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Abstract

Motivation: Most genomes harbor a large number of transposons, and they play
an important role in evolution and gene regulation. They are also of interest to
clinicians as they are involved in several diseases, including cancer and
neurodegeneration. Although several methods for transposon identification are
available, they are often highly specialised towards specific tasks or classes of
transposons, and they lack common standards such as a unified taxonomy
scheme and output file format. Moreover, many methods are difficult to install,
poorly documented, and difficult to reproduce.

Results: We present TransposonUltimate, a powerful bundle of three modules for
transposon classification, annotation, and detection of transposition events.
TransposonUltimate comes as a Conda package under the GPL-3.0 licence, is
well documented and it is easy to install. We benchmark the classification module
on the large TransposonDB covering over 891,051 sequences to demonstrate that
it outperforms the currently best existing solutions. The annotation and detection
modules combine sixteen existing softwares, and we illustrate its use by
annotating Caenorhabditis elegans, Rhizophagus irregularis and Oryza sativa
subs. japonica genomes. Finally, we use the detection module to discover 29,554
transposition events in the genomes of twenty wild type strains of Caenorhabditis
elegans.

Availability: Running software and source code available on
https://github.com/DerKevinRiehl/TransposonClassifierRFSB. Databases,
assemblies, annotations and further findings can be downloaded from
https://cellgeni.cog.sanger.ac.uk/browser.html?shared=transposonultimate.

Keywords: Transposable elements; Transposon classification; Transposon
annotation; Transposon detection

1 Introduction
Transposons are evolutionary ancient mobile genetic elements that can move via

copy&paste and cut&paste transposition mechanisms. They can be classified within

a taxonomic scheme (Fig. 1A), and each class is associated with a set of charac-

teristics, e.g. proteins relevant for transposition and structural features (Fig. 1 B).

During transposition, transposable elements (TEs) can leave structural patterns

both at the insertion and the deletion site [1, 2, 3]. Autonomous transposons en-

code the tools necessary for transposition events, e.g. genes producing transposase,

integrase and other enzymes [3], while non-autonomous transposons depend on pro-

teins encoded elsewhere [4]. As the insertion of a transposon can be detrimental,

many species have developed repression mechanisms, e.g. TE promoter methyla-

tion [5] and piRNAs [6]. Even though transposition events occur rarely [7], in many
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organisms large sections of DNA consist of either transposons or their transposition-

incompetent descendants that have accumulated mutations over time [4]. It is esti-

mated that transposons make up a large share of the genome in many species; 45%

in humans, 20% in fruit flies, 40% in mice, 77% in frogs and 85% in maize [8].

Studying TEs is highly relevant for understanding evolutionary processes [9], de-

velopmental biology, gene regulation, and many diseases called transposonpathies

such as subtypes of haemophilia, immunodeficiency, cancer and Alzheimer’s dis-

ease [10, 11, 12]. Also, TEs are popular for genetic engineering purposes as they

allow for direct insertion of their genetic cargo into a target genome [13, 14, 15].

However, the repetitive nature of transposons and their descendants is a challenge

for their analysis and discovery, in particular when using short-read sequencing

technologies [7]. Long-read technologies facilitate studies of transposons and their

functional consequences, but they also require novel computational tools. Although

various approaches for identifying transposons have been proposed recently [16],

current tools are error prone, not robust, mostly rely on prior knowledge of trans-

poson sequences, and are often limited to a family of transposons or a group of

species [17].

Here, we present a bundle of tools addressing three different tasks related to

transposon identification: classification, annotation and detection. The goal of clas-

sification is to determine which taxonomic class a given transposon sequence be-

longs to. The annotation task consists of scanning a genome sequence to mark all

transposons. Finally, the detection task involves the comparison of two genomes to

identify structural variants arising from the insertion of TEs.

Existing transposon classifiers are difficult to compare directly since they vary in

their approach, which features and taxonomies they use, how they evaluate pre-

dictions, and which databases are used for training. Applications of SVMs [18],

hidden Markov models [19], random forests [20], Gaussian naive Bayes [21], de-

cision trees [22], stacking [23, 24], boosting [25, 26], neural networks [27, 28, 29],

evolutionary algorithms [30, 21] and genetic algorithms [31, 32, 33, 34] can be found

in the literature. Most methods use sequence features, such as the k-mer frequency,

the occurrence of structural [35] and protein features [18] for classification. Besides,

another approach is to classify TEs using the similarity to known transposons based

on a sequence library [36].

The annotation of transposons in nucleotide sequences is challenging due to the

presence of transposition-incompetent TEs that have been mutated, truncated, de-

graded, fragmented and dismembered due to nesting [37]. Annotation is further

complicated by a lack of standards [38] and disagreement on definition, taxonomy

and terminology [39, 40]. Since transposons do not adhere to a universal struc-

ture [41], many researchers have employed class-specific approaches [42]. More-

over, most of the software employed for transposon annotation was originally de-

signed for gene annotation, neglecting the peculiarities of transposons [39]. Ex-

isting transposon annotation methods (Table 1) can be assigned to one or more

approaches [43, 2, 1, 41]. The de novo approach finds transposons by identifying

repetitive sequences. It is effective in discovering previously unknown transposons

with high prevalence [41], but it is computationally costly [41, 39], unable to find

degraded transposons [41], and risks misidentifying repetitive DNA or high copy
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number genes as transposons [44, 45]. The structure-based approach (also called

motif-based [42] or signature-based approach [2]) is based on knowledge of the

structure of transposons and annotates by finding combinations of characteristic

patterns [38, 46]. This approach enables the discovery of transposition-incompetent

transposons thanks to their unique structural properties [41]. However, these ap-

proaches are often characterised by high false discovery rates [37, 44] and they miss

transposons with weak signatures [37]. The similarity-based approach (also called

library-based approach [2]) employs a library of known transposons together with

BLAST(-like) tools. The high accuracy [41] and short runtimes [44, 47] of this ap-

proach come at the cost of its inability to find unrelated transposons [41, 47] and

the dependency on quality and exhaustiveness of the library [38, 44, 48]. Moreover,

the current version of the most widely used database RepBase [49] is behind a

paywall and the related tools RepeatMasker and RepeatModeler are not transpar-

ent with regards to how transposons were curated and consensus sequences were

generated [39].

Previous efforts to detect transposition events by comparing two genomes have

been based on the analysis of the depth of coverage, discordant and split read

pairs [50, 51]. However, both the task of detecting structural variants (SVs) and an-

notating TEs are very challenging when using short reads [7]. Recently, long-reads

technologies have become more widely available, but to the best of our knowl-

edge the only existing method that can take advantage of them for TE detection

is LoRTE [52]. Although results indicate that LoRTE performs well even on low

coverage reads, it is limited to PacBio data and insertion and deletion SVs only.

