 2018). Many animal social networks possess such modular structures (Wey et al. 95 

2008), especially species that form relatively stable social groups (Drewe et al. 2009; Weber et al. 96 

2013). Consequently, the role of both community structure and how connected these communities 97 

are – their modularity – are likely to be important in governing any differences between information 98 

and disease transmission in animal societies. 99 

There are often important differences in how infection and information spread through a 100 

network. Infection is generally considered a simple contagion (Moore and Newman 2000); the 101 

likelihood of becoming infected will depend predominantly on the number of relevant contacts with 102 

infected individuals, and the duration of these contacts (Godfrey et al. 2009). In contrast, 103 

information can often be considered a complex contagion (Macy 1991; Centola 2010; Firth 2020); 104 

individuals decide on whether to act on the information acquired and so may use different social 105 

learning strategies that change how information spreads (Laland 2004; Kendal et al. 2018). For 106 

example, they might accept information only from certain individuals (e.g. Kavaliers et al. 2005; van 107 

de Waal et al. 2010), or be much more likely to use it if a set proportion of their contacts behave in 108 

that way(Danchin et al. 2018). The latter can result in conformist social learning, which has been 109 

demonstrated in taxonomically diverse animal societies (van de Waal et al. 2013; Aplin et al. 2015; 110 

Danchin et al. 2018).  111 

Because of the differences in how they spread, modularity shapes the transmission of 112 

infection and information in different ways (Nematzadeh et al. 2014; Sah et al. 2017a; Evans et al. 113 
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2020). While modular networks can promote the spread of infection within particular groups, they 114 

tend to trap infection within these groups, slowing down how quickly disease can spread through 115 

the population as a whole (Sah et al. 2017a). The impact of modular structure on disease outbreaks 116 

is greatest when the modularity of these subdivisions is high (i.e. different groups have relatively few 117 

contacts between them; Salathé and Jones 2010b; Sah et al. 2017a), especially when transmissibility 118 

is low so that infection is unlikely through occasional or rare contacts (Griffin and Nunn 2012; Sah et 119 

al. 2017a; Rozins et al. 2018). In contrast, when information transmission is a complex contagion, 120 

modular networks can promote the global spread of information, especially at intermediate 121 

modularities (i.e. when contacts between groups or modules are infrequent but not rare) due to 122 

strong social reinforcement within groups (Nematzadeh et al. 2014). As a result, modular networks 123 

may provide one route to promote the spread of information through a population 124 

disproportionately to the spread of infection (Evans et al. 2020). However, there are many other 125 

aspects of the structure of modular networks that might also shape this pattern and have been less 126 

well studied.  127 

Social group (or sub-group) size, which is highly variable across and within animal societies, 128 

represents one such trait that could also impact how network structure shapes transmission 129 

dynamics (Côté and Poulinb 1995; Nunn et al. 2015). Sah et al. (2017a) showed that modular 130 

networks caused the greatest reduction in epidemic spread when network fragmentation was high, 131 

i.e. networks were composed of many smaller groups. This suggests that the formation of smaller 132 

social groups is more effective in reducing infectious disease transmission. However, different levels 133 

of network fragmentation may also change the optimum modularity for information transmission, 134 

which depends on high clustering of connections within groups to promote the spread of 135 

information in the first place (Nematzadeh et al. 2014). For example, small modules or sub-groups 136 

that contain many friends of friends may help promote the spread of information while limiting 137 

infectious disease transmission if between group contacts are rare. This could be especially 138 

important as the impact of modularity on infection transmission is non-linear, with no substantial 139 
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effect on disease spread when modularity is below a certain value (Sah et al. 2017a). Thus, if the 140 

optimal level separation between groups for information spread is too far below the level at which a 141 

modular network structure begins to protect effectively against the spread of infectious disease then 142 

the benefits are lost. 143 

We use simulation models to examine how social group size (or network fragmentation) interacts 144 

with modularity (the strength of the subdivision of a network into groups) to determine differences 145 

in the speed of social information spread and infectious disease transmission. We treat the spread of 146 

information using a conformist model in which the relationship between the likelihood of 147 

