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Abstract 18 

Background 19 

With advances in sequencing technology and decreasing costs, the number of 20 

bacteriophage genomes that have been sequenced has increased markedly in the last 21 

decade. 22 

Materials and Methods 23 

We developed an automated retrieval and analysis system for bacteriophage genomes, 24 

INPHARED (https://github.com/RyanCook94/inphared), that provides data in a consistent 25 

format. 26 

Results  27 

As of January 2021, 14,244 complete phage genomes have been sequenced.  The data set is 28 

dominated by phages that infect a small number of bacterial genera, with 75% of phages 29 

isolated only on 30 bacterial genera. There is further bias with significantly more lytic phage 30 

genomes than temperate within the database, resulting in ~54% of temperate phage 31 

genomes originating from just three host genera. Within phage genomes, putative antibiotic 32 

resistance genes were found in higher frequencies in temperate phages than lytic phages. 33 

Conclusion 34 

We provide a mechanism to reproducibly extract complete phage genomes and highlight 35 

some of the biases within this data, that underpins our current understanding of phage 36 

genomes.    37 

 38 
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Introduction 40 

Bacteriophages (hereafter phages), are viruses that specifically infect bacteria and are 41 

thought to be the most abundant biological entities in the biosphere (1). In the oceans they 42 

are important in diverting the flow of carbon into dissolved and particulate organic matter 43 

via the lysis of their hosts (1), or directly halting the fixation of CO2 carried out by their 44 

cyanobacterial hosts (2). In the human microbiome, it is becoming increasingly clear that 45 

phages play a role in a range of different diseases. Many recent studies have shown disease-46 

specific alterations to the gut virome community in both gastrointestinal and systemic 47 

conditions, including irritable bowel disease (3), AIDs (4), malnutrition (5), and diabetes (6). 48 

 49 

Phages alter the physiology of their hosts such that their bacterial hosts display increased 50 

virulence, a notable example being phage CTX into the genome of Vibrio cholerae, resulting 51 

in cholera (7). However, there are many cases where the expression of phage-encoded 52 

toxins cause an otherwise harmless commensal bacterium to convert into a pathogen, 53 

including multi-drug resistant ST11 strains of Pseudomonas aeruginosa (8, 9), and the Shiga-54 

toxin encoding Escherichia coli (10). As well as increasing the virulence of the host bacteria, 55 

phages can also utilise parts of their genomes known as auxiliary metabolic genes (AMGs), 56 

homologues of host metabolic genes, to modulate their hosts metabolism (11). 57 

 58 

Our understanding of how phages alter host metabolism has increased in conjunction with 59 

the number of phage genomes that have been sequenced, following sequencing of the first 60 

phage genome in 1977 (12). Since then, the number of phages that are isolated and the 61 

relative ease of high-throughput sequencing has led to a rapid increase in the number of 62 

sequenced bacteriophage genomes (13). The relatively simple nature of phage genomes 63 
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means that the vast majority of isolated phage genomes can be completely assembled using 64 

short-read next generation sequencing (14). The greater number of phage genomes 65 

available results in common analyses, including comparative genomic analyses (15, 16), 66 

taxonomic classification of phages (17–20), forming the basis of software to predict new 67 

phages (21–26), and as is often the first step in analysis of viromes, the comparison of 68 

sequences to a known database. 69 

 70 

To do all of the above requires a comprehensive set of complete phage genomes from 71 

cultured isolates that can be used to build databases for further analyses. It also raises the 72 

question of how many complete phage genomes are currently available. While this should 73 

be relatively trivial question to answer, it is not very simple to do so, as there is currently no 74 

such database of all complete phage genomes. Therefore, the aim of this work was to 75 

provide a reproducible and automated way to extract complete phage genomes from 76 