Here, we present TransposonUltimate, a set of tools for the identification of trans-

posons, consisting of three modules for accurate classification, annotation in nu-

cleotide sequences and detection of transposition events (Fig. 2). Our new classifier

is benchmarked against existing softwares, and we use the annotation module to

analyse the genomes of three different species. Finally, the detection module is em-

ployed to identify transposition events in 20 high quality genomes from Caenorhab-

ditis elegans wild isolates that were assembled using a combination of long- and

short-read technologies.

2 Materials and methods
2.1 Transposon classification module, RFSB

Given a nucleotide sequence that is considered to be a transposon, the goal is to

determine the class of a transposon according to a given taxonomy. This task is

a hierarchical classification problem, meaning the classifier needs to identify mul-

tiple classes that stand in a relationship described by a taxonomic hierarchy. The

design of the classification module includes several aspects; choosing a transposon

database, feature selection, model structure, training strategy, model implementa-

tion, evaluation and benchmarking.

The classifiers considered here are supervised learning algorithms, and conse-

quently their performance is limited by the data used for training. Previous studies

used small transposon sequence databases, each with different taxonomic schemes,

which does not allow for a direct comparison. Therefore, we created TransposonDB

(Fig. 3, File F1), a large collection of transposon sequences that consists of ten
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databases: ConTEdb [53] (http://genedenovoweb.ticp.net:81/conTEdb/index.

php), DPTEdb [54] (http://genedenovoweb.ticp.net:81/DPTEdb/browse.php?

species=cpa&name=Carica_papaya_L.), mipsREdat-PGSB [55] (https://pgsb.

helmholtz-muenchen.de/plant/recat/index.jsp), MnTEdb [56] (http://genedenovoweb.

ticp.net:81/MnTEdb1/), PMITEdb [57] (http://pmite.hzau.edu.cn/download_

mite/), RepBase [58] (https://www.girinst.org/repbase/) [1], RiTE [59] (https:

//www.genome.arizona.edu/cgi-bin/rite/index.cgi), Soyetedb [60] (https:

//www.soybase.org/soytedb/#bulk), SPTEDdb [61] (http://genedenovoweb.

ticp.net:81/SPTEdb/browse.php?species=ptr&name=Populus_trichocarpa) and

TrepDB [62] (http://botserv2.uzh.ch/kelldata/trep-db/downloadFiles.html).

To create the database, the taxonomies were unified, duplicates were dropped and

several filter rules were applied (Table S1 ). Filtering included the removal of se-

quences with no label, the exclusion of fragments, contigs, satellites and RNA

sequences. Moreover, only sequences with a length greater than 100bp and those

including at least once each of the letters ’A’,’C’,’G’ and ’T’ were kept. To the

best of our knowledge, this is the largest database of transposon sequences avail-

able. Since TransposonDB covers all relevant Eukaryotic kingdoms, it allows for the

training and evaluation of a robust, cross-species hierarchical classification model

(Table S2 + S3 ). Moreover, the database is balanced and covers sufficient examples

for all taxonomic nodes (Table S4 ).

We selected the combination of relative k-mer frequencies and binary protein

features for our classifier. Relative k-mer frequencies represent the number of oc-

currences of a k-mer within a sequence divided by the number of times it would

appear if the sequence consisted of this k-mer only. Protein features are binary,

indicating the presence of a certain protein domain in the sequence. The feature

vector consists of k-mer frequencies (k = 2, 3, 4) and 169 selected domains from

NCBI CDD [63] covering class-specific transposons (Table S5 ). RPSTBLASTN

(v2.10.1) was used to annotate the conserved domain models at an e-value of 5.0

as it performed best in terms of classification performance (Fig. S1 A-B). In ad-

dition, two model structures were explored. The binary structure employs binary

classifiers for each node (= transposon class) of the taxonomy. After inference of

the binary classifiers, the taxonomic class can be determined by choosing the most

probable node at each stage. The multilabel structure employs a multilabel classifier

for each parent node of the taxonomy with n+1 classes representing the taxonomic

child classes and -1 (return scenario). After inference, the taxonomic class can be

determined by choosing the most probable child node at each stage or to return

to a higher level and then choose the second most probable child node at that

stage. Moreover, we explored two training strategies. The comprehensive training

strategy trains each classification node with the whole training set, while the se-

lective training strategy trains each classification child node with a training set

that was activated by the parent node. All training strategies, model structures and

feature generation were implemented in Python (v3.6.9). Models implementing ran-

dom forests, AdaBoost, logistic regression, SVM and Naive Bayes from the machine

learning package scikit-learn (v0.23) [64] were explored. Random forest consistently

[1]We use version 23.08 that was the last publicly available version before the paywall

was introduced.
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yields the highest classification performance (Fig. S2 ). Based on these results, we

propose a random forest classifier with a selective training strategy on a binary

model structure, RFSB.

Previous transposon classification studies use different performance measures, tax-

onomies, training and testing sets, making it hard to compare them. To evaluate

the performance, we consider three perspectives. The first perspective is based on

hierarchical precision and recall, meaning it considers the whole taxonomy, as pro-

posed in [65]. The second perspective evaluates for different taxonomic levels and

the third perspective captures the classification performance of single classes. We

benchmark RFSB againts TERL [29], TopDown [24], NLLCPN [27], HC LGA [33]

and HC GA [31], as their published code allowed for reproduction. To ensure a fair

comparison, source codes were partially modified to allow the training and evalua-

tion of these models on the taxonomy used in our work and TransposonDB.

2.2 Transposon annotation module, reasonaTE

Given an assembled genome, the goal of the annotation module is to find all trans-

poson occurrences and their locations. Our reasonaTE pipeline produces rich an-

notations, including transposon mask regions (union of all annotated base pairs)

as well as transposon annotations, classification, structural and protein features.

This is achieved by combining the advantages of thirteen published transposon

annotation tools covering different annotation approaches and transposon classes:

RepeatMasker (http://www.repeatmasker.org/), RepeatModeler (http://www.

repeatmasker.org/RepeatModeler/), LTRharvest [66] (https://www.zbh.uni-

hamburg.de/forschung/gi/software/ltrharvest.html) and TIRvish [67] (http:

//genometools.org/tools/gt_tirvish.html) are available as Conda packages.