acquiring/using information and proportion of informed contacts is sigmoidal while infection risk is 148 

fixed for each contact with an infected individual. We compare the rate of spread of infection and 149 

information through social networks that vary in both their modularity and the size of groups making 150 

up the modular structure of the network, for a range of different levels of social connectedness  and 151 

transmissibility values (how likely a disease or a piece of information is to be transmitted). We 152 

expect that modular networks would promote the transmission of information relative to the spread 153 

of infection, especially when transmissibility is low. However, we anticipate that the extent of this 154 

benefit may also be shaped by the number and size of social groups.   155 

  156 
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Methods 157 

Simulation objectives 158 

We generated simple networks with different edge density (the social connectedness of individuals), 159 

group size and modularity and used them to examine how these properties affect the transmission 160 

rates of information and disease, at varying levels of transmissibility. 161 

Simulation summary 162 

Each simulation consisted of two main steps. First we generated random networks which were used 163 

to select parameters controlling disease and information spread. We then altered these random 164 

networks to create modular networks, in which we compared relative transmission speeds.  165 

 We generated a random network of 200 nodes (i.e. individuals) with a particular edge density 166 

(proportion of potential pairs of individuals in the network who were connected; Table 1). We then  167 

simulated the spread of a disease through this network, starting from a randomly selected 168 

individual, using a susceptible-infected (SI) model with the transmissibility of that disease in that 169 

network derived from an adjusted, per time interval R0 (Table 1).  Disease simulation was then 170 

carried out in the random network 50 times, each time starting with a different randomly selected 171 

individual. For each simulation we recorded the number of timesteps it took a disease to infect 75% 172 

of the individuals in that network. , We used the distribution of timesteps taken to reach this 75% 173 

threshold to determine the value of a scaling parameter γ (see below) so that information spread at 174 

a similar speed to disease in the random network. We simulated information spread using this 175 

parameter in the random network 50 times, starting with a random node, and recorded the average 176 

time taken for 75% of individuals to be informed.  177 

We then rewired the edges of the random network to produce new modular networks with the 178 

same edge density but a particular network modularity ,with individuals subdivided into groups of a 179 

particular size. This led to a total of 18 modular networks being derived from each random network, 180 
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one for every combination of modularity and group size (table 1).  We simulated the spread of 181 

disease and information through these new modular networks and recorded the average time each 182 

process took to infect or inform 75% of nodes in the rewired networks.  We then compared the 183 

difference in mean time taken for information and infection to reach the 75% threshold in that 184 

particular modular network. We also compared the transmission rates through a modular network 185 

to those through the random network from which it was derived, to establish the relative effect of 186 

modularity and group sizes on the transmission speeds of the two spreading processes.  187 

The values of network density, transmissibility, group size and network modularity tested led to a 188 

total of 810 parameter combinations (table 1), with each combination repeated 20 times. We 189 

conducted all simulations  in R 4.0.2  (R Development Core Team 2020). R code is provided in the 190 

Supplementary Materials. See supplementary video 1 for a visualisation of these simulations. 191 

 192 

Table 1: Summary of the four parameters used in the simulations 193 

Parameter Description N. values Values 

Network density 

Proportion of potential connections existing in the 
network.  
Higher densities result in more edges in the initial random 
network and in derived modular networks. 

9 

0.02, 0.03, 0.04, 0.05, 0.06, 
0.07, 0.08, 0.09, 0.1 

R0 

Basic reproduction number, infectiousness of disease.  
Used to derive values of    (transmission probability in a 
particular random network) and   (scaling parameter to 
ensure information spreads at the same rate as disease in 
that random network). 

5 

1.1, 1.25 ,1.5 ,2 , 3 

Group size 
Social group size.  
Controls the size of social groups in the modular networks 
derived from a random network. 

6 
5, 8, 10, 20, 25, 40 

Network 
modularity 

Strength of division of a network into modules.  
Larger values usually mean less intergroup edges in the 
modular networks derived from a random network. 