GenBank and identify general properties within the data and limitations. 77 

 78 

Materials and Methods 79 

Bacteriophage genomes were download using the “PHG” identifier along with minimum and 80 

maximum length cut-offs. Genomes were then filtered based on several parameters to 81 

identify complete and near complete phage genomes. This includes initial searching for the 82 

term “Complete” & “Genome” in the phage description, followed by “Complete” & 83 

(“Genome” or “Sequence”) & a genome length of greater than 10 kb. The list of genomes 84 

was then manually curated to identify obviously incomplete phage genomes, with the 85 

process on going. The accessions of these are then excluded in future iterations by the use 86 

of an exclusion list, which can be added to by the community via GitHub. Whilst this process 87 
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is not perfect, we thank numerous people that have identified genomes within this list that 88 

are obviously incomplete. The initial search term for downloading genomes was: esearch -89 

db nucleotide -query "gbdiv_PHG[prop]" | efilter -query "1417:800000 [SLEN] " | efetch -90 

format gb > $phage_db.gb. An exclusion list of phage genomes that are automatically called 91 

“complete”, yet when manually checked are not is continually being updated. 92 

 93 

After filtering, genes are called using Prokka with the –noanno flag, with a small number of 94 

phages using –gcode 15 (27, 28). Gene calling was repeated to provide consistency across all 95 

genomes, which is essential for comparative genomics. A database is provided so that this 96 

process does not continually have to be rerun and only new genomes are added. The 97 

original GenBank files are used to gather useful metadata including taxa and bacterial host, 98 

and the Prokka output files are used to gather data relating to genomic features. The 99 

gathered data are summarised in a tab-delimited file that includes the following: accession 100 

number, description of the phage genome, GenBank classification, genome length (bp), 101 

molGC (%), modification date, number of CDS, proportion of CDS on positive sense strand 102 

(%), proportion of CDS on negative sense strand (%), coding capacity (%), number of tRNAs, 103 

bacterial host, viral genus, viral sub-family, viral family, and the lowest viral taxa available 104 

(from genus, sub-family and family). Coding capacity was calculated by comparing the 105 

genome length to the sum length of all coding features within the Prokka output, and tRNAs 106 

were identified by the use of tRNA tag. Other outputs include a fasta file of all phage 107 

genomes, a MASH index for rapid comparison of new sequences, vConTACT2 input files, and 108 

various annotation files for IToL and vConTACT2. The vConTACT2 input files produced from 109 

the script were processed using vConTACT2 v0.9.13 with --rel-mode Diamond --db 'None' --110 
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pcs-mode MCL --vcs-mode ClusterONE --min-size 1 and the resultant network was visualised 111 

using Cytoscape v3.8.0 (29, 30). 112 

 113 

To identify genes indicative of a temperate lifestyle within genomes, we used a set of PFAM 114 

HMMs as described previously (31). If a genome encoded one of these genes, it was 115 

assumed to be temperate. Antimicrobial resistance genes (ARGs) and virulence factors were 116 

identified using Abricate with the resfinder and VFDB databases using 95% identity and 75% 117 

coverage cut-offs (32–34). 118 

 119 

The phylogeny of “jumbo-phages” was constructed from the amino acid sequence of the 120 

TerL protein, extracted from 313/314 of the “jumbo-phage” genomes. Sequences were 121 

queried against a database of proteins from non-“jumbo-phages” using Blastp and the top 122 

five hits were extracted (35) with redundant sequences being removed. Sequences were 123 

aligned with MAFFT, with a phylogenetic tree being produced using IQ-Tree with “-m WAG -124 

bb 1000” which was visualised using IToL (36–38). Additional information was overlaid using 125 

IToL templates that are generated via INPHARED. 126 

 127 

Rarefaction analysis was carried out for phage genomes from the top ten most common 128 

hosts (70% ID over 95% length) and species (95% ID over 95% length) using ClusterGenomes 129 

v5.1 (39). An additional set of these genomes pooled together was included. Rarefaction 130 

curves and species richness estimates were produced using Vegan in R (40, 41). 131 

 132 
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All data from January 2021 is available at Figshare 133 

https://doi.org/10.25392/leicester.data.14242085 and the script used for downloading and 134 

analysing genomes is available on GitHub https://github.com/RyanCook94/ .  135 
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Results 136 

