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Nanopore sequencing and phylodynamic modelling have been used
to reconstruct the transmission dynamics of viral epidemics, but
their application to bacterial pathogens has remained challenging.
Here, we implement Random Forest models for single nucleotide
polymorphism (SNP) polishing to estimate divergence and effective
reproduction numbers (Re) of two community-associated, methicillin-
resistant Staphylococcus aureus (MRSA) outbreaks in remote Far
North Queensland and Papua New Guinea (n = 159). Successive bar-
coded panels of S. aureus isolates (2 x 12 per MinION) sequenced
at low-coverage (> 5x - 10x) provided sufficient data to accurately
infer assembly genotypes with high recall when compared with Il-
lumina references. De novo SNP calling with Clair was followed
by SNP polishing using intra- and inter-species models trained on
Snippy reference calls. Models achieved sufficient resolution on
ST93 outbreak sequence types (> 70 - 90% accuracy and preci-
sion) for phylodynamic modelling from lineage-wide hybrid align-
ments and birth-death skyline models in BEAST2. Our method repro-
duced phylogenetic topology, geographical source of the outbreaks,
and indications of sustained transmission (Re > 1). We provide
Nextflow pipelines that implement SNP polisher training, evaluation,
and outbreak alignments, enabling reconstruction of within-lineage
transmission dynamics for infection control of bacterial disease out-
breaks using nanopore sequencing.
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Sequence data from infectious disease outbreaks has pro-1

vided critical information for infection control and infer-2

ence of pathogen transmission dynamics, for example during3

the West African Ebola virus epidemic (1) and the current4

SARS-CoV-2 pandemic (2). Maximum-likelihood (ML) and5

Bayesian phylodynamic methods are commonly used to date6

the emergence of lineages and outbreaks, and to estimate7

key epidemiological parameters, such as changes in the ef-8

fective reproduction number over time (Re) and the most9

recent common ancestor (MRCA) of an outbreak (3? , 4).10

Oxford Nanopore Technology (ONT) sequencing has emerged11

as viable technology for real-time genomic epidemiology, and12

has been applied across large-scale SARS-CoV-2 surveillance13

efforts in the United Kingdom and Denmark amongst oth-14

ers (5–8). Moreover, nanopore sequencing devices can be15

operated in low and middle-income countries where local ge-16

nomics infrastructure may be lacking or is difficult to access17

(9, 10), so that a timely outbreak response is not feasible 18

(11). This is particularly relevant for continuous surveillance 19

at bacterial evolutionary time-scales, where outbreak strains 20

may circulate for years, and can persist in human and ani- 21

mal reservoirs or the environment outside their hosts. Viral 22

pathogen genomes, such as Ebola virus or SARS-CoV-2, are 23

often sequenced directly from patient samples using targeted 24

PCR-based enrichment approaches, achieving high genome 25

coverage and resolution capable of informing phylodynamic 26

models (1, 2). However, nanopore sequencing for bacterial 27

pathogens, coupled to Bayesian phylodynamic models, have 28

so far not been considered, mainly due the need for suffi- 29

ciently accurate single nucleotide polymorphism (SNP) calling 30

at bacterial whole genome scales (12). SNP calls from high 31

coverage (> 30x) Illumina data is the current standard for 32

accuracte SNP calls used in phylogenetic applications, but 33

current generation nanopore SNP calling has suffered from 34

low sequence read accuracy (R9.4.1) and a heavy focus on 35

variant calling in human genomes, with much of the available 36

callers developed specifically for human variants (13, 14). This 37

problem is further aggrevated when attempting to sequence 38

cost-effectively, e.g. using low-coverage multiplexed runs (< 39

5-10x) and simple library preparation with ONT sequencing 40

kits (R9.4.1 pore architecture, SQK-RBK-004 libraries) that 41

can be used in low and middle income countries with large 42

burdens of bacterial disease. 43

Phylodynamic inference on nanopore platforms is further 44

complicated when (ideally) using an outbreak reference genome 45

that is closely related to the outbreak sequence type, thus 46

providing sufficiently high variant calling resolution for trans- 47

mission inference, particularly in recent transmisison chains 48

or outbreaks (15). In addition, on bacterial time-scales (years) 49

little sequence variation will have occured in newly emer- 50

gent outbreaks, which places an disproportionate emphasis on 51

correctly inferring the few available outbreak-specific polymor- 52

phisms. As a consequence, there is little room for systematic 53

errors introduced by base- and variant callers when using 54
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Fig. 1. Sequencing workflow and outbreak sampling locations in northern Australia and Papua New Guinea (A). Isolates were sequenced on 8 flowcells with 24 isolates per
flowcellu sing a sequential nuclease flush protocol. Sequenced data was subset to those matching Illumina sequencing of the isolates, assembled and quality controlled.
Several isolates were set aside for independent Random Forest classifier training used in the SNP polishing and phylogenetics pipeline (B).

(low-coverage) nanopore sequencing data to effectively survey55

bacterial outbreaks. Neural network-based, nanopore-native56

variant callers in particular can introduce excessive false posi-57

tive SNP calls, complicating transmission inference from ONT58

sequence data, where accuracy and precision are required (16).59

Within-lineage phylodynamic inference for bacterial outbreaks60

additionally depends on sufficient temporal signal to ascer-61

tain a phylodynamic threshold, at which sufficient molecular62

evolutionary change has accumulated in the sample to obtain63

robust phylodynamic estimates (17–19). Due to slower substi-64

tution rates in bacteria compared to viruses (17), longitudinal65

sample collections are optimal for genomic epidemiology, and66

often require multiple years of data to infer transmission dy-67

namics of the sampled population. Requirements for accurate68

whole genome SNP calls across a large number of isolates,69

sequenced cost-effectively at low genome coverage and over a70

sufficient interval of time, represents a significant barrier to71

the implementation of phylodynamic modelling for bacterial72

pathogens. 73

Illumina hybrid-corrected and ONT-native phylogenetic 74

analyses methods have been demonstrated for a small number 75

of distantly related bacterial nanopore genomes and genome 76

assemblies from the same species e.g. Neisseria gonorrhoeae 77

(16, 20) or between species from environmental sources (21). 78

Recently a six-strain multiplex protocol for the MinION with 79

genome assembly and determination of phylogenetic relation- 80

ships to identify outbreaks has been tested for S. aureus 81

lineages smapled in Norway. However, it remains unclear 82

whether full within-lineage phylodynamic modelling is possi- 83

ble at population-level scale, whether estimates from nanopore 84

data match results obtained using SNP calling with Illumina 85

reads and whether sequencing runs can be conducted cost- 86

effectively (at least 24 isolates per run). In this study, we adapt 87

a variant polishing approach first implemented by Sanderson 88

et al. (16) on metagenomic sequencing of N. gonorrhoeae using 89

Random Forest classifiers to filter SNP calls from the nanopore- 90
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Fig. 2. (A) Average genome coverage (R9.4.1, RBK-004) of Bonito v0.3.6 base called nanopore reads against the JKD6159 (ST93) reference genome (n = 159) where the
dashed lines indicate the coverage thresholds chosen to evaluate genotyping (10x) and phylodynamic models (5x) in the Far North Queensland (FNQ) and Papua New Guinea
(PNG) outbreaks. SNP (light green) and indel (dark green) counts across three different assembly types: uncorrected nanopore reads polished with Medaka (ont_medaka),
Medaka polished nanopore genomes Illumina corrected with Pilon (hybrid_medaka) and hybrid assembly in Unicycler (hybrid_unicycler) (B). Assembly genotyping results
are shown as proportion of assemblies matching the reference Illumina genotype across the three types of assemblies, and the 10x coverage threshold.