3 
0.4, 0.6, 0.8 

 194 

 195 
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Detailed methods 196 

Spread-simulation overview 197 

We here summarise the methods used to simulate information and disease transmission throughout 198 

these simulations. We modelled both disease and information transmission as simple susceptible-199 

infected (SI) models. Nodes were therefore either susceptible (uninfected/uninformed) or infected 200 

(informed), with no possibility for recovery from this state.  201 

Disease-spread simulation 202 

When simulating a disease spread, an individual’s likelihood of infection will depend on the 203 

infectiousness of the disease and how many of their contacts are infected. We begin by infecting a 204 

random node (i.e. individual) in the network. In each subsequent timestep, whether a susceptible 205 

node will become infected is determined by a binomial trial, with the probability of infection for a 206 

node v being: 207 

  (   )| ( )   | 

Where | ( )    | is the number of adjacent nodes to vertex v ( ( )) that are infected.   is a per 208 

timestep transmission probability per connection for a particular random network (see below). The 209 

likelihood of a node becoming infected therefore increases as the number of infected connections 210 

increases (See supplementary figure 1a).  211 

 Information-spread simulation 212 

We use a conformist learning rule to simulate the spread of information. Under this rule, an 213 

individual’s likelihood of accepting the information will depend on a scaling parameter and the 214 

proportion of contacts who have already accepted the information, with the probability of accepting 215 

increasing once 50% of contacts have accepted the information. The likelihood of accepting the 216 

information based on the proportion of contacts who have accepted the information is therefore a 217 

sigmoidal function, described in the equation below (see Fig. S1). A random node starts with the 218 

information, and in each subsequent timestep whether a susceptible node v will accept the 219 
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information and become informed is based on a binomial trial, with the probability of accepting the 220 

information being: 221 

    
     

     (   
 
 
 (
| ( )     |
  ( )

    ))
  

Where   is a scaling parameter (see below for parameter selection process), | ( )    | is the 222 

number of adjacent nodes that are informed and   ( ) is the node’s degree.   is the base probability 223 

of accepting information and   is the steepness of the sigmoidal function (See supplementary figure 224 

1b). Based on our exploration of parameter values to match the rate of spread of information to the 225 

rate of disease spread in the random networks (see below), we fixed   at 0.001 and   at 10 in all 226 

simulations. 227 

 228 

Random network generation and parameter selection 229 

We generated random networks consisting of 200 nodes using the igraph’s implementation of the 230 

Erdos-Renyi model (Erdős and Rényi ; Csardi and Nepusz 2006). Probability of edge formation 231 

between nodes was determined by the value of the density parameter under investigation. 232 

Networks were binary (i.e. individuals were connected or not) and undirected (i.e. either both or 233 

neither individual were connected to each other). We then modelled the spread of a disease of each 234 

value of transmissibility, R0 (see table 1), through this random network. This allowed us to establish a 235 

baseline disease spread speed in a random network of this density, which could later be compared 236 

to the spread speed in modular networks. We also used this spread of disease to choose parameters 237 

allowing information to spread at the same rate.  238 

Disease spread parameter selection 239 

To simulate the spread of disease through a network, we converted a chosen per-time period R0 to a 240 

transmission probability for the random network under investigation. First, we calculated r, the 241 

transmission probability for the period of infection t in that network, where t is the time period over 242 
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which an R0 is calculated, which was fixed at 100. For example, for an R0 of 3, an individual should on 243 

average infect 3 other individuals in this network over 100 timesteps.  244 

   
  

 
〈  〉  〈 〉
〈 〉

⁄
 

Here 〈 〉 is the average degree of all nodes in the network and 〈  〉 is the average squared degree of 245 

all nodes in the network (Newman 2008). We then used the resulting value of r to calculate  , the 246 

per timestep transmission probability per connection for this R0 in this network. 247 

     (   )(   ) 

We used this value of   when simulating disease spread through the random network under 248 

investigation and for all modular networks derived from that initial random network, for this value of 249 

R0 (Newman 2008).  250 

Learning rule parameter selection 251 

Having established the value of   that corresponded to a value of R0 in the current random network, 252 

we then found the equivalent parameter value that lead to a similar transmissibility for information. 253 