The output of the INPHARED script provides as set of complete phage genomes, whereby 137 

genes have been called in a consistent manner that allows comparative genomics and 138 

phylogenetic analysis. In addition, it provides a MASH database to allow rapid comparison of 139 

new phage genomes against to identify close relatives. Along with formatted databases for 140 

input into vConTACT2 to allow identification of more distant relatives. The host data (Genus) 141 

for each phage is extracted along with summary information for each genome, which is 142 

reformatted to allow overlay onto trees in IToL (See Supplementary Figure 1 for full details). 143 

 144 

For this study, we used a lenient definition of “complete” for the identification of complete 145 

phage genomes. Strictly speaking a complete phage genome would include the terminal 146 

ends of the phage genome. As many phages are sequenced using a transposon based library 147 

preparation (16, 42), the genome can never be complete as the terminal bases can never be 148 

sequenced, unless it is circularly permuted (14). For phage genomes with long terminal 149 

repeats, if the length of the repeat is larger than the library insert size, these cannot be 150 

resolved. As this information is not included in every GenBank file, automated retrieval is 151 

not possible. 152 

 153 

We next set about identifying how many phage genomes have been sequenced to date. The 154 

extraction of genomes from the nucleotide database of GenBank results in 18,134 genomes. 155 

Of these, 3,890 phage genomes are REFSEQ entries which are derived from primary 156 

submissions, resulting in 14,244 putative complete phage genomes. Current 157 

recommendations are that phages are uniquely named (43), if this assumption is true then 158 

number of unique phage genomes is 12,127 if phages with the same name are truly 159 
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identical. However, there are multiple examples of phages with the same name. In some 160 

cases this is the same phage being re-sequenced due to experimental evolution studies such 161 

as E. coli phiX (44) . In other instances, phages with the same name are not genetically 162 

identical. Thus, using a phage name as a means to identify different phages is not a suitable 163 

method for determining the number of unique phage genomes. As an alternative, de-164 

duplication of genomes at 100%, 97% and 95% identity results in 13,830, 12,845 and 12,770 165 

genomes respectively. 166 

 167 

Having established a dataset of “complete” phage genomes, we then analysed this data to 168 

look at general phage genomic properties. First, we looked at the increase in the number of 169 

phage genomes that are sequenced over time. Whilst the number of phage genomes has 170 

rapidly increased over the last 20 years, the rate of increase has slowed in the last decade 171 

(Figure 1), with the number of phage genomes doubling every 2-3 years. 172 

 173 

Bacteriophage Hosts and Predicted Gene Function 174 

Utilising the database of complete genomes, we extracted the hosts and predicted number 175 

of hypothetical proteins for each phage. Across all phages, the majority of genes which 176 

encode proteins with unknown function (hypothetical) was mean 56% (+/- 20), supporting 177 

the truism that the majority of genes encode proteins within unknown function. 178 

 179 

The host of 12,403 phages were extracted with the remainder unknown as the host was not 180 

clear from the information contained within the GenBank file alone. The genomes of phages 181 

infecting 234 hosts have been sequenced. However, there is a clear bias in the isolation of 182 

phages against the same host (Figure 2a). Phages that infect Mycobacterium spp. are the 183 
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most commonly deposited genomes (~13%), largely due to the pioneering work of the SEA-184 

PHAGES program (45), followed by Escherichia spp., Streptococcus spp., and Pseudomonas 185 

spp. (Figure 2a). Phages isolated on just 30 different bacterial genera accounts for ~75% of 186 

all phage genomes in the database (Supplementary Table 1). For genomes isolated against 187 

the top ten hosts, we used rarefaction analysis to gain an understanding of the diversity of 188 

phage genomes isolated to date and determine redundancy of phages isolated on a 189 

particular host. Using a cut-off of 95% identity to define a species, it was clearly observed 190 

the number of phage species continues to increase with the number of genomes 191 

sequenced, a pattern also observed at the level of genus (70% identity) (Figure 3). Using the 192 

current data, it was possible to estimate how many different species of phage might infect 193 

these different hosts (Supplementary Table 4). For Mycobacterium, for which most phages 194 

have isolated on, there are 695 observed species with an estimated 2132-2282 total species. 195 