Moreover, we created Conda packages for SINE-Finder [68] (http://www.plantcell.

org/content/suppl/2011/08/29/tpc.111.088682.DC1/Supplemental_Data_Set_

1-sine_finder.txt), SINE-Scan [69] (https://github.com/maohlzj/SINE_Scan),

HelitronScanner [42] (https://sourceforge.net/projects/helitronscanner/

files/), MUSTv2 [70] (http://www.healthinformaticslab.org/supp/resources.

php), MiteFinderII [71] (https://github.com/jhu99/miteFinder) and MITE-

Tracker [72] (https://github.com/INTABiotechMJ/MITE-Tracker) to make them

accessible and to facilitate their installation. Also, we include the output files

of LTRpred [73] (https://hajkd.github.io/LTRpred/articles/Introduction.

html) into the pipeline, as this tool provides high quality annotations, but is avail-

able as a Docker image only. As the tools have different output formats, we devel-

oped a parser module to convert all outputs to GFF3 format.

After running the annotation tools, additional copies of the identified trans-

posons are searched using the clustering tool CD-HIT (v4.8.1) [74, 75] and

BLASTN (v2.10.1). For the annotation of transposon-characteristic proteins, we

have created a Conda packaged version of TransposonPSI (http://transposonpsi.

sourceforge.net/), and we also use the protein domains from NCBI CDD for

this task. Using TransposonDB, NCBI CDD and RPSTBLASTN, we selected the

1,000 most frequently occurring protein domains that are characteristic to trans-

posons (File F2). As an application, here we annotate the genome MSU7 of Oryza

sativa subspecies japonica (http://rice.plantbiology.msu.edu/index.shtml),
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the genome DAOM197198 of Rhizophagus irregularis (https://www.ncbi.nlm.

nih.gov/bioproject/?term=PRJDB4945) [76], three reference genomes VC2010

(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB28388), N2 (https:

//www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA13758), CB4856 (https://

www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA275000) and twenty novel wild

type strains [77] of Caenorhabiditis elegans (Table S6 ).

2.3 Transposition event detection module, deTEct

Given an assembled reference genome and sequenced probe genome reads, the goal

is to identify transposition events that are manifested as structural variants. This

requires both a list of SVs and annotation of TEs as inputs. We employ the struc-

tural variant caller Sniffles on ngmlr [78] alignments and PBSV (https://github.

com/PacificBiosciences/pbsv) structural variant caller on pbmm2 alignments

(https://github.com/PacificBiosciences/pbmm2). Moreover, the TE annota-

tions are generated using the proposed reasonaTE pipeline mentioned before.

SVs are filtered twice. First, variants shorter than 50 bp or longer than 1% of

the genome length were excluded. Second, duplicate structural variants of the same

type are merged. Consecutively, the remaining variants and TE annotations are

matched and finally reported if their length corresponds to each other. Transposon

annotations were matched to structural variants if they intersected for at least 10%

and their length was similar by a threshold of 50%. We chose to do so, as structural

variant callers and transposon annotators have an uncertainty regarding exact lo-

cations. We therefore consider a similar length more important than a high overlap.

The proposed deTEct pipeline is applicable to long-read sequencing technologies,

and it has been tested with both PacBio and OxfordNanopore data.

3 Results
3.1 RFSB outperforms other transposon classifiers

We benchmarked our RFSB method against other transposon classifiers, and the

results show that it has the highest sensitivity and specificity (Fig. 4 A, Table S7

). TE Learner [20] has the lowest reported performance, while the other methods

have similar F1 scores. However, this comparison is based on reported numbers

from different studies with different evaluation schemes, taxonomies and datasets

for training and testing. For a more fair comparison some of the tools were ap-

plied to the subset of TranspsonDB which includes RepBase and PGSB (Fig. 4

B). The comparison of the results reveals large discrepancies. Surprisingly, TERL

and TopDown have a performance which is worse than random guessing, and closer

inspection of the outputs from NLLCPN reveals that it has learned a constant

distribution rather than a relationship between sequences and classes.

A detailed analysis of the classification performance of RFSB across different tax-

onomic levels and classes reveals a small decrease in performance when considering

deeper taxonomic levels (Fig. 4 C). Underrepresented classes, e.g. Helitrons and

MITEs, perform worse, and the results are consistent for both F1 and MCC scores.

Moreover, for some classes the performance of RFSB on the large, cross-species

TransposonDB is better than for the more homogeneous subset of RepBase and

PGSB, which suggests that it is robust, generalisable, and applicable to different
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species. An inspection of the most informative features (File F3) shows that longer

k-mer features contribute the most to the classification performance, while protein

domains have a smaller share amongst the most contributing features (Fig. 4 D).

This motivated the exploration of longer k-mer features, but we did not find any

significant increase of the performance when using 5-mers (Fig. 4 E).

3.2 The ensemble strategy reasonaTE finds more transposons and reduces bias

Next, we evaluated the ability of our reasonaTE pipeline to identify TEs in the

genomes of three different species (Fig. 5 A-B, File F4). The TE content of almost

21% for Caenorhabditis elegans is higher than previously reported values of 12% [8],

17% [79], and 12-16% [80]. However, as these studies used methods that were biased

towards finding specific classes of transposons, it is to be expected that our ensemble

strategy finds more TEs. By contrast, the prediction of 33% for Oryza sativa subs.

japonica is very close to the mean of other reports [81, 82, 83, 84, 85, 86, 87, 88, 89].

The content of 23% in Rhizophagus irregularis is close to a previous estimate of

27% [90]. The low variation of transposon content across different strains becomes

obvious for the cluster of Caenorhabditis elegans. Interestingly, the relative transpo-

son class frequency reveals clear differences across species (Fig. 5 C-D). Similarly,

the length distributions (Fig. 5 E-G) exhibit substantial differences between trans-

posons of the same class found in different species. Helitrons in particular vary in

length as was observed before [91].

In concordance with [92] and [93], the share of Helitrons amounts to almost 2% of

the Caenorhabditis elegans genome. Moreover, the majority of the transposons are

TIR DNA transposons, as reported by [94, 95, 79]. Contrary to previous studies [80,

96, 97], we mainly find hAT, CMC and Novosib transposons to be present in the

Caenorhabditis elegans genome rather than Tc1-Mariner transposons. Our findings

for the rice genome are consistent with previous findings. The high frequency of

Gypsy (class 1/1/2) compared to other LTR (class 1/1) and non-LTR (class 1/2) was

reported in Oryza sativa subs. japonica [87]. Moreover, the small share of MITEs, up

to 2%, is similar to the previously reported share of 4% [89]. A previous study [44]

found that class 1 transposons have a larger share (25%) than class 2 transposons

(20%) and the frequencies for the subclass level (LTR 23.5% and non-LTR 2%, TIR

17.5% and Helitrons 3.6%) match our findings. Inspection of the annotation density

across the chromosomes revealed a characteristic concentration at the arms for

Caenorhabiditis elegans (Figure S3 ), consistent with the higher densities observed

for other variants [79, 98, 99, 100, 101, 80].