native variant callers Medaka v1.2.3 and Clair v2.1.1 (13).91

We use Snippy Illumina variant profiles as reference data and92

investigate caller performance across reference genomes and93

outbreak datasets. We show that Random Forest classifiers suf-94

ficiently remove incorrect calls from Clair in outbreak isolates95

with > 5x coverage to allow for sequencing of 24 community-96

associated S. aureus isolates per MinION flow cell (nunique =97

181) successfully resolving phylodynamic parameters of two98

outbreaks of ST93-MRSA-IV in remote Far North Queensland99

(FNQ) and Papua New Guinea (PNG).100

Results101

We sequenced a total of 181 unique isolates from a paediatric102

osteomyelitis outbreak (collected between 2012 and 2018) in103

the Papua New Guinean highland towns Kundiawa (Simbu104

Province, n = 42) and Goroka (Eastern Highlands Province,105

n = 45). We additionally sequenced haphazardly collected106

blood cultures from a hospital in Madang (Madang Province,107

n = 8) and strains from routine community surveillance across108

Far North Queensland collected in 2019 (Cairns and Hinter-109

lands, Cape York Peninsula, Torres Strait Islands, processed110

at Cairns Hospital, n = 86) (Fig. 1, Supplementary Tables).111

Oxford Nanopore Technoloy (ONT) sequencing was conducted112

using a minimal, dual-panel barcoding scheme, multiplexing113

2 x 12 isolates interspersed with a nuclease flush on a single114

MinION flowcell (R9.4.1, EXP-WSH-003) for a total of 96115

barcodes per outbreak (including isolate re-runs that were116

merged, n = 12, and external isolates excluded here, n = 3).117

Rapid barcode sequencing libraries (RBK-004) were prepared 118

omitting magnetic bead clean-ups after enzymatic digestion 119

of cultured strains and simple spin column extraction. Panels 120

produced between 0.506 - 6.47 Gigabases of sequence data 121

per run (< 24 hours) resulting in low - medium coverage per 122

isolate (ST93-JKD6159) (Fig. 2A). We excluded one infection 123

with S. argenteus (FNQ) and one co-infection with Mammalio- 124

coccus sciuri (PNG). Isolates with matching Illumina data 125

were retained to create a high-quality reference dataset for 126

further evaluation of genome assembly and variant calling (n 127

= 159, Fig. 1). 128

Genome assembly and genotyping validation 129

Short-read reference genomes, long-read polished nanopore 130

genomes, and long-read hybrid genomes (Pilon (22) corrected 131

long-read assemblies, Unicyler (23) short read assemblies 132

with long-read correction) were assembled using a standard- 133

ized Nextflow (24) pipeline wrapping Shovill, Flye (25) and 134

Medaka and other components (Methods). Several isolates 135

(12/159) failed long-read assembly due to excessive fragmenta- 136

tion of libraries and/or barcode attachment, but did not fail 137

the short-read assemblies with Skesa (26) or the hybrid assem- 138

blies with Unicyler (Supplementary Tables 1-5), which first 139

assembles short-reads and then scaffolds the assemblies with 140

long reads to generate contiguous whole genome assemblies. 141

Compared to Illumina reference assemblies, SNP and indels 142

were frequently occuring in low-coverage uncorrected nanopore 143

assemblies (Fig. 2A, right). Errors were considerably reduced 144
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Fig. 3. (A) Workflow outlining culture-based protocol for community-associated Staphylococcus aureus nanopore sequencing using successive barcode panels on Oxford
Nanopore Technology (ONT) MinION flow cells (R9.4.1). MLST typing informs the background population genome collection from a previous study (Illumina). Outbreaks in
Papua New Guinea and Far North Queensland were caused by the Australian clone (ST93-MRSA-IV). SNPs are called for the Illumina background with Snippy and ONT
outbreak isolates wth Clair. ONT SNP calls are polished using Random Forest SNP classifiers, trained on the outbreak reference genome (JKD6159 of ST93). (B) Area under
the curve (AUC) scores of quality (blue) or composite (orange) features (left) used in training Random Forest classifiers for SNP polishing and relative feature importance of
models (right) trained on (B) S. aureus mixed lineages (ST88, ST15 and ST93) (C) ST93 Far North Queensland isolates and (D) ST93 from Papua New Guinea with matching
Illumina data and Snippy reference calls (all n = 3).