Thus, demonstrating even for hosts where thousands of phages have been isolated, we are 196 

only just scratching the surface of the diversity of total phage diversity. We are also likely 197 

under estimating the total number of different phage species. In the case of phages 198 

infecting Mycobacterium, the majority of these have been isolated on only a single strain as 199 

part of the SEA-PHAGES program. Increasing the diversity of the host Mycobacterium, is 200 

likely to lead to higher estimates.  201 

 202 

Lytic and Temperate phages 203 

To identify if the phage is lytic or temperate, we searched for genes that facilitate a 204 

temperate lifestyle (e.g., integrase and recombinase) that have been used in previous 205 

studies. This process is not perfect, as the presence of an identifiable gene linked to 206 

temperate phages does not mean it will access a lysogenic cycle. However, it does allow 207 
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large scale comparative analyses, compared to the manual searching of literature of every 208 

phage compared to determine if it has been experimentally tested.  Within the dataset, 209 

4,258 (~30%) phages have the potential to access a lysogenic lifecycle. The frequency of 210 

putative temperate phages was highly variable depending on the host (Supplementary 211 

Figure 2). The number of putative temperate phages is also biased towards a small number 212 

of hosts with 1,217, 846 and 214 isolated on Mycobacterium, Streptococcus and Gordonia 213 

respectively. Collectively these three hosts account for ~54% of all putative temperate 214 

phage genomes sequenced to date (Supplementary Figure 2). 215 

 216 

Genomic Properties 217 

Phage genomes ranged from 3.1 kb to 642.4 kb in size, with a clear distribution in the size of 218 

genomes with the most prominent peaks at 5-10 kb, 40 kb, 50 kb and ~165 kb (Figure 2b). 219 

The mean and median coding capacity was found to be 90.45% and 91.52%, respectively 220 

(Supplementary Figure 2). Of the 14,244 genomes, 5,731 (~40%) were found to have ≥ 90% 221 

of coding features on one strand and 3,293 (~23%) of these had coding features entirely on 222 

one strand (Supplementary Figure 2). The number of phages with genes encoding tRNAs 223 

was 4,590 (~32%). For those phages encoding tRNAs, the range was 1 to 62 with a median of 224 

3. Whilst there is much literature on the presence of tRNAs in phages, it is still not clear 225 

entirely what role they provide to phages and why they absent in some phages and not 226 

others (46).  227 

 228 

Phages with genomes greater than 200 kb are often referred to as “jumbo-phages” and are 229 

reported to be rarely isolated (47). 314 genomes (~2.2%) greater than 200 kb in length were 230 

identified, suggesting that they are rare. To further investigate if “jumbo-phages” are as rare 231 
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as is thought, we looked at the distribution in the context of the previously identified host 232 

bias. “Jumbo-phages” have only been isolated on 31 of 234 identifiable bacterial hosts 233 

(Supplementary Table 1) and are far more commonly isolated on some hosts than others. 234 

Noticeably absent are any “jumbo-phages” that infect Mycobacterium, Gordonia, 235 

Lactococcus, Arthrobacter, and Streptococcus, with >4,000 phages having been sequenced 236 

from these bacterial hosts (Figure 2c). For host bacteria that have had far fewer phages 237 

isolated on them such as Caluobacter, Sphingomonas, Erwinia, Areomonas, Dickeya and 238 

Ralstonia, the frequency of “jumbo-phage” isolation is far higher (Figure 2c). Due to the 239 

small sampling depth of some of these hosts (e.g., Photobacterium and Tenacibaclum), it is 240 

not possible to determine whether the high proportion of genomes is merely a result of the 241 

low number of genomes sequenced. However, for other hosts such as Aeromonas, Erwinia 242 

and Caulobacter from which more than 20 phages have been isolated, ~26%, ~44% and 243 