The comparison of different annotation tools reveals that reasonaTE provides

more unbiased results (Figure S4 ) as none of the other methods find more than

31.8% of the TEs reported by reasonaTE. In addition, the analysis shows that

around 40% of the repetitive elements found by RepeatMasker and RepeatMod-

eler were confirmed as transposons using our approach. Moreover, the transposon

characteristic protein annotations by TransposonPSI and the 1,000 most frequently

occurring proteins from NCBI CDD intersect significantly with reasonaTE’s trans-

poson annotations. The analysis also reveals large overlap between some tools, e.g.

MUSTv2 & MITE-Tracker, LTRpred & LTRharvest, and SINE-Finder with all

other tools.
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Closer inspection of the class composition of the TEs found for Caenorhabditis

elegans confirms the advantages of the ensemble technique of reasonaTE (Figure S5

). None of the tools is able to find the same share of TEs on its own as the ensemble.

Moreover, we find that tools that were designed to identify a specific transposon

class annotate TEs from different classes as well.

3.3 29,554 transposition event candidates were observed analyzing 20 wild type

strains of Caenorhabditis elegans using deTEct

Finally, we applied the deTEct pipeline to 20 whole genome assemblies of wild

type strains of the nematode Caenorhabditis elegans. Each strain was compared to

the two reference genomes VC2010 and CB4856 (Fig. 6 A, Table S8 , File F5).

As expected, the newly sequenced genomes of these two strains have almost no

transposition events when compared to their reference. Closer inspection of the

transposon and transposition event densities reveals that the putative transposition

events are primarily located at the ends of the chromosomes (Fig. 6 B) as reported

by [79]. From the initial list of SVs, 3.97% were identified as transposition events.

However, the list included numerous duplicates or very short variants that were

subsequently filtered out. Consequently, we find that after filtering, 7.37% of all

SVs are caused by transposition events.

Most of the transposition events were observed due to deletions (60%) while in-

sertions, duplications and inversions cause the remaining variation (File F6 + F7).

One difficulty in interpreting these proportions stems from the known biases of se-

quencing data [102] which make insertions hard to detect. This results in an elevated

number of observations of cut transpositions (deletions), but fewer paste transposi-

tions (insertions). Nonetheless, we find certain classes of transposons to be especially

active in the comparisons of probe and reference genomes, such as Helitrons and

SINEs relative to VC2010, and LINEs and Novosib when compared to CB4856

(Fig. 6 D, File F8). The activity of Helitrons was observed previously [92, 93]. He-

litrons were implicated in the divergence of GPCR genes and heat shock elements.

Moreover, they are considered to play an important role in evolution [42]. Com-

paring the two major classes, we conclude that the biggest contribution stems from

DNA transposons (82% for VC2010 comparisons and 95% for CB4856 comparisons),

similar to the findings in [103].

Moreover, we observe a linear relationship between the number of transposition

events found and the phylogenetic distance of the given strains (Fig. 6 E-F, Table S9

). The strains QX1211 and ECA36 have the largest differences based on transposon

data before [80].

4 Discussion
Here we present TransposonUltimate, a bundle of three modules for transposon

classification, annotation and transposition event detection. Moreover, we present

TransposonDB, a database containing more than 891,051 transposon sequences from

a wide range of species. Our benchmarks shows that the classification module RFSB

outperforms existing methods. Although RFSB has a very high accuracy, we believe

that performance could be improved by developing species specific classifiers. It

would also be helpful to explore new feature representations that strongly correlate

to phylogenetic distance metrics.
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The annotation module combines existing annotation approaches using an en-

semble strategy, and this ensures a less biased outcome than existing methods that

tend to favor certain TE classes. The annotation module could be extended by

the search for fragmented copies of annotated transposons connected with filters to

avoid false positives. Application to three different species revealed that TEs from

the same family vary drastically in length. Thus, an important question for future

research is to determine to what extent such differences reflect hitherto uncharac-

terized families, and to what extent the differences correspond to overall sequence

divergence.

The detection module enables the identification of transposition events through

structural variants in genomes profiled using long-read sequencing technologies.

Application of the deTEct pipeline to 20 wild type strains of Caenorhabditis ele-

gans suggests that transposon events are responsible for 7.37% of structural vari-

ants. Although previous studies have argued that transposons are a major driver

of structural variation [102], our results suggest that at least for wild isolates of

Caenorhabditis elegans this is not the case. As additional high quality assemblies

become available, it will be interesting to further explore this important question.

Moreover, the development of localisation algorithms of target and donor sites of

transposons seems a promising add-on for the detection module. Besides, structural

variants gathered from whole genome comparison using anchor filtering [104] could

be included and compared.

As long-read technologies are becoming more widely used and the number of

sequenced genomes rises quickly, there is an urgent need for methods to iden-

tify and annotate TEs which correspond to plurality and in some cases a ma-

jority of genome sequences. In particular, as more human [105] and other ver-

tebrate (https://vertebrategenomesproject.org/) genomes are profiled using

these technologies, TransposonUltimate will be a valuable tool to improve our un-

derstanding of the impact of TEs on both traits and diseases.

5 Conclusions
Our TransposonUltimate bundle of software tools provides a powerful and user-

friendly means of analyzing TEs. In addition to providing highly accurate classifi-

cations, our analysis also provides insights as to what features are most informative

for predicting TE class. Our ensemble approach to annotation is more unbiased

than existing methods that tend to focus on one or a few classes. Finally, our trans-

position event detection module can take advantage of long-read technologies to

identify to what extent TEs underlie SVs.
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Tables

Table 1 Overview of common transposon annotation tools. The most commonly used tools such as
RepeatMasker and RepeatModeler cover a variety of transposons, while others focus on certain
classes only. The tools use one or more of the de novo, structural and similarity-based transposon
annotation approaches.