in high-coverage isolates leading to assembly identities ranging145

between 0.9993 and 0.9999 in the dnadiff metric (27) (Sup-146

plementary Tables 3, 4). Recovery of complete chromosomes147

and S. aureus specific genotypes from uncorrected long-read148

assemblies was sufficient for high- coverage isolates in our149

collection (Fig. 2B, > 80 -90%). Assembly genotyping for150

clinically relevant features such as the presence of mecA or151

the Panton Valentine leukocidin (PVL), major subtypes of152

SCCmec elements, resistance genes and other markers of inter-153

est showed high concordance with reference assemblies (Fig.154

2B). In contrast, low-coverage assemblies often failed to call155

genotypes - recovery was low for mecA and SCCmec types, as156

well as for PVL and other markers of interest (Fig. 2B, < 60%,157

Supplementary Tables 3, 4). Hybrid long-read correction with158

Pilon did not markedly improve genotype recovery in low-159

coverage isolate; however, recovery improved in the Unicyler160

hybrid assemblies (Fig. 2A, 2B). Lower SCCmec subtyping161

performance was likely due to remaining insertions or deletions162

from nanopore data impacting on the large cassette chromo-163

somes (> 20kb). Unicyler produced more accurate hybrid164

assemblies than correction of long-read assemblies with Pilon165

alone, and performed slightly better in hybrid assemblies of166

low-coverage nanopore data (Fig. 2B). For genome assembly167

and genotyping, our dual-panel sequencing approach recovers168

nanopore genotypes in high-coverage isolates (> 10x) although169

some errors remain, particularly in sequence type calling and170

SCCmec subtyping.171

Training and evaluation of Random Forest SNP polishers 172

Next, we aimed to accurately reconstruct the PNG and FNQ 173

outbreaks within the maximum-likelihood background phy- 174

logeny of ST93. Subsequent phylodynamic analysis is chal- 175

lenging because accurate reconstruction of branch lengths 176

within the nanopore clades is required for reproduction of 177

the Bayesian epidemiological parameters. We first tried a 178

candidate-driven approach, using Illumina core SNP panels 179

from the ST93 background population (Snippy, n = 444, 6616 180

SNPs) and Megalodon which accurately reconstructed the di- 181

vergence of the PNG clusters from the Australian East-Coast 182

(Fig. S1). However, within-outbreak branch lengths were not 183

reconstructed, because novel variation had accumulated since 184

the divergence from the Australian east coast population in 185

the 1990s (Steinig et al. 2021, in preparation). We therefore 186

decided to use a de novo variant calling approach comparing 187

two native nanopore variant callers based on neural network 188

architectures, by default trained on Home sapiens variant calls 189

(Clair v2.1.1) or a mix of human and microbial data from 190

Escherichiae coli, Saccharomyces cerevisiae, and H. sapiens 191

(v1.2.3). While recall was high, raw basecaller performance 192

was exceedingly low in both Clair and Medaka accuracy and 193

precision, particularly in outbreak isolate calls against the 194

outreak reference genome (< 20%, Fig. S2). 195

We next adopted SNP polishers using Random Forest clas- 196

sifiers originally developed by Sanderson and colleagues (16) 197

to correct nanopore variants in Neisseria gonorrhoeae from 198
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Fig. 4. Trained Random Forest SNP polisher evaluation showing left: accuracy,
precision and recall of Clair nanopore SNP calls against matching Illumina reference
SNPs called with Snippy. Plots are split into ST93 outbreak isolates (inside left) and
other sequence types (inside right) from Papua New Guinea (PNG) and Far North
Queensland (FNQ) combined. In the right-hand plots the number of false negatives,
false positives and true positive SNP calls for the groups is shown on a log-scale.
Models were trained on three Illumina matched isolates from between-species (A)
Neisseria gonorrhea from Sanderson et al. (16) within species (B) Staphylococcus
aureus ST88, ST93, ST15 from PNG, (C) within-lineage (ST93) using samples from
FNQ and separately from PNG (D, ST93). Polishing models were evaluated on all
PNG and FNQ isolates excluding those used in training (ST93: n = 55, other sequence
types: n = 25, > 10x coverage). Outliers in the tails of the distributions are novel
multi-locus sequence type variants of ST93.