~63% are categorised as “jumbo” respectively. Therefore suggesting “jumbo-phages” are 244 

not always rare on particular hosts. 245 

 246 

We further investigated the phylogeny of “jumbo-phages” using the translated sequence of 247 

the terL gene. The “jumbo-phages” are well distributed across the tree and do not form a 248 

single monophyletic clade, suggesting that they have arisen on multiple occasions, with 249 

multiple clades of phages having representatives of “jumbo-phages” within them. Not all 250 

“jumbo-phages” are equal, with “jumbo” cyanophages infecting the cyanobacteria 251 

Synechococcus and Procholorococcus only marginally larger than there non-jumbo 252 

cyanophages relatives. These “jumbo-phages” are also more closely related to their non-253 

jumbo cyanophages relatives than other “jumbo-phages” (Figure 4). This is not limited to 254 

the cyanophages, with many other “jumbo-phages” more closely related to a non-jumbo 255 
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phage. A similar pattern of grouping non-jumbo with “jumbo-phages” is observed when a 256 

reticulate approach is used to look at the relatedness of phage genomes using vConTACT2 257 

(Supplementary Figure 3). 258 

 259 

Virulence Factors and Antimicrobial Resistance Genes 260 

The presence of ARGs and virulence factors is major concern for phage therapy, as the use 261 

of phages carrying such genes may make the populations of bacteria they are intended to 262 

kill more virulent or resistant to antibiotics. We therefore used this database to integrate 263 

the frequency and diversity of phage-encoded virulence factors and ARGs. 235 genomes 264 

(~1.6%) were found to encode a virulence factor and 43 genomes (~0.3%) to encode an 265 

ARG. The most common virulence genes were the stx2A (72 genomes) and stx2B (71 266 

genomes) genes that encode subtypes of the Shiga toxin (Supplementary Table 2). The most 267 

common ARGs were the mef(A) (14 genomes) and msr(D) genes which confer resistance to 268 

macrolide antibiotics (Supplementary Table 3) (48). Most genomes encoding a virulence 269 

factor were predicted to be from temperate phages (222/235), and were found to infect six 270 

bacterial genera, with the three most abundant hosts being Streptococcus, Staphylococcus 271 

and Escherichia respectively. The hosts for many genomes could not be determined 272 

(55/235). The virulence factor encoding genomes were widely distributed over 26 putative 273 

genera (Supplementary Figure 3). All genomes encoding an ARG were predicted to be 274 

temperate and were found to be isolated from eight bacterial genera, with the majority of 275 

phages linked to Streptococcus spp. (27/43). 276 

 277 

Discussion 278 
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Defining how many different complete phage genomes have been sequenced is not a simple 279 

question as it might appear. Based on accession numbers, there are 14,244 phage genomes, 280 

once RefSeq duplicates have been removed. Using unique names results in 12,127 phages, 281 

however using names alone does not give an accurate estimate of the number of different 282 

phages, as genomically different phages have the same name. The use of de-duplication at 283 

100% identity suggests 13,830 unique phage genomes (January 2021) from cultured 284 

isolates. This assumes that the genome submissions are from isolates and not predictions of 285 

prophages from bacterial genomes. For the vast majority of phages, this appears to be case, 286 

although not easily discernible for all phage genomes. 287 

 288 

The data reveals clear patterns in phage genomes and biases in the selection of phage 289 

genomes that are currently available, but not always discussed in the analysis of genomes. 290 

The first is the number of phage genomes is relatively small. Even for hosts where the 291 

highest number of phages have been isolated on, our estimates suggest 1000s of new phage 292 

species remain to isolated and sequenced. If we consider there are now more than 300,000 293 

assembled representative bacterial genomes in GenBank, with many hundreds of thousands 294 

more for particular genera e.g., >300,000 Salmonella and Escherichia genomes alone (49). 295 

The representation of phage genomes to date is tiny compared to their bacterial hosts.  296 

Furthermore, the rate at which phage genomes are being sequenced is slowing down rather 297 

than increasing. Given the renewed interest in phages and increased accessibility of 298 

sequencing, the decrease in the rate over time was surprising.   299 

 300 

The second point of note is the bias in phage genomes. With a clear bias in both the hosts 301 

phages are isolated on and for lytic phages over temperate phages. Thus, these phages are 302 
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representative of these particular hosts, rather than phages in their entirety. Due to the 303 

enormous success of the SEA-PHAGES program, many phages have been isolated on 304 