To do this, we first simulated the spread of disease through the random network 50 times, recording 254 

the number of timesteps it took to infect 75% of the nodes. We used this distribution as a baseline 255 

with which to compare the spread of information. We searched for a value of a scaling parameter 256 

that governed the speed of information transmission, γ, which would produce a similar distribution 257 

of information spread (time to inform 75% of nodes) as our infection baseline. When generating a 258 

distribution, information spread through the random network was simulated 50 times with a 259 

potential value of γ, using the learning rule described below. We then compared the distribution of 260 

timesteps from these 50 simulations of information spread to that of the 50 simulations of the 261 

spread of disease by calculating the Bhattacharya distance (Bhattacharyya 1946) between the two 262 

distributions, where smaller values indicate a greater overlap between them. We optimised γ so as 263 

to minimise the Bhattacharya distance between the distribution of disease and information spread 264 
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times using R’s “optimise” function (Nelder and Mead 1965). Parameter optimisation was run 5 265 

times so as to avoid being trapped in local optima based on potential combinations of starting nodes 266 

and potential γ. From these five parameter searches, we selected the value of γ that produced the 267 

smallest Bhattacharya distance, (i.e. resulted in information spreading at a similar speed to disease) 268 

and recorded the mean time taken for each to spread to 75% of individuals in the network.  269 

Modular network generation and comparisons 270 

We then altered the network to test how modularity and group sizes affected these spreading 271 

processes. For each random network we generated 18 modular networks, varying in group size and 272 

modularity.  The random network was rewired to generate community structure with the desired 273 

group size and relative modularity (Qrel). Qrel adjusts the modularity calculated by the maximum 274 

obtainable modularity with the same number of nodes and edges in the network (Sah et al. 2017b). 275 

The algorithm first assigns every node to a group, with the number of groups depending on the 276 

desired group size. It then rewires the network one edge at a time until the relative network 277 

modularity reaches its target. See Figure 1 for an example of the modular networks generated for 278 

different densities and group sizes. 279 

  280 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442253
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 281 

Figure 1: Examples of the networks at different levels of network density (row), rewired to different 282 
values of network modularity (column) and two different group sizes (5 and 40) for the same 283 
population size (200). 284 
 285 

 286 

We then simulated information and disease spread through each of these new modular networks 50 287 

times, using the parameters β and γ derived from the random networks. We recorded the mean 288 

time it took for 75% of nodes to become infected and the mean time it took for 75% of nodes to 289 

become informed in each modular network, with a cut off if one or both of the spreading processes 290 

failed to reach this threshold after 3500 timesteps. See supplementary video 1 for an example of 291 

simulations in both random and modular networks of varying densities.  292 
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Results 293 

Summary of main results: the importance of modularity and group size 294 

Speed of transmission of both disease and information was reduced by modular network structure, 295 

but mainly when group sizes were smaller and so networks more fragmented (Fig. 2). Higher levels 296 

of transmissibility always led to faster spread of disease and information, in all types of modular 297 

networks. However, more modular and fragmented networks slowed the transmission of infection 298 

far more than information (Figs. 2 and 3). Additionally, within these more fragmented, highly 299 

modular networks, a higher density of connections led to an increasing gap between the time take 300 

for 75% of individuals to become infected and informed (Fig. 3). Qualitatively identical patterns were 301 

apparent when considering the difference in spread speeds between modular and random networks 302 

(Fig. 4); both information and disease spread more slowly in modular networks than in random 303 

networks. Modular networks resulted in a greater reduction of disease transmission speed than 304 

information transmission speed when compared to random networks, under most conditions. 305 

 306 

 307 

Figure 2: Overview of time taken for disease (red) and information spread (blue) to infect 75% of 308 
nodes in a network. Smaller datapoints are raw data while large datapoints are means. Results are 309 
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shown for different levels of network modularity (column), density (row) and R0 (symbol and colour). 310 
Note that, for illustrative purposes, we include only a subset of group sizes and other parameter 311 
values in this figure, while the full dataset is visualised in supplementary figure 2. 312 
 313 