metagenomic data (Fig. 3, Methods). Each classifier was199

trained on three isolates with matching Illumina data and200

composite sequence features (Fig. 3B-D); because there were201

no considerations of specific training sets used in the original202

N. gonorrhoeae classifier, we trained S. aureus classifiers on203

three combinations of isolates including a mixed set of three204

sequence types (ST93, ST88, ST15) (saureus_mixed) and two205

sets of outbreak sequence type isolates (ST93) from either206

FNQ (saureus_fnq) or PNG (saureus_png). In combination207

with the original N. gonorrhoeae clasifiers, the different train-208

ing sets allowed us to evaluate whether SNP polishing was209

effective using models from a different species entirely (sander-210

son), from the same species but without outbreak related211

data (saureus_mixed) or from the same species, but with iso-212

lates from the same sequence type or outbreak (saureus_fnq,213

saureus_png). All models trained on composite sequence214

features (Fig. 3, Methods) demonstrated high area under215

the curve (AUC) scores (0.976 - 0.989, orange) while models216

trained on quality features alone showed suboptimal AUC217

performance (0.748 - 0.760, blue) (Fig. 3B-D).218

We next evaluated both the N. gonorrhoeae classifier, as 219

well as the three S. aureus models against the remaining iso- 220

lates from PNG and FNQ, excluding those used in training 221

(Figs. 1B). Evaluations indicated that all trained SNP pol- 222

ishers increased accuracy and precision with slight reductions 223

in recall (Fig. 4). However, sub-optimal performance was 224

observed in all metrics for the N. gonorrhoeae classifier across 225

outbreak sequence types (< 40%) as well as other sequence 226

types (< 50%). Performance improved considerably in the 227

mixed S. aureus polisher (saureus_mixed) both among out- 228

break isolates (69.52% ± 12.48σ accuracy, 75.94% ± 14.56σ 229

precision) and other sequence types (81.94% ± 14.56σ accu- 230

racy, 90.11% ± 6.83σ precision). However, despite significant 231

baseline improvement, the inter-species and mixed-sequence 232

type models the number of false positive SNP calls remained in 233

the range of 100s to 1000s (right column, Fig. 4A-B). Training 234

the models with isolates from the same sequence type (ST93, 235

FNQ) slightly improved performance (ST93: 71.69% ± 13.99σ 236

accuracy, 83.33% ± 10.42σ precision) but reductions of accu- 237

racy and recall in other sequence types were observed (Fig. 238

4C). PNG outbreak-derived model (saureus_png) performed 239

best for polishing isolates from the same outbreak across all 240

metrics in the high coverage isolates (ST93: 69.28% ± 16.78σ 241

accuracy, 87.57% ± 9.83σ precision) but incurred a steeper 242

cost to accuracy and recall in non-outbreak isolates (Fig. 4D). 243

Reductions indicate that the model trained on features spe- 244

cific to the outbreak genotype, and became significantly less 245

generalizable to other sequence type applications. We note 246

that the levels of precision and accuracy of the ST93 polishers 247

in absolute numbers translate to 1 - 10s of false SNP calls 248

compared to the N. gonorrhoeae and mixed seqeunce type 249

model (Fig. 4). 250

Phylodynamic reconstruction using polished de novo SNPs 251

We next implemented Snippy’s core alignment functionality, 252

calling sites present in all isolates of the sampled population, 253

with a minimum SNP site coverage of 1x (JKD6159). Hy- 254

brid alignments integrated Illumina background SNPs from 255

the ST93 (outbreak) lineage (n = 444) in combination with 256

polished ONT nanopore calls from Clair (Fig. 1). The lin- 257

eage background alignment, as one would use for short-read 258

reference data, therefore served as a backbone for ONT data 259

in the core-site alignment (Fig. 4B). We retained isolates with 260

at least 5x coverage (n5x = 531 / 562) due to low accuracy 261

and precision of these isolates in the SNP polishing step (Fig. 262

4, Fig. S4). We then used the between-species, within-species, 263

within-lineage (FNQ and PNG) models to apply for variant 264

polishing in our de novo core alignment and phylodynamics 265

pipeline (Fig. 3A). 266

NanoPath’s core alignment construction reproduced 267

Snippy’s core alignment from Illumina data (6650 SNPs vs. 268

6662 SNPs, Fig.5A, B). When we called Clair SNPs on iso- 269

lates with > 5x coverage from PNG (n = 56) and FNQ (n = 32) 270

we observed a vast excess of SNP calls, particularly in the raw 271

Clair calls, where the hybrid core alignment contained 491,210 272

SNP sites and was considered unusable (Supplementary Ta- 273

ble 7). All polished SNPs produced reasonable alignments, 274

where FNQ and PNG polishers produced alignments closest 275

to the Illumina reference (Fig. 5, Supplementary Table 2). 276

We reconstructed the ML phylogenies from these alignments 277

in RAxML-NG using the GTR+G model with Lewis’ ascertain- 278

ment bias correction and rooted the trees on SRR115752 for 279
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Fig. 5. Comparison of maximum-likelihood phylogenetic topologies of ST93. Illumina reference trees were constructed with NanoPath (A) and Snippy (B). All other trees are
hybrid phylogenies including the nanopore data of the outbreaks in Far North Queensland (FNQ) and Papua New Guinea (PNG) (> 5x coverage) within the ST93 background
population (Illumina, n = 531) (A) after polishing Clair SNPs using the trained Random Forest classifiers (C: Neisseria gonorrhoeae; D-E: S. aureus mixed and lineage-specific).
Asterisk (*) denotes two isolates with excessive branch lengths that were removed for visual clarity (Fig. S6).

comparison of topological consistency (28)). We also wanted280

to investigate whether the main introductions into FNQ and281

PNG could be reconstructed with accurate interpretations of282

their source divergence on the Australian east coast. For refer-283

ence, we used Illumina alignments constructed with NanoPath284

(Methods) and Snippy-core with matching isolates (n = 531,285

Fig. 5).286

All major clades and sub-populations of the background287

population (North West, East Coast, NT, and NZ) including288

the outbreaks in FNQ and PNG were accurately reconstructed289

as referenced by the Illumina trees (Fig. 5). Minor topological290

variations were observed in the position of the PNG-1 and291

PNG-2 introductions (greens), and the southern East Coast292

and NZ subclade (seagreen) of the East Coast population293

(turquoise, Fig. 5). However, there were no major topological294

inconsistencies that would affect interpretation of the source295

population. In all topologies, the outbreaks from PNG derived296

from the East Coast ST93-MRSA-IV clade, and the FNQ297

outbreak derived from the Northern Territory reintroduction298

(Fig. 5). Regional transmissions into the U.K. and Australia299

within the outbreak clusters remained identifiable (black and300

red branches in PNG-1 and PNG-2). Introductions into FNQ301

from other parts of the population are evident from both302

the reference and the polished alignments (red branches in303

East Coast, PNG and NT clades). Branch lengths of the304

nanopore-sequenced clades were similar to the reference ML305

tree, but were excessive in the between-species N. gonorrhoeae306

polished alignments as well as in the mixed sequence type307

alignments (Fig. 5, in particular due to two isolates: PNG-308

36 and PNG-62, Fig. S6). The alignment based on SNPs309

polished using outbreak seqeunce type (ST93) isolates were310

most consistent with the Illumina reference phylogeny of ST93.311

We note that within-lineage polishing did not require within- 312

outbreak polishers, e.g. FNQ-trained polishers reproduced 313

PNG outbreak divergence and vice versa. 314

We next investigated the performance of Bayesian phylody- 315

namic methods to estimate the divergence date and effective 316

reproduction number using birth-death skyline models with 317

serial (PNG) or contemporaneous (FNQ) sampling and lineage- 318

specific prior configurations (Steinig et al. 2020, in prepara- 319

tion). We ran BEAST2 MCMC chains on the outbreak subsets 320

of the full SNP alignment with sufficient isolates (nPNG-1 = 53; 321

nFNQ = 32) using a fixed substitution rate of the whole-lineage 322

median posterior estimate (3.199 × 10−04). This was necessary 323

as non-random sampling (subsetting the alignment to the out- 324

break clade) removes the temporal signal in the comparatively 325

recent outbreaks, and thus leads to an overestimation of the 326

outbreak tMRCA. We note that the models were efficiently run 327

on a standard NVIDIA GTX1080-Ti GPU using BEAST2 with 328

the BEAGLE v3 library at speeds of < 3-4 minutes / million 329

steps in the MCMC (5-7 hours per run and GPU) making 330

timely parameter estimation for outbreak responses feasible 331

on low-cost hardware. On a NVIDIA P100 GPU, walltime 332

decreased to < 50 seconds - 1 minute / million steps in the 333

MCMC, around 1-2 hours walltime per run and GPU on a 334

distributed system. 335

MCMC chains converged onto similar posterior distribu- 336

tions across all polished alignments in the PNG clade (Fig. 6). 337

Polished models in the PNG clade were highly stable across 338

posterior estimates, including those polished with between- 339

species polisher from N. gonorrhoeae, and showing only slightly 340

aberrant estimates of the MRCA in the mixed polishing model 341

(Fig. 6B, Table S2) .More variable posterior estimates were 342

observed in the FNQ clade (Fig. 6), consistent with higher 343
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Fig. 6. Posterior distributions of the effective reproduction number (Re, red), most recent common ancestor of the outbreak (MRCA, purple), infectious period ( 1
δ , green) and

sampling proportion (ρ, orange) for the nanopore sequenced outbreak clades in Papua New Guinea (A, PNG, n = 56) and Far North Queensland (A, FNQ, n = 32). Birth-death
skyline models were run on the clade subsets of the polished hybrid alignments with > 5x coverage (ridge labels) including the Illumina reference alignment (illumina, bottom
ridge), the between-species Neisseria gonorrhoeae polished alignment by Sanderson and colleagues (16) (sanderson), as well as the Staphylococcus aureus mixed lineages
(saureus_mix), ST93 Far North Queensland (saureus_fnq) and ST93 Papua New Guinea (saureus_png).