Name Approach Class I Class II
Novo. Struc. Simil. LTR LINE SINE TIR HEL MITE

RepeatMasker x x x x x x x x
RepeatModeler x x x x x x x
CLARI TE [107] x x x x x x x x x
TESeeker [41] x x x x x x x
PILER [40] x x x x x x x
Censor [108] x x x x x x x
RepLong [109] x x x x x x x
EDTA [44] x x x x x x x x x
MGEScan [110] x x x x x x
LTR Finder [111] x x
LtrDetector [112] x x
LTRpred [73] x x x x
LTRharvest [66] x x x x
LTRdigest [113] x x
SINE-Finder [68] x x x
SINE-Scan [69] x x x
TIRvish [67] x x
HelitronScanner [42] x x
MUSTv2 [70] x x
MiteFinderII [71] x x
MITE-Tracker [72] x x
detectMITE [45] x x
MITE-Hunter [47] x x
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Additional Files
File F1 : TransposonDB.fasta
File F2 : NCBICDD1000 Proteins.txt
File F3 : Classification FeatureImportanceAnalysis.csv
File F4 : GFF3 files in ”PaperSupplements/Annotation/. . . ”
File F5 : GFF3 files in ”PaperSupplements/Detection/. . . ”
File F6 : Detection SVDistribution.csv
File F7 : Detection PipelineData.csv
File F8 : Detection ClassDistribution.csv
Supplements
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Table S1 Classification: TransposonDB filter rule application. This table shows the number or
remaining sequences in the constituents databases of TransposonDB after the application of the
different filter rules.
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Class Taxonomy / hierarchy Notes on constituents

1 Class I (Retrotransposons)

1/1 LTR Copia, Gypsy, Bel-Pao, Retrovirus, ERV

1/1/1 Copia Copia

1/1/2 Gypsy Gypsy

1/1/3 ERV ERV

1/2 Non-LTR DIRs (VIPER, Ngaro), LINEs, SINEs

1/2/1 LINE R2, RTE, Jockey, L1, I, Randl, Penelope, DRE…
1

1/2/2 SINE tRNA, 7SL, 5S

2 Class II (DNA transposons) TIR, Crypton, Helitron, Maverick / Polinton, MITEs

2/1 TIR Tc1-Mariner, hAT, Mutator, Merlin…
2

2/1/1 Tc1-Mariner Tc1-Mariner

2/1/2 hAT hAT

2/1/3 CMC CMC

2/1/4 Sola Sola

2/1/5 Zator Zator

2/1/6 Novosib Novosib

2/2 Helitron Helitron

2/3 MITEs Tourist, Stowaway

1 R2 (CRE, R4, Hero, NeSL, R2), RTE (RTETP, Proto2, RTEX, RTE), Jockey (Rex1, CR1, L2, L2A, L2B, 
Daphne, Crack), L1 (Proto1, Tx1), I (Ingi, Nimb, Tad1, Loa, R1), Randl, Penelope, DRE

2
Tc1-Mariner, hAT, Mutator, Merlin, Transib, P, PiggyBac, PIF-Harbinger, CACTA / ENSPM / Chapaev, 
MuLE / MUDR, CMC, Sola, Ginger, Academ, Dada, Kolobok, Zator, Novosib

Class I Class II
Structural Features LTR LINE SINE TIR HEL MITE

Target site duplication (TSD) x x x x x
Terminal inverted repeat (TIR) x x
Long terminal repeat (LTR) x
Primer binding site (PBS) x
Polypurine tract (PPT) x
Begin A-TC x
End CTRR-T x
Open reading frames (ORF) x x x x
Palindromic sequence (hairpin loop) (x)
Poly(A) tail x x

Protein Features

Helicase (x)
Capsid protein (GAG) x
RPA-like (RAPl) replication protein (x)
Envelope (ENV) (x)
Transposase x
Endonuclease (x)
Nucleic acid binding protein (NABP) x
Aspartic proteinase (AP) x
Apurinic endonuclease (AE) (x) (x)
Pol gene (pol) x

Protease (PR) x
Integrase (INT) x
Reverse transcriptase (RT) x (x)
RnaseH (RH) x

(A) Proposed transposon classification taxonomy 

(B) Transposon structure overview

Figure 1 Transposon taxonomy and transposon structure. (A) The taxonomy used in this study
is based on multiple classification schemes [49], [36], [106], [3] and the taxonomies used by the
transposon databases. (B) Autonomous, transposition competent transposons have characteristic
structural and protein features depending on their class. The proteins are necessary for the
transposons to move via class-specific transposition mechanisms. The x mark which structural and
protein features are characteristic to different transposon classes and sub classes for complete,
autonomous transposons. The (x) mark features that are not required but if present are indicative.
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Figure 2 Three pipelines of the TransposonUltimate framework. (A) Given the nucleotide
sequence of a transposon, relative k-mer frequencies (for k=2,3,4) and binary protein features are
extracted. These features are used by the random forest selective binary classifier (RFSB) to infer
the transposon’s class. (B) Published transposon and protein annotation tools are applied to a
given genome. Resulting annotations are filtered, merged and clustered using CD-HIT. Then,
BLASTN is used to find additional full-length copies. (C) Sequencing reads obtained using a
long-read technology from a probe genome are aligned onto a reference genome using ngmlr and
pbmm2. Next, the alignments are used to discover structural variants. After filtering the structural
variants, they are matched to the transposon annotations to detect transposition events.
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Figure 3 Summary statistics for the TransposonDB. (A) Ten publicly available transposon
databases were filtered and combined. Sequences with no (valid) class label, fragments, contigs,
satellites, RNA, shorter than 100 bp were filtered out. Moreover, duplicates were dropped when
merging. Taxonomic schemes by different databases were unified. (B) The length distribution of
sequences in the databases reveals that most DNA transposons are shorter than 500 bp, while
most retrotransposons are longer than 3,000 bp. However, Helitrons are significantly longer than
other DNA transposons. (C) TransposonDB is balanced in terms of class occurrence, although
ERV (1/1/3), SINE (1/2/2) and Novosib (2/1/6) transposons occur rarely.
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(D) Explanatory power analysis of features
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Figure 4 Evaluation of the RFSB classifier. (A) Benchmark of different transposon classifiers by
reported numbers in publications. (B) The performance of selected, reproducable classifiers
applied on RepBase+PGSB database using the taxonomy in Fig. 1 A. Reported numbers
represent performances from a total perspective. (C) RFSB classification performances from total,
taxonomic level and class perspective. (D) Analysis of each feature’s contribution to classifier’s
explanatory power. The white line shows the cumulative explanatory power. (E) Analysis of
different k-mer features in combination with protein features for a binary classifier differentiating
between class 1 and 2 transposons. All values presented were calculated as average across a
tenfold cross validation.
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Eukaryota 312,334 29,452 52,691 3,154 282,500 36,681 129,911 36,429 6,733 1,068
Animalia 0 0 0 0 0 21,854 0 0 0 20
Chromista 0 0 0 0 256 988 0 0 0 74
Fungi 0 0 0 0 0 1,961 0 0 0 354
Plantae 312,334 29,452 52,691 3,154 282,244 11,721 129,911 36,429 6,733 620
Protozoa 0 0 0 0 0 150 0 0 0 0