 314 

The impact of network modularity and fragmentation on transmission rate 315 

In general, it took longer for 75% of the population to become infected and informed in more 316 

modular networks (Qrel of 0.6 and 0.8), but only when group sizes were small and more so when 317 

transmissibility was lower and network density higher (Fig. 2, Fig. S2).  When transmissibility and 318 

modularity were high (R0=3 and Qrel≥0.6) then the time taken for 75% of the population to be 319 

informed remained effectively unchanged from that in random networks, while time taken for 75% 320 

to be infected increased substantially compared with the random networks (Fig. 4). With lower 321 

modularity (Qrel of 0.4), only the smallest group sizes were able to slow transmission, and only when 322 

transmissibility was very low. There were 19 dense, highly modular networks with small group sizes 323 

where disease entirely failed to spread within 3500 timesteps when R0 was low (1.1 or 1.25). 324 

 325 

 326 

Figure 3: Effect of network density on difference in time taken for disease and information spread to 327 

infect 75% of nodes in a network with small groups. The Y-axis shows the time taken for disease to 328 

infect 75% of nodes subtracted from the time taken for information to inform 75% of nodes. Positive 329 

values on the Y-axis therefore indicate information taking longer to reach this level of infection than 330 
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disease, while negative values on the Y-axis indicate disease taking longer. Smaller datapoints are 331 

raw data while large datapoints are means. Results are shown for different levels of R0, network 332 

modularity and density, with group size fixed at 5 and population size fixed at 200. Means for 333 

parameter combinations where  334 

 335 

 336 

The Influence of network density and transmissibility on the gap between information and infection 337 

spread 338 

The time difference between 75% of the population becoming informed via conformist learning and 339 

75% being infected increased with network density (Fig. 3), although the nature of this relationship 340 

depended on both network modularity and transmissibility. When transmissibility was higher, the 341 

difference between the rate of information spread and rate of disease spread increased consistently 342 

as the modularity of the network increased (Fig 5).  The extent of the increase in difference 343 

depended on the density of connections in the network. However, when transmissibility was lower 344 

the relationship between modularity and difference in transmission speeds was more complicated. 345 

First, for networks with intermediate modularities (Qrel of 0.4 or 0.6), the difference in the time 346 

taken for 75% of the population to be reached by the two transmission processes showed a (slightly) 347 

humped relationship, with the difference in transmission rate being minimised (i.e. close to zero) at 348 

low- to intermediate network densities, with disease spreading faster than information in some 349 

repeats of the simulation. Second, at high network densities the difference in transmission rates was 350 

higher for intermediate modularities (Qrel=0.6) than high modularities (Qrel=0.8), although it should 351 

be noted here that for high modularities disease failed to infect 75% of the population in some runs 352 

(see above). Consequently, this result should be seen as a lack of evidence of a difference between 353 

intermediate and high modularities rather than a quantitative difference between the two.  354 

 355 

For networks with intermediate or high modularity the difference in the rate of transmission was 356 

maximised for intermediate values of transmissibility (Fig. 5), resulting in minima at R0=1.5 for 357 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442253
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

networks with Qrel=0.6 (intermediate modularity) and R0=2 for networks with Qrel=0.8 (high 358 

modularity) among the parameter values we tested. 359 

 360 

  361 

 362 

Figure 4: Overview of the difference in time taken for disease (red) and information spread (blue) to 363 
infect 75% of nodes in a network between modular and random networks. The Y-axis shows the time 364 
taken for a transmission process to reach 75% of nodes in a random network subtracted from the 365 
time taken for a transmission process to reach 75% of nodes in a modular network derived from that 366 
random network. Positive values therefore indicate slower spreading in modular networks, negative 367 
values faster spreading. Smaller datapoints are raw data while large datapoints are means. Results 368 
are shown for different levels of network modularity (column), density (row) and R0 (symbol and 369 
colour). Note that we include only a subset of group sizes and other parameter values in this figure, 370 
for a figure showing full dataset see supplementary figure 3. 371 
  372 
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 373 