variability in branch lengths as a result of excessive false pos-344

itive SNP calls retained in low-coverage FNQ isolates (Fig.345

5). Neverthless, when compared to the NanoPath Illumina346

reference estimates, ST93-polished estimates (saureus_png,347

saureus_fnq) closely resembled those of the reference, with348

only minor deviations (Fig. 6, Table S2). Estimates were con-349

sistent with full lineage-wide analysis (Re > 1.5-2.0, Steinig350

et al. 2021, in preparation) and we observed robust estimates351

in an exploration of the Re prior (Table S2, Fig. S6, S7). We352

therefore demonstrate that SNP polishing enables the use of353

birth-death skyline models for outbreak parameter estimation,354

even with low-coverage nanopore sequencing data (5x - 10x).355

We have implemented training, evaluation and deployment356

of SNP polishers for within-lineage transmission modelling in357

Nextflow.358

Discussion359

In this study we provide a method for variant polishing and360

phylodynamic modelling of bacterial whole genome data using361

low-coverage nanopore sequencing. Previous studies using362

(high-coverage) nanopore data have evaluated phylogenetic363

reconstructions on few and distantly related isolates of Neis-364

seria gonorrhoeae as well as other bacterial genomes from365

assembly (16, 20, 21). A recent pipeline for cluster identi-366

fication using 6 strains per MinION flow-cell (42 on 7 flow-367

cells) successfully identified clusters in four distinct lineages,368

using a whole genome assembly based phylogeny (29). How-369

ever, full outbreak reconstruction within the outbreak lineage370

— allowing for Bayesian model applications to estimate epi-371

demiological parameters within the phylogeny — has so far372

not been conducted. Here, we show that the application of373

Random Forest SNP polishers developed by Sanderson and374

colleagues (16) can sufficiently reduce the number of false375

positive SNP calls from neural-network variant caller Clair376

v.2.1.1 (13). Hybrid lineage alignments of ONT sequence377

and Illumina background data of the outbreak lineage (ST93)378

can be constructed, and effective reproduction numbers accu-379

rately modelled using birth-death skyline models in BEAST2 380

(30). Interestingly, the Random Forest classifiers failed to 381

polish Medaka v1.2.3 reference-specific SNP calls (Fig. S3), 382

even though the Medaka-Bonito model is trained explicitly on 383

microbial signal data from E. coli and an experimental ver- 384

sion (v0.1.0) was sucessfully used for polishing by Sanderson 385

and colleagues (16). Polishing success of Clair calls suggest 386

that the features selected here - in particular the proximity 387

and quality features (Fig. 3B-D) - were effective at remov- 388

ing systematic false positive SNP calls, when trained with 389

reference calls against specific reference genomes (e.g. ST93 390

outbreak genomes against ST93-MRSA-IV JKD6159 reference 391

genome). Systematic error correction is supported by obser- 392

vations that SNP calling did not improve considerably using 393

Bonito v0.3.6 R9.4.1 DNA models compared to Guppy high 394

accuracy (Fig. S5) and methylation-awar e models (data not 395

shown). SNP polishers therefore appear to exploit system- 396

atic errors in the neural networks (trained on human variant 397

calls) when applied to bacterial genomes. It remains to be 398

seen whether re-training Clair or Medaka neural networks on 399

S. aureus specific signal- and sequence-data would improve 400

species-specific SNP calls. 401

We demonstrate the utility of our method by sequencing 402

novel isolates of community-associated MRSA from a paedi- 403

atric osteomyelitis outbreak in the highland towns of Kundiawa 404

and Goroka (Papua New Guinea) and routine surveillance in 405

remote northern Australia (Far North Queensland) (Fig. 1, n 406

= 181). A protocol that minimised cost (without optimisation) 407

allowed us to sequence two consecutive panels of 12 isolates 408

with rapid barcoded libraries on a MinION flow cell (SQK- 409

RBK-004), by using an interspersing nuclease flush (ONT, 410

EXP-WSH-003). We note that spin column extractions re- 411

sulted in several fragmented barcodes that failed assembly 412

(12/96). Overall, phylodynamic models were mostly affected 413

by very low coverage isolates (< 5x) whereas even low-medium 414

coverage isolate (>= 5x) produced consistent estimates of the 415

effective reproduction number for the PNG an FNQ clades, 416

when compared to the Illumina reference (Fig. 6). Accurate 417
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modelling was possible even with inter-species polishers trained418