UnicellularFlagellate 0 0 0 0 0 7 0 0 0 0
Prokaryota 0 0 0 0 0 54 0 0 0 6
Virus 0 0 0 0 0 31 0 0 0 0

Total 312,334 29,452 52,691 3,154 282,500 36,766 129,911 36,429 6,733 1,074

Table S2 Classification: TransposonDB sequences across biological domains. This table shows the
number of sequences in TransposonDB by the source database and biological domains.
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Figure 5 reasonaTE results for three species. The colors used in this figure represent
Caenorhabditis elegans (red), Oryza sativa subs. japonica (green) and Rhizophagus irregularis
(blue). (A) The average TE content of different species. The TE content is calculated as ratio of
the sum of all basepairs part of the transposon region mask and the total genome size. The
whiskers represent standard deviations. (B) The dot size represents the TE content as reported in
the first panel, and the figure shows a linear relationship between genome size and the total
number of transposons found. (C) Average TE content by transposon classes. The values were
calculated by dividing the sum of the lengths of all transposons of a specific class by the total
genome length. The whiskers represent the standard deviation. (D) The class distribution across
all TEs based on the number of elements. (E-G) The transposon length distribution by classes for
the three species. The boxes cover 25% to 75% percentiles, including the orange bar at the 50%
percentile. The length of whiskers amounts to 150% of the interquartile range.
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Figure 6 deTEct results and discovered transposition events. (A) Results show the number of
detected transposition event candidates by probe strain for both reference genomes VC2010 and
CB4856. (B) The transposon activity in the Caenorhabditis elegans genome by chromosomes. The
first row shows the density of transposon annotations in VC2010. The second row shows the
density of transposition events. The following two rows represent results for CB4856. For all
autosomal chromosomes we identify a characteristic pattern of transposon activity at the ends of
chromosomes. (C) Dataflow analysis of the pipeline. The diagram shows the share of different
structural variant categories at each stage of the pipeline (left y-axis). Deletions make up the
largest share of transposition events. Additionally, the share of remaining data is outlined (right
y-axis). Approximately 4% of all structural variants initially found are finally identified as
transposition events. (D) Helitrons and SINEs are more active relative to VC2010, while Novosib
are especially active relative to CB4856. Relative activity is calculated by the share of a class’
basepairs appearing in transposition events divided by its share of a the classes basepairs in the
transposon annotation. (E) A linear relationship between phylogenetic distance and the number of
observed transposition events becomes obvious for the Caenorhabditis elegans strains for both SV
callers PBSV and Sniffles. Phylogenetic distance is calculated as sum of distances in the
phylogenetic tree to the last common ancestor. (F) The phylogenetic tree of the Caenorhabditis
elegans strains. The branch lengths are proportional to the number of polymorphisms that
differentiate each pair. Tree based on data from [101].
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(B) Numerical protein occurrence feature
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Figure S1 Classification: feature design experiments . All performance measures reported as
average across a tenfold cross validation (in %) on RepBase+PGSB dataset for a classifier
distinguishing class I and II transposons. (A) Performance of standard classifiers using the binary
protein feature for different e-thresholds. This feature is either zero or one depending on whether
the protein domain is detected for given e-threshold by BLASTN. (B) Performance of standard
classifiers using the numerical protein features for different e-thresholds. This feature represents
the number of times the protein domain is detected for given e-threshold by BLASTN. (C)
Combinations of the protein features with relative k-mer frequency for a random forest classifier.
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Figure S2 Classification: structure, strategy and model design experiments. All performance
measures reported as average across a tenfold cross validation (in %) on RepBase+PGSB from an
overall perspective. Panel (A) exhibits the performance of standard classifiers for different model
structure and training strategy combinations. Panel (B) shows the performance of SVM classifier
model for different kernel functions. Panel (C) summarises the performances of standard classifiers
and best SVM classifier for the selective binary (Sel-Bin) combination. Panel (D) compares the
proposed ”RFSB” (Random Forest Selective Binary) approach with existing benchmark classifiers.
In addition, RFSB trained on TransposonDB is reported as well.
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Figure S3 Annotation: transposon annotation density plots. This diagram shows the density of
transposon annotations across the chromosomes of the different Caenorhabditis elegans and the
Oryza sativa subs. japonica genomes.
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Figure S4 Annotation: tool intersection heat map. This heat map presents the intersection of
annotations from different tools. The content of cell in row i and column j represents the number
of intersecting basepairs of annotations from tools i and j, divided by the total number of
basepairs in annotations of tool row i. Numbers are reported in percent, as average across the
three reference genomes VC2010, N2 and CB4856. Repeat annotations are the combination of
annotated repeats by RepeatMasker and RepeatModeler. Protein annotations are the combination
of annotated transposon characteristic proteins by NCBICDD1000 and TransposonPSI. The colour
of a cell represents its value. Darker colours represent values closer to 100%, while lighter colours
represent values closer to 0%.
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Figure S5 Annotation: tool class heat map. This heat map presents the share of annotated
transposons by different transposon classes. The content of a cell represents the number of
basepairs of a specific tool’s annotations related to a specific class divided by the total genomes
length. Numbers are reported in percent, as average across the three reference genomes VC2010,
N2 and CB4856. The colour of a cell represents its value. The darker the colours, the more a tool
was able to capture most of the transposons that the ensemble (reasonaTE) found for this specific
class.
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Cnidaria 0 0 0 0 0 1,228 0 0 0 0
Ctenophora 0 0 0 0 0 31 0 0 0 0
Deuterostomia 0 0 0 0 0 26 0 0 0 0
Echinodermata 0 0 0 0 0 221 0 0 0 0
Hemichordata 0 0 0 0 0 37 0 0 0 0
Mollusca 0 0 0 0 0 749 0 0 0 0
Nematoda 0 0 0 0 0 574 0 0 0 4
Placozoa 0 0 0 0 0 8 0 0 0 0
Platyhelminthes 0 0 0 0 0 343 0 0 0 0
Porifera 0 0 0 0 0 7 0 0 0 0
Priapulida 0 0 0 0 0 1 0 0 0 0
Rotifera 0 0 0 0 0 123 0 0 0 0