Figure 5: Effect of transmissibility on the difference in time taken for disease and information spread 374 

to infect 75% of nodes in a network with small groups. The Y-axis shows the time taken for disease to 375 

infect 75% of nodes subtracted from the time taken for information to inform 75% of nodes. Positive 376 

values on the Y-axis therefore indicate information taking longer to reach this level of infection than 377 

disease, while negative values on the Y-axis indicate disease taking longer. Smaller datapoints are 378 

raw data while large datapoints are means. Results are shown for different levels of network 379 

modularity, with network density fixed at 0.05, group size fixed at 5 and population size fixed at 200. 380 

  381 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442253
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Discussion 382 

We show that both modularity and group size are important in mediating the balance 383 

between pathogen and information spread when individuals use conformist social learning. In our 384 

simulations it took longer for three quarters of individuals to become either informed or infected in 385 

modular networks with small group sizes, but not when group sizes were larger. In more fragmented 386 

modular networks, the rate of information transmission by conformist learning slowed less than that 387 

of infectious disease, resulting in information spreading faster than infection. Because the impact of 388 

network fragmentation was smaller, the rate of information transmission differed less between 389 

modular and random networks than the rate of disease transmission. 390 

Our simulations clearly demonstrate that modularity can, but does not always,  slow the rate 391 

of spread of infection, supporting the findings of previous work (Salathé and Jones 2010a; Griffin and 392 

Nunn 2012; Nunn et al. 2015; Sah et al. 2017b). Modularity decreased the rate of disease spread 393 

most when there was a higher density of network connections and the size of groups was smaller. 394 

The smaller impact of modularity at low network densities is likely because scarce opportunities for 395 

transmission in the network as a whole become a more limiting factor than which particular 396 

individuals are connected. The role of group size is similar to that found by Sah et al. (2017b), who 397 

showed that both modularity and network fragmentation are important in reducing outbreak size in 398 

modular networks. Our findings re-emphasise how size of groups is critical in shaping the role of 399 

modularity in epidemic dynamics. The impact of modularity on how quickly 75% of our simulated 400 

populations became infected was greatest when transmissibility was lower, as would be expected 401 

from previous research (Sah et al. 2017b; Rozins et al. 2018). For highly transmissible pathogens and 402 

intermediate modularities, even small group sizes were unable to meaningfully slow the spread of 403 

disease. 404 

We found similar general patterns for the spread of information via a conformist learning 405 

rule. However, while modularity and fragmentation affected information transfer in a similar 406 

direction to disease spread, modular networks did not slow down transmission of information as 407 
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much as the spread of infection compared with random networks. This was especially the case for 408 

networks with intermediate modularities and high densities. In general, we did not find support for 409 

modularity leading to an increase in the rate of information transmission in our models, contrary to 410 

some previous findings (Sah et al. 2017b; Romano et al. 2018). In our results, there was no 411 

consistent tendency for information to spread faster in modular networks than in random networks. 412 

However, at low network densities and intermediate modularities (Qrel of 0.4 or 0.6), some individual 413 

simulation runs found faster information spread in modular than random networks. It is possible, 414 

therefore, that modularity might facilitate faster information spread in our modelling framework in 415 

parameter space we did not explore in this study, such as a steeper threshold for conformist learning 416 

(González-Avella et al. 2011; Nematzadeh et al. 2014). In a previous study that included empirically 417 

collected primate networks, network efficiency (a proxy for how efficiently a network exchanges 418 

information) was shown to have a relatively weak relationship with modularity that typically peaked 419 

at smaller levels of modularity than those investigated here  (Romano et al. 2018). Together with our 420 

findings, this suggests that the fastest rate of information spread happens in these less modular 421 

networks, while more modular networks favour the rate of information transmission relative to the 422 

spread of infection.    423 

Conformist social learning has been reported in taxonomically diverse species (e.g. 424 

primates:van de Waal et al. 2013; birds: Aplin et al. 2015; insects: Danchin et al. 2018), and so the 425 

difference between information and infectious disease transmission shown in our models has 426 

ecological and evolutionary significance. Social groups with modular social structure and sufficiently 427 