Mycobacterium and Gordonia (50). This in turn results in ~1/3
rd

 of all temperate phage 305 

genomes being isolated on these two bacterial genera, whereas the remaining 2/3
rds

 are 306 

distributed across 142 different hosts. 307 

 308 

The overrepresentation of phages infecting particular hosts can lead to truisms that may not 309 

be correct. For instance, “jumbo-phages”, those that have genomes >200 kb, are rarely 310 

isolated (47). Analysis of the complete dataset suggests ~2.2% of genomes fall into this 311 

category. However, this needs to be viewed in the context of the large bias in the hosts used 312 

for isolation, with ~75% of phages isolated on only ~16% of bacterial hosts that could be 313 

identified. When the number of “jumbo-phages” is expressed as a percentage of all phage 314 

genomes, their isolation is clearly rare. For some hosts, such as Mycobacterium, many 315 

hundreds of phages isolated on the same host strain have been sequenced without the 316 

isolation of a “jumbo-phage”, suggesting they are truly rare for this host (45). However, for 317 

other hosts such as Procholorococcus, Synechococcus, Caulobacter, and Erwinia, the 318 

isolation of “jumbo-phages” is not a rare event. While methodological adjustments of 319 

decreasing agar viscosity and large pore size filters may increase the number of phages 320 

isolated that have larger genome sizes (47), we suggest that using a wider variety of hosts 321 

may increase the number of “jumbo-phages” isolated. Phylogenetic analysis demonstrated 322 

many “jumbo-phages” are more closely related to non-jumbo phages than other “jumbo-323 

phages”. Thus, as the number of phage genomes has increased an arbitrary descriptor or 324 

“jumbo” for phages with genomes over 200 kb in length has less meaning. Recent 325 

comparative analysis of 224 “jumbo-phages”, used proteome size and analysis of protein 326 
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length to determine a cut-off of 180 kb to separate “jumbo-phages”, from other phages. 327 

From this using a clustering-based approach, three major clades of “jumbo-phages” were 328 

identified (51). In this study using terL as a phylogenetic marker to determine the phylogeny 329 

of 313 “jumbo-phages” and their closely related phages, suggests they have arisen on 330 

multiple occasions, as has been demonstrated previously (51). “Jumbo-phages” are clearly 331 

not monophyletic and what applies to one “jumbo-phage” does not hold true for many 332 

others (51). As the number and diversity of “jumbo-phages” increases, the use of the term 333 

seems to have less meaning. 334 

 335 

With the increasing interest and use of phages for therapy, the isolation of phages that do 336 

not contain known virulence factors or ARGs is imperative. How frequently phages encode 337 

antibiotic resistance genes is a topic of much debate (52, 53). A previous study of 1,181 338 

phage genomes found that they are rarely encoded by phages with only 13 candidate genes, 339 

of which four where experimentally tested and found to have no functional antibiotic 340 

activity (47). We estimate ~0.3% of phage genomes encode a putative ARG (none have been 341 

experimentally tested), a finding that is consistent with previous reports of low-level 342 

carriage in phage genomes (52) in a dataset that is ~10x larger using similarly stringent cut-343 

offs. Critically, all of these ARGs were found in phages that are predicted to be temperate or 344 

have been engineered to carry ARGs as a marker for selection. With the frequency of 345 

carriage in temperate phages being ~1% overall. However, this data is still biased by the 346 

majority of temperate phages being isolated on only three bacterial genera. Notably no 347 