on N. gonorrhoeae in higher coverage isolates in PNG. Esti-419

mates were more variable in the low-coverage FNQ outbreak420

clade and for optimal performance some protocol optimisation421

will be required, and may include extraction protocols for422

long-reads, inclusion of a magnetic bead cleanup step (oblig-423

atory in the latest iteration of the ONT rapid kit protocols,424

May 2021), or short read elimination kits. While we were ulti-425

mately unable to use a total of 32 isolates (< 5x coverage) in426

the phylodynamic estimation, the cost per S. aureus genome427

using the 24x multiplex protocol ranges between USD $40428

(no failures over 181 unique samples) and around USD $50429

per genome with two repeat flow cells from already extracted430

cultures (Supplementary Material 2). Further optimization431

would incur small additional cost and can be conducted for432

bacterial pathogens of interest in sufficiently resourced labora-433

tories. While we chose S. aureus as a model organism for this434

work mainly due to its relatively small genome (2.8 Mbp) and435

our interest in sequencing the outbreaks in PNG and FNQ,436

core principles and methods used in this study are immediately437

applicable to other bacterial pathogens and all steps of the438

pipelines are implemented in replicable Nextflow workflows439

(Methods).440

We evaluated genotype reconstruction against previously441

sequenced Illumina data (Steinig et al. 2021) demonstrating442

the superior quality of hybrid assembly with Unicyler. Our443

genotyping analysis showed that for high coverage isolates (>444

10x) genotyping directly from polished nanopore assembly was445

comparable to hybrid approaches (Fig. 2). We used the most446

recent models in Bonito v0.3.6 for base calling followed by447

polished long-read assembly or hybrid assembly. With the448

imminent release of R10.3 pores and associated increases in raw449

read accuracy (estimated at Q20) we expect that the remaining450

misclassifications in genotypes from assemblies (mostly in451

MLST and SCCmec subtyping) will be eliminated and produce452

nanopore assemblies comparable to reference assemblies at453

> 5x - 10x coverage. We chose here to implement a rapid454

and minimal protocol to evaluate its application in remote455

reference laboratories, such as at the Papua New Guinea456

Institute of Medical Research. Our method requires some457

context from genomic surveillance at the level of full lineages458

(e.g. ST93 or ST772), in order to situate nanopore-sequenced459

outbreaks within the wider lineage context and fix the clade460

birth-death model substitution rate. Given that substitution461

rates vary between S. aureus lineages (17), an estimate from462

the background data is required to fix substitution rates within463

the outbreak clusters. For optimal polishing results it appears464

to be effective to train the Random Forest polishers on lineage-465

specific data, noting that effective polishing was still achieved466

when training isolates derived from a different part of the tree467

within the lineage (e.g. FNQ-trained polishers were effective on468

PNG isolates). In higher coverage isolates effective polishing469

was also achieved with the mixed S. aureus and N. gonorrhoeae470

models; we note that only three isolate with matching Illumina471

and ONT data are required for training the polishers.472

We did not expect significant rate variation in the outbreak473

clades, which made computation of clade parameters with a474

lineage-wide fixed substitution tractable. We note that within-475

outbreak patterns of divergence vary between phylogenies (Fig.476

5), and considering the number of remaining false positive477

and false negative SNPs after polishing (Fig. 4), we did not478

expect within-outbreak transmission chains to be reproducible. 479

Optimization of SNP polishing or variant calling, for example 480

with species-specific neural networks, remains to be investi- 481

gated. For this study, we accelerated computation using the 482

BEAGLE v3 library (31) in combination with BEAST2. Moderate 483

acceleration on standard hardware (< 5 - 7 hours) and in- 484

creased acceleration on NVIDIA P100 GPUs (< 2 hours) were 485

achieved. Nanopore-driven outbreak sequencing and GPU 486

acceleration in BEAST2 thus enable the rapid deployment of 487

phylodynamic models and responsive surveillance of bacterial 488

diseases. 489

Materials and Methods 490

491

Outbreak sampling in FNQ and PNG 492

We collected isolates from outbreaks in two remote populations 493

in northern Australia and Papua New Guinea (Fig. 1). Isolates 494

associated with paediatric osteomyelitis cases (mean age of 8 years) 495

were collected from 2012 to 2017 (n = 42) from Kundiawa, Simbu 496

Province (27), and from 2012 to 2018 (n = 35) from patients in 497

the neighbouring Eastern Highlands province town of Goroka. We 498

supplemented the data with MSSA isolates associated with se- 499

vere hospital-associated infections and blood cultures in Madang 500

(Madang Province) (n = 8) and Goroka (n = 12). Isolates from com- 501

munities in Far North Queensland, including metropolitan Cairns, 502

the Cape York Peninsula and the Torres Strait Islands (n = 91), 503

were a contemporary sample from 2019. Isolates were recovered on 504

LB agar from clinical specimens using routine microbiological tech- 505

niques at Queensland Health and the Papua New Guinea Institute 506

of Medical Research (PNGIMR). Isolates were transported on swabs 507

from monocultures to the Australian Institute of Tropical Health 508

and Medicine (AITHM Townsville) where they were cultured in 10 509

ml LB broth at 37°C overnight and stored at -80°C in glycosol and 510

LB. Illumina short-read data from the ST93 lineage (28) included 511

in this study were collected from the European Nucleotide Archive 512

(Supplementary Tables). 513

Nanopore sequencing and basecalling 514

2 ml of LB broth was spun down at 5,000 x g for 10 minutes and 515

after removing the supernatant, 50 ul of 0.5 mg / ml lysostaphin 516

were added to the tube and vortexed. Cell lysis was conducted at 517

37°C for 2 hours with gentle shaking followed by a proteinase K 518

digestion for 30 mins. at 56°C. DNA was extracted using a simple 519

column protocol from the DNeasy Blood & Tissue kit (QIAGEN) 520

following the manufacturer’s instructions. DNA was eluted in 70 ul 521

of nuclease-free water, quantified on Qubit, and DNA was stored 522

at 4°C until library preparation. Library preparation was done 523

using approx. 420 ng of DNA and the rapid barcoding kit with 12 524

barcodes (ONT, SQK-RBK004) as per manufacturer’s instructions. 525

Basecalling was done using the R9.4.1 high accuracy (HAC, Fig. 526

S5), the HAC methylation model (not shown), and the all context 527

methylation odel (used for all analyses), run on a local NVIDIA 528

GTX1080-Ti or a remote cluster of NVIDIA P100 GPUs. Sequence 529

runs were conducted with 2 x 12 barcoded (SQK-RBK004) isolates 530

per flowcell in two consecutive 18-24 hour runs. Libraries were 531

nuclease flushed using the wash kit between consecutive runs (EXP- 532

WSH-003). This is sufficiently effective to remove read carry-over, 533

as demonstrated previously with hybrid assemblies of sequentially 534

sequenced Enterobacteriaceae (32) and our analysis of a single 535

library panel (FNQ-2) sequenced on a previously used flow cell 536

with a human library. After washing with EXP-WSH-003 a total of 537
2910

294461 reads were classified as human in the S. aureus library, about 538

twice as much as human contamination in other runs. Sequencing 539

runs were managed on two MinIONs and monitored in MinKNOW > 540

v20.3.1. 541

nextflow run np-core/np-signal -profile docker
--container np-core/signal:latest --config default
--basecaller bonito --fast5 "*.fast5"

↪→

↪→
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Nanopore genome assembly and quality control542

Genome assemblies for genotyping were constructed using543

our Nextflow assembly pipeline (https://github.com/np-544

core/np-assembly) which first randomly subsamples reads545

to a maximum of 200x coverage with rasusa v0.3.0546

(https://github.com/mbhall88/rasusa) and filtered Q > 7547

with minimum read length of 100 bp using nanoq v0.8.0548

(https://github.com/esteinig/nanoq). Fastp v0.20.1 (33) was549

used to trim adapter and low quality Illumina sequences. We then550

constructed three types of assemblies: a polished long-read assembly551

using ONT data only (flye), one with short-read correction of the552

ONT long-read assembly (pilon) and one that first assembles short-553

reads and scaffolds the assembly with long-reads. For the polished554

long-read assembly, Flye v2.8.3 was used in conjunction with four555

iterations of minimap2 v2.17-r941 (34) + Racon 1.4.20 (35) and556

subsequent polishing with Medaka 1.2.3. For the long-read hybrid557

assembly, corrections were conducted with Illumina paired-end558

reads for each genome using two iterations of Pilon v1.2.3.559

For the short-read hybrid assembly, we used Unicycler v0.4.8.560

Reference Illumina assemblies were generated with the pipeline561

Shovill v1.1.0 (https://github.com/tseemann/shovill) using562

Skesa v2.4.0 and genotyped with Mykrobe v0.9.0 (36) (from563

reads) and SCCion v0.4.0 (https://github.com/esteinig/sccion),564

a wrapper around common assembly-based genotyping tools and565

databases (37–39) for S. aureus. We called species, resistance genes,566

virulence factors, Panton-Valentine leukocidin (PVL), multi-locus567

sequence type, mecA and major SCCmec cassette subtypes. We568

assessed differences between the Illumina references and hybrid-569

or nanopore assemblies using the dnadiff v1.3 to determine570

assembly-based differences in SNPs and Indels, as well as assess571

overall identity between genomes (Supplementary Fig. 2). Coverage572

against the reference genome (ST93: JKD6159) (40) was assessed573

using CoverM v0.6.0 (https://github.com/wwood/CoverM).574

nextflow run np-core/np-assembly -profile docker
--container np-core/assembly:latest --fastq "*.fastq"
--illumina "*_{1,2}.fq.gz" --genome_size 2.8m

↪→

↪→

De novo variant calling amd Random Forest SNP polishers575

We called SNPs de novo using the neural-network callers Medaka576

v1.2.3 (https://github.com/nanoporetech/medaka) and Clair577

v2.1.1 (shown in example pipeline executions).578

nextflow run np-core/np-variants -profile docker
--container np-core/variants:latest --workflow
"denovo" --caller "clair"