small sub-groups will impede the transmission of infection while having much less impact on how 428 

quickly beneficial information spreads. The fact that the difference in information and disease 429 

spread is substantial only for small sub-groups may contribute to the evolution of hierarchical or 430 

multi-level social structures (Cantor et al. 2015; Grueter et al. 2020). In addition, our work suggests 431 

capacity for social structure and social learning rules to co-evolve. In species with social groups that 432 

have modular social structures (Nunn et al. 2015) such as fission-fusion societies (Lehmann et al. 433 
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2007; Ramos-Fernández and Morales 2014), we would predict conformist social learning to be more 434 

favoured than in species without these structures or sub-groupings, as network fragmentation is 435 

integral to maintaining higher rates of information spread. Finally, our findings will also be relevant 436 

to the spread of information directly related to infectious disease (Funk et al. 2009). When sub-437 

groups and small networks have intermediate modularity, information about the presence of 438 

disease will be able to spread faster than the infection itself, helping to enhance behavioural or 439 

social immunity (De Roode and Lefèvre 2012; Meunier 2015). The difference will be greatest when 440 

the density of connections in a group is higher, as might be expected in a social insect colony for 441 

example,  or when comparing smaller human communities (higher network fragmentation) to large 442 

cities (networks likely still modular but with much bigger groups). 443 

Our results also complement recent modelling and empirical research suggesting modular 444 

networks have minimal effect on the spread of social information (Cantor et al. 2021; Laker et al. 445 

2021). For example, Laker et al. (2021) showed that the transmission of novel foraging information 446 

was not impacted by the modularity of network structure in domestic fowl chicks Gallus gallus 447 

domesticus. If we assume conformist learning, our models show that for the modularities 448 

investigated in their study (Q=0.63-0.73), we would predict either no increase or a relatively small 449 

increase in the rate of learning, depending on how easy information is to acquire. The higher the 450 

likelihood of learning at each time-step, the less impact even small sub-groupings have on how 451 

quickly information spreads. However, information that spreads according to other social learning 452 

rules may respond differently to more modular social structures. 453 

There are a number of limitations to our current model that would benefit from further 454 

development. We have only considered binary, unweighted networks at each time-step (a social 455 

connection either exists or not). In many situations social connections will vary in strength between 456 

different individuals, which could influence the likelihood of transmission, especially of information 457 

(Valsecchi et al. 1996; Swaney et al. 2001). Similarly, we have only considered one type of social 458 

learning rule, while in reality individuals may use other rules (Kavaliers et al. 2005; Kendal et al. 459 
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2015; e.g. biasing learning towards kin or familiar individuals; Boogert et al. 2018) or a combination 460 

of multiple rules. A more comprehensive exploration that incorporates heterogeneity in how 461 

individuals learn would provide additional insight into how information spread might be influenced 462 

by group size and fragmentation. Our model also uses a static network, with no changes over time. It 463 

is likely that network dynamics will influence how information and infection spread through a 464 

population, with both transmission types potentially causing changes in network structure(Croft et 465 

al. 2011; Kulahci et al. 2018; Stockmaier et al. 2020). For example, individuals may be removed from 466 

the network due to infection, or the position of individuals within a network might be expected to 467 

change when they are infected (Lopes et al. 2016; Stockmaier et al. 2020) or become informed 468 

(Kulahci et al. 2018). Future models that incorporate these additional aspects of social structure are 469 

likely to provide further insights into the patterns demonstrated here.  470 

Overall, our research supports the idea that modular social structure can help mediate the 471 

trade-off between mitigating the spread of infection and enhancing the spread of useful information 472 

in animal groups (Evans et al. 2020). However, the extent of these differences in transmission is 473 

mediated by the size of groups and network density. We also demonstrate that conformist social 474 

learning has the potential to play an important role in helping information spread faster than disease 475 

in animal societies, especially in fission-fusion or hierarchical societies characterised by small 476 

subgroups. Overall, our results highlight the importance of considering network fragmentation in 477 

addition to modularity when studying the ecological consequences of animal social network 478 

structure and their implications for the evolution of sociality.   479 

 480 
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