ARGs were detected on phages of Mycobacterium, which accounts for ~28 % of temperate 348 

phages. In comparison, ~2.6% (27/1055) of temperate phages of Streptococcus carry 349 

putative ARGs and 50% of phages from Erysipelothrix (1/2). Clearly a much deeper sampling 350 
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of temperate phages from a broader range of hosts is required to get an accurate 351 

understanding of the role of phage in the carriage of ARGs.  Based on the skewed data 352 

available to date, it seems unlikely there will be issues in the isolation of lytic phages for 353 

therapeutic use that contain known ARG within their genomes. However, we cannot 354 

determine whether these lytic phages cannot spread ARGs via transduction, or through 355 

carriage of as-yet uncharacterised ARGs. 356 

 357 

Whilst there is much debate on the presence and importance of ARGs in phage genomes, 358 

the role of genes encoding virulence factors is well studied and the process of lysogenic 359 

conversion well known (7–10). However, how widespread known virulence genes are in 360 

phages is not widely reported. We estimate 1.6% of phages encode at least one putative 361 

virulence factor, with the frequency of carriage far higher in temperate phages (5.5%) than 362 

lytic phages (0.13%). Again, these overall percentages are skewed by host bias with no 363 

known virulence factors detected in Mycobacterium temperate phages (0/1217), in 364 

comparison 72% of temperate phages of Shigella (5/7) and 7% (61/846) of Streptococcus 365 

contain virulence factors. It is currently impossible to determine if the higher proportion of 366 

ARGs and virulence factors in phages of known pathogens is a feature of their biology, or a 367 

skew in the database towards phages of clinically relevant isolates. 368 

 369 

Given the biases in the dataset, it is not clear if the general phage patterns we observe (e.g., 370 

jumbo-phages are rarely isolated, more temperate phages on particular hosts, and the 371 

carriage of ARGs and virulence genes) are linked to biology or chronic under sampling of 372 

phage genomes. We speculate that currently is most likely the latter, which distorts some 373 

generalisations about phages. It clear that jumbo-phages are not rare on some hosts and 374 
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putative ARGs are far more abundant on temperate phages. However, far deeper sampling 375 

of phage diversity across different hosts is required at an increasing rate.  376 

 377 

Conclusions 378 

We have provided a simple method to automate the download of curated set of complete 379 

genomes from cultured phage isolates, providing metadata in a format that can be used as a 380 

starting point for many common analyses. Analysis of the current data highlights what we 381 

know about phage genomes is skewed by the majority of phages having been isolated from 382 

a small number of bacterial genera. Furthermore, the rate at which phage genomes are 383 

being deposited is decreasing. Whilst understanding of genomic diversity is always 384 

influenced by the data available, this is particularly acute for phage genomes with so many 385 

phages isolated on smaller number of hosts. To obtain a greater understanding of phage 386 

diversity, larger numbers of phages, in particular temperate phages, isolated from a broader 387 

range of bacteria need to be sequenced. 388 

 389 
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 400 

Figure 1  401 

Number of complete phage genomes in GenBank over time. Dates were estimated based on date of 402 

submission (* for 235 genomes, the date of update was used as no submission date was available). 403 

The reference lines showing doubling rates (dashed) begin in 1989, as this is when the number of 404 

phage genomes increased beyond the first submission in 1982. 405 

 406 

Figure 2 407 

Overall properties of phages. A) Proportion of phages isolated on the top 30 most abundant hosts. B) 408 

Distribution of phage genome sizes. C) Proportion of “jumbo-phages” on top 30 hosts for which at 409 

least one “jumbo-phage” has been isolated. 410 

 411 

Figure 3 412 

Genomic diversity of phages on the top ten most abundant hosts. A) Rarefaction curve of phage 413 

species. Species were defined as 95% identity over 95% of genome length. B) Rarefaction curve of 414 

phage genera. Genera were defined as 70% identity over 95% of genome length. 415 

 416 

Figure 4 417 

Phylogenetic tree of translated terL gene for 313 “jumbo-phages” and their closest relatives. The 418 

alignment was produced using MAFFT (36) and tree produced using IqTree using WAG model with 419 

1000 bootstrap repeats (37). Pink shaded regions indicate “jumbo-phages”, coloured ring indicates 420 

viral genus, and blue bars indicate genome length. Bootstrap values indicated by black circles are 421 

shown with a minimum of 70%. 422 

  423 
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