↪→

↪→

Snippy v4.6.0 (https://github.com/tseemann/snippy) was used579

to generate a core site alignment of the ST93 background popula-580

tion (n = 444, 6161 SNPs) and reference Illumina core alignments581

including the outbreaks in FNQ and PNG isolates (> 5x, n = 531,582

6580 SNPs). Snippy variant calls (SNP type) were used as reference583

truth for matching ONT and Illumina sequenced isolates.584

nextflow run np-core/np-variants -profile docker
--container np-core/variants:latest--workflow snippy
--illumina "*_{1,2}.fq.gz"

↪→

↪→

We implemented the feature extraction and Random Forest de-585

sign from Sanderson and colleagues (16) who use the RandomForest586

classifier from scikit-learn (41) with default hyperparameter set-587

tings and feature extraction with pysamstats. Like the original588

implementation, we sub-sampled isolates to 2, 5, 10, 20, 50 and589

100x coverage with rasusa to account for read coverage in training590

and evaluating the classifiers. . For training, we created three sets591

of matching Illumina and ONT sequence data, each with three iso-592

lates for training: three mixed sequence types (ST88, ST15, ST93)593

(saureus_mixed), one of Far North Queensland within-lineage iso-594

lates (ST93) (saureus_fnq) and one of Papua New Guinean within-595

lineage isolates (ST93) (saureus_png). Training and validation sets596

for the classifiers were split into 60% trianing and 40% validation597

data.598

nextflow run np-core/np-variants -profile docker
--container np-core/variants:latest --workflow
"random_forest" --subworkflow "train" --train_dir
training_sets/ --train_references jkd6159.fasta
--caller "clair"

↪→

↪→

↪→

↪→

Next we evaluated the classifiers, including the N. gonnorhoeae 599

classifier trained by Sanderson and colleagues, using the remaining 600

isolates from FNQ and PNG (Fig. 1). We defined true positive 601

(TP) SNPs as those that were called by both Illumina Snippy and 602

ONT Clair, false positive (FP) as ONT SNPs that were not called 603

with Snippy, and false negative (FN) Snippy calls that were missed 604

by ONT calls or later excluded in the Random Forest filtering step. 605

Since we used the de novo Snippy calls as reference, true negative 606

(TN) calls (sites called as wild type by ONT and Snippy) were not 607

able to be considered. We combined data from both outbreaks 608

(nST93 = 118, nother = 44) and computed accuracy, precision, recall 609

and F1 scores for each evaluation against Illumina reference data 610

(Supplementary Tables 5, 6, Fig. 4). 611

nextflow run np-core/np-variants -profile docker
--container np-core/variants:latest --workflow
"random_forest" --subworkflow "eval" --eval_dir
eval_sets/ --eval_references jkd6159.fasta --caller
"clair"

↪→

↪→

↪→

↪→

Hybrid core site outbreak alignments 612

To contextualise polished ONT isolates called with Clair within the 613

wider background of the ST93 lineage, we adopted the core func- 614

tionality from Snippy’s core alignment caller (snippy-core) into 615

an ONT and Illumina core SNP alignment caller in the NanoPath 616

package (https://github.com/np-core/nanopath). Core SNP sites 617

were defined by polymorphic SNP sites present in genomes of all 618

isolates included in the alignment, excluding any site that in any 619

one isolate falls into a gap, or any site with less than --min_cov cov- 620

erage (default: 1x). We first polished ONT SNPs from Clair with 621

the trained Random Forest models, including the N. gonnorhoeae 622

dataset from Sanderson et al. (16). We then created reference 623

alignments of the Illumina data (ST93 background and outbreaks, n 624

= 531, > 5x) with snippy-core, as well as a reference Illumina and 625

polished hybrid alignments with ONT outbreak SNPs in NanoPath 626

(Fig. 5). 627

np variants hybrid-denovo --vcf_snippy ST93/ --vcf_ont
outbreaks_polished/ --reference jkd6159.fasta
--min_cov 1 --caller "clair"

↪→

↪→

ML phylogenetics and Bayesian model configurations 628

ML phylogeny of the ST93 lineage was reconstructecd from 629

the Illumina and ONT polished alignments, including the out- 630

breaks. We used RAxML-NG (42) with the general time reversible 631

model and Gamma rate heterogeneity with 4 categories and 632

the Lewi’s ascertainment bias correction for SNP alignments 633

(GTR+G+ASC_LEWIS). Trees were rooted on SRR115236 (early 634

isolate from 1992, near the root of the phylogeny) (28) and deco- 635

rated with meta data of sample origin at state level in ITOL (43). 636

Sampling dates in years were provided for each isolate. 637

nextflow run np-core/np-phybeast -profile docker
--container np-core/phybeast:latest --workflow ml
--alignment "*.fasta" --dates dates.tsv

↪→

↪→

We next subsetted the full lineage alignments to the isolates in 638

the large clades of the FNQ (n = 36) and PNG (n = 62) outbreaks. 639

We then configured birth-death skyline models in BEAST2 using a 640

custom Python interface (np beastling) that stores model config- 641

urations of the serially (PNG) and contemporaneously sampled 642

models (FNQ) in YAML files. Birth-death models consider dynam- 643

ics of a population forward in time using the (transmission) rate λ, 644

the death (become uninfectious) rate δ, the sampling probability ρ, 645

and the time of the start of the population (outbreak; also called 646

origin time) T . The effective reproduction number (Re), can be 647

directly extracted from these parameters by dividing the birth rate 648

by the death rate (λ
δ
). We configured the model priors as outlined in 649

Table 1. Importantly, we set a lineage-wide fixed substitution rate 650

prior (3.199 × 10−04, Steinig et al. 2021, in preparation) to account 651

for the loss of temporal signal in the soutbreak subset alignments. 652

Beastling constructs the BEAST2 XML model files which can be 653

run with the BEAGLE library on GPU: 654

np beastling xml-bdss -a polished.fasta -d dates.tsv -y
outbreak.yaml -l 100000000 -p outbreak_model↪→
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Table 1. Birth-death skyline outbreak priors

Prior Configuration

Lineage origin (T ) Gamma(2.0, 40.0)
Reproduction number (Re) Gamma(2.0, 2.0)*
Become uninfectious rate (δ) Lognormal(1.0, 1.0)
Sampling proportion (ρ) Beta(1.0, 1.0)
Clock rate (strict) 3.199 × 10−04

Re prior exploration (S6, S7)

Results were summarized using the bdskytools package in655

R, where median higher posterior density intervals (HPD) were656

computed in custom plotting scripts that can be found along657

with all other results from the pipelines and model runs at:658

https://github.com/esteinig/ca-mrsa659

Data availability660

Sequence data (Illumina, ONT) has been deposited under661

BioProject: PRJNA657380. BEAST XML files and logs of the662

model runs can be found at: https://github.com/esteinig/ca-663

mrsa664
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Supplementary Materials 772