Chromista 0 0 0 0 256 988 0 0 0 74
Ciliophora 0 0 0 0 0 11 0 0 0 0
Cliliophora 0 0 0 0 0 3 0 0 0 0
Haptophyta 0 0 0 0 0 15 0 0 0 0
Myzozoa 0 0 0 0 0 104 0 0 0 7
Ochrophyta 0 0 0 0 0 92 0 0 0 0
Oomycota 0 0 0 0 256 760 0 0 0 40
Orchophyta 0 0 0 0 0 3 0 0 0 0

Fungi 0 0 0 0 0 1,961 0 0 0 354
Ascomycota 0 0 0 0 0 749 0 0 0 354
Basidiomycota 0 0 0 0 0 1,111 0 0 0 0
Blastocladiomycota 0 0 0 0 0 14 0 0 0 0
Chytridiomycota 0 0 0 0 0 15 0 0 0 0
Mucoromyceta 0 0 0 0 0 9 0 0 0 0
Mucoromycota 0 0 0 0 0 71 0 0 0 0

Plantae 312,334 29,452 52,691 3,154 282,244 11,721 129,911 36,429 6,733 620
Angiosperms 0 29,452 48,583 3,154 257,898 9,997 129,911 36,429 6,733 618
Bryophyta 0 0 1,060 0 0 45 0 0 0 2
Chlorophyta 0 0 1 0 105 106 0 0 0 0
Rhodophyta 0 0 0 0 0 595 0 0 0 0
Tracheophyta 312,334 0 3,047 0 24,241 978 0 0 0 0

Protozoa 0 0 0 0 0 150 0 0 0 0
Amoebozoa 0 0 0 0 0 78 0 0 0 0
Eozona 0 0 0 0 0 2 0 0 0 0
Euglenozoa 0 0 0 0 0 14 0 0 0 0
Metamonada 0 0 0 0 0 42 0 0 0 0
Percolozoa 0 0 0 0 0 14 0 0 0 0

Table S3 Classification: TransposonDB sequences across eukaryotic kingdoms. This table shows
the number of sequences in TransposonDB by the source database and biological kingdoms.
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3
.0

8

R
iT

E

S
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te

d
b

S
P

T
E

D
d

b

T
re

p
D

B

1 412,975 252,236 23,832 49,853 1,280 0 25,908 23,508 30,538 4,972 848
1.1 360,618 210,831 22,343 48,186 1,267 0 21,542 20,670 30,404 4,769 606
1.1.1 122,715 81,329 5,010 11,059 600 0 6,423 4,277 12,482 1,316 219
1.1.2 144,221 70,605 9,694 18,497 430 0 9,218 14,490 17,922 3,026 339
1.1.3 8,118 4,087 651 0 0 0 3,276 56 0 48 0
1.2 51,943 41,405 1,489 1,253 13 0 4,366 2,838 134 203 242
1.2.1 47,328 40,679 1,440 931 13 0 3,418 272 134 199 242
1.2.2 3,640 0 0 322 0 0 753 2,565 0 0 0
2 478,070 60,098 5,620 2,838 1,874 282,500 10,859 106,403 5,891 1,761 226
2.1 397,819 131 468 1,416 1,752 282,500 7,791 97,710 5,809 59 183
2.1.1 92,563 5 41 261 0 86,195 2,078 2,301 1,645 7 30
2.1.2 94,929 5 144 228 135 0 918 93,494 0 5 0
2.1.3 19,335 25 108 77 1,084 15,076 2,376 487 65 22 15
2.1.4 35,981 0 0 0 0 33,537 0 13 2,370 0 61
2.1.5 145,791 4 93 139 285 142,679 755 131 1,664 8 33
2.1.6 7,552 0 0 711 0 4,996 467 1,280 65 0 33
2.2 56,786 47,199 4,652 14 4 0 665 2,458 82 1,669 43
2.3 20,129 12,767 500 475 118 0 2 6,235 0 32 0

Total 891,045 312,334 29,452 52,691 3,154 282,500 36,767 129,911 36,429 6,733 1,074

Table S4 Classification: TransposonDB sequences across transposon classes. This table shows the
number of sequences in TransposonDB by the source database and transposon classes.
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Constituents NCBI CDD ID
Aspartic proteinase cd00303, cd05481, cd05484
Apurinic endonuclease tigr00587
Integrase (core domain) pfam00665, cog3335, pfam13358, pfam01359
GAG pre-integrase pfam13976
Ribosomal-processing
cycsteine proteinase

cd16332, prk14553

Cysteine proteinase tigr01586
Peptidase (Prp) pfam04327

Endonuclease

pfam04231, cog4636, pfam05685, cog2356, pfam01844, pfam05551,
pfam07510, pfam13391, pfam13392, pfam13395, pfam14414,
prk15137, cd00719, smart00478, cog0648, prk01060, smart00518,
prk02308, pfam04493, pfam08459

GAG capsid protein pfam03732, pfam16297

Helicase
smart00490, smart00487, smart00488, smart00491, cog1201,
prk13767, tigr04121, pfam06733, pfam00270, pfam00271, pfam04851,
pfam05970, pfam14617, pfam13307

DNA polymerase cd08637, cd08638, cd08639, cd08640, cd08641, cd08642, cd08643
RNAse H cd06266, cd09272, cd09273, cd09274, cd09275, cd09276, cd09279

Replication protein A

prk06863, prk06751, prk06752, prk08182, prk06293, prk06461,
prk06958, prk07274, prk10053, smart00976, cog0629, cog2965,
cog3111, prk05733, cog4085, cog3390, prk06341, prk09010,
pfam00436, tigr00621, pfam02765, pfam04057, pfam08646,
pfam16686, pfam09104, pfam09103, pfam08661, pfam16900,
pfam13742

Reverse transcriptase

pfam13966, pfam07727, pfam00078, pfam11474, tigr04416,
pfam13655, pfam17984, pfam17919, pfam17917, pfam13456,
pfam06817, pfam06815, cog3344, cd03715, cd03714, cd03487,
cd01709, cd01699, cd01651, cd01650, cd01648, cd01647, cd01646,
cd01645, cd01644, cd05471

Transposase (incl. DDE domain)

nf033179, pfam13006, pfam14706, pfam02281, pfam13701,
pfam13007, pfam13005, pfam04986, pfam03050, pfam01610,
pfam01609, pfam01548, pfam01526, pfam18759, pfam18758,
pfam17906, pfam13751, pfam13612, cd01187, cd01186, pfam11427,
pfam02371, pfam01797, pfam1373, pfam13586, pfam13359, pfam13808,
pfam13613

Tyrosine recombinase
cd01196, cd01195, cd01194, cd01192, cd01191, cd01184, cd01188,
tigr02224, prk02436, prk00283, cd00796