S1: Cost estimates of rapid dual panel barcoding protocol 773

• Sequencing cost per genome (as applied to data from PNG / 774

FNQ, in Australian $): 4 ×FLOMIN + 8 ×RBK+ 96 ×LS+ 775

96 × DNeasy + 96 × Qubit + 4 × WSH = $4, 882 at $50.22 776

per genome (excluding culture, tips etc.) and $53.29 per 181 777

unique genomes from PNG and FNQ 778
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Table S2. Birth-death skyline posteriors

Alignment MRCA 95% HPD (MRCA) Re 95% HPD (Re)

PNG
illumina 2000.39 1997.74 - 2002.74 2.54 1.20 - 4.93
sanderson 2000.42 1998.33 - 2002.36 2.59 1.24 - 4.98
saureus_mix 1995.51 1992.58 - 1999.98 2.55 1.21 - 4.92
saureus_fnq 1999.87 1997.60 - 2002.21 2.58 1.21 - 5.00
saureus_png 2000.85 1998.59 - 2002.84 2.64 1.25 - 5.07
FNQ
illumina 2006.53 2004.11 - 2008.76 2.36 1.17 - 4.62
sanderson 1856.71 1845.2- - 1867.65 1.02 0.90 - 1.21
saureus_mix 1982.0 1977.72 - 1986.16 1.71 1.04 - 3.24
saureus_fnq 2000.79 1997.39 - 2003.95 2.42 1.17 - 4.68
saureus_png 2004.77 2002.67 - 2006.53 2.54 1.19 - 4.92

• Sequencing cost per genome (with resequencing of 48 isolates,779

in Australian $): 6 ×FLOMIN + 12 ×RBK+ 96 ×LS+ 96 ×780

DNeasy + 96 ×Qubit+ 6 ×WSH = $6, 699 = approximate781

cost of $69.78 per genome (excluding culture, tips etc.) and782

$75.28 per 181 unique genomes from PNG and FNQ783

S2: Candidate-guided SNP calls using Megalodon784

We evaluated a candidate-guided approach to reconstruct the phylo-785

genetic divergences of nanopore-sequenced outbreak in PNG using786

a set SNPs at sites present in all isolates (core SNPs) called from787

existing population-wide background data of the ST93 lineage with788

Snippy v4.6.0 (Illumina, n = 444, SNPs). SNPs from the known789

population were used as input to the candidate variant calling790

workflow in Megalodon v2.2.10 (methylation-ware high-accuracy791

model, Guppy v4.2.3) and merged with the alignment of the back-792

ground population (n = 495, SNPs). We used only isolates that793

passed genome assembly for the variant calling and phylogenetics794

(Fig. 1). Although slight variations in tree topology were observed795

in the divergence of the smaller monophyletic introduction into796

Papua New Guinea (PNG-2), the outbreaks diverged from their797

respective source populations (East Coast - PNG, North Eastern -798

FNQ) and deduction of their regional origin was not affected (Fig.799

S1). Importantly, putative transmissions from Papua New Guinea800

remained recognizable in the candidate-guided approach, thus al-801

lowing for the correct inference of sporadic regional transmission802

events (grey inside blue clade, Fig. S1). We estimated the date of803

divergence from the source population on the candidate phylogeny804

using Treetime v0.8.1 (46) (PNG-1: 2004.45, 90% maximum pos-805

terior region (MPR): 2003.02 – 2005.71, PNG-2: 2000.74, 90% MPR:806

2000.11 – 2001.47) and found that it reasonably approximated the807

estimate from the Illumina reference phylogeny (PNG-1: 2002.09,808

90% MPR: 2000.97 – 2003.81, PNG-2: 2000.36, 90% MPR: 1999.73809

– 2001.34). Estimates of lineage-wide substitution rates estimates810

from the SNP alignments were moderately consistent between the811

candidate approach (2.884e-04 +- 1.30e-05 σ) and the Illumina812

reference (3.174e-04 +- 1.19e-05 σ) and fall within the expected813

range of other S. aureus lineages and previous estimates for ST93.814

However, it was not possible to recreate within-outbreak relation-815

ships, because novel variation in the outbreaks was not captured816

in the core-genome variants of the background population (blue).817

Since the outbreak in the highlands has been ongoing since at least818

the 2000s, sufficient novel variation has accumulated in the PNG819

clade. Thus, given the absence of informative branch lengths within820

outbreaks, we were unable to conduct additional outbreak-specific821

phylodynamic analysis of these data.822
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Fig. S1. Candidate-guided variant calling workflow (A) and phylogenetic reconstruction of the Papua New Guinea (PNG) clusters PNG-1 and PNG-2 in the ML phylogeny (B)
using candidate-guided core SNP sites from the lineage background population.
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Fig. S2. Raw SNP call accuracy, precision and recall (left, all isolates split into ST93 and other sequence types) from Clair (blue) and Medaka (red). Right plots show absolute
numbers of false negatives, false positives and true positives on a log scale.
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Fig. S3. Medaka (all coverage) SNP calling accuracy, precision and recall compared to Snippy (Illumina reference) calls. Left plots show the metric distribution across ST93
(outbreak clades, n = 118) and other sequence types (split panels, n = 44). Right plots show absolute numbers of false negatives, false positives and true positives on a log
scale.
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Fig. S4. Clair (all coverage, n = 159) SNP calling accuracy, precision and recall compared to Snippy (Illumina reference) calls. Left plots show the metric distributions across
ST93 (outbreak clades) and other sequence types (split panels). Right plots show absolute numbers of false negatives, false positives and true positives on a log scale.
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Fig. S5. Isolates from the Papua New Guinean outbreak polished using Random Forest classifiers on Guppy v.4.2.3 (high accuracy model) base called reads and SNP calls
using Clair, showing similar error profiles as Bonito v0.3.6 base called reads and SNP calls.
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Fig. S6. Maximum likelihood phylogeny of Neisseria gonnorhoeaea polished ONT SNPs of ST93-MRSA-IV outbreaks in Far North Queensland (FNQ, red) and Papua New
Guinea (green). Complete branches are shown compared with Fig. 5, including extremely abnormal branch length of FNQ-36 and FNQ-62.
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Fig. S7. Birth-death skyline posterior estimates of the serially sampled PNG outbreak of ST93-MRSA-IV with a different prior of the effective reproduction number (Re) using a
Gamma(2.0, 1.0) and Gamma(2.0, 0.5) configuration.
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Fig. S8. Birth-death skyline posterior estimates of the contemporaneously sampled FNQ outbreak of ST93-MRSA-IV with a different prior of the effective reproduction number
(Re) using a Gamma(2.0, 1.0) and Gamma(2.0, 0.5) configuration.
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