Others
cd00397, cd00799, cd06094, pfam03564, pfam05380, pfam05585,
pfam08284, pfam13975, pfam14223, pfam14244, pfam03184

Table S5 Classification: selection of protein domains This table lists the selected NCBI CDD PSSM
model IDs considered for the protein features used in the classification module.
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Table S6 Annotation: case study genomes. This diagram shows source, species, sequencing
technology, number of sequences, length in bp, strain name and location for the 25 case study
genomes.
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F1
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(0.23%)

68.51%

(0.73%)

63.70%

(0.70%)

60.18%

(0.43%)

00.00%

(0.00%)

12.89%

(20.23%)

86.30%

(0.40%)

85.66%

(0.08%)

MCC
7.85%

(0.43%)
7.62%

(0.24%)

65.12%

(0.75%)

59.89%

(0.78%)

59.21%

(0.48%)

-1.01%

(0.50%)

3.21%

(22.08%)

84.65%

(0.45%)

83.81%

(0.09%)

Level 3

ACC
86.30%
(0.05%)

86.57%
(0.04%)

92.87%

(0.24%)

91.69%

(0.22%)

90.91%

(0.00%)

90.90%

(0.01%)

86.96%

(3.16%)

97.33%

(0.11%)

97.76%

(0.02%)

F1
9.63%

(0.41%)
9.32%

(0.34%)

49.93%

(2.77%)

38.67%

(4.62%)

0.00%

(0.0%)

0.00%

(0.00%)

7.96%

(12.97%)

84.95%

(0.59%)

87.51%

(0.10%)

MCC
2.59%

(0.42%)
2.56%

(0.34%)

48.61%

(2.44%)

37.48%

(3.24%)

0.00%

(0.00%)

-00.21%

(0.17%)

2.28%

(12.87%)

83.51%

(0.65%)

86.29%

(0.11%)

(A) Benchmark of classifiers, performances rep ted in publications of classifiers (different databases and taxonomies)

(B) Benchmark of classifiers, performances reproduced on RepBase+PGSB database and proposed taxonomy

or

Random
Even

Random
Gaussian HC_GA HC_LGA NLLCPN TERL TopDown

Overall

F1
31.03 %
(0.32%)

30.44%
(0.26%)

83.00% 84.00% 90.00% 85.80% 83.00%
91.34%

(0.33%)

89.66%

(0.06%)

RFSB

RFSB

RFSB

(TransposonDB)

(TransposonDB)

Table S7 Classification: benchmark of classifiers. All performance measures reported as average
across 10 folds (in %) are supplemented by the standard deviations in brackets (in %). Bold numbers
mark the best performance amongst different classifiers within same category. Panel (A) outlines
performance measures of the benchmark algorithms reported in their publications (meaning these
results were gathered from different datasets and taxonomies, depending on the specific publication).
Panel (B) outlines performance measures of several benchmark algorithms to the proposed ”RFSB”
classifier methodology. All results were calculated based on the same dataset RepBase+PGSB and
the same, proposed taxonomy. The measures are reported for taxonomic levels and overall
perspective. In addition, the proposed ”RFSB” classifier is applied to TransposonDB and reported in
the most right column.
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VC2010 CB4856
strain PBSV (pbmm2) Sniffles (ngmlr) PBSV (pbmm2) Sniffles (ngmlr)

SX3383 (QX1791) 665 848 295 289
SX3399 (GXW1) 384 546 278 27
SX3356 (QX1211) 862 831 371 297
SX3351 (DL200) 354 390 260 237
SX3368 (AB1) 262 288 284 233
SX3287 (PS2025) 521 571 257 210
SX3304 (EG4725) 528 417 268 185
SX3306 (ECA36) 927 837 372 299
SX3254 (N2) 13 10 246 212
SX3292 (CB4856) 670 744 2 28
SX3302 (JU394) 208 252 273 234
SX3303 (JT11398) 275 309 262 220
SX3298 (JU775) 494 509 271 55
SX3295 (LKC34) 378 336 261 203
SX3367 (DL238) 671 861 279 287
SX3305 (ECA248) 454 411 271 225
SX3296 (MY23) 555 472 279 187
SX3286 (EG4946) 277 272 270 214
SX3350 (PB306) 458 540 284 258
SX3341 (JU751) 431 424 263 192

Table S8 Detection: Number of observed transposition events. This table shows the number of
observed transposition events for different probe reference genome combinations, alignment and
structural variant calling tools.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442214
http://creativecommons.org/licenses/by/4.0/


Riehl et al. Page 35 of 35

N
u

m
b

er
o

f
tr

a
n

sp
o

si
ti

o
n

ev
en

ts
S

n
ifl

es
-N

G
M

L
R

P
B

S
V

-P
B

M
M

2
T

o
ta

l
T

o
ta

lB
P

T
o

ta
l

T
o

ta
lB

P
P

h
yl

o
g

en
et

ic
d

is
ta

n
ce

st
ra

in
V

C
2

0
1

0
C

B
4

8
5

6
V

C
2

0
1

0
C

B
4

8
5

6
V

C
2

0
1

0
C

B
4

8
5

6
V

C
2

0
1

0
C

B
4

8
5

6
V

C
2

0
1

0
C

B
4

8
5

6
A

B
1

2
8

8
2

3
3

2
5

2
8

5
5

8
8

6
4

2
6

9
2

6
2

2
8

4
4

5
0

5
7

9
9

0
7

5
2

4
0

.0
2

3
8

1
9

0
.0

9
4

4
5

9
C

B
4

8
5

6
7

4
4

2
8

3
5

0
8

3
1

8
8

6
0

2
8

6
7

0
2

1
3

5
0

1
3

3
1

1
1

8
5

0
.0

9
6

3
3

6
0

D
L

2
0

0
3

9
0

2
3

7
1

2
6

0
3

3
0

9
1

8
5

2
9

3
5

4
2

6
0

7
3

7
4

8
4

6
1

3
0

6
0

0
.0

7
8

7
7

5
0

.1
4

4
5

4
9

D
L

2
3

8
8

6
1

2
8

7
5

3
4

0
9

4
6

1
1

2
0

9
4

8
6

7
1

2
7

9
1

6
3

5
6

2
9

7
0

1
2

3
8

0
.1

0
0

6
3

1
0

.0
7

7
2

0
1

E
C

A
2

4
8

4
1

1
2

2
5

1
6

7
4

0
9

6
8

2
8

6
1

8
4

5
4

2
7

1
8

6
1

3
2

8
9

7
8

8
6

3
E

C
A

3
6

8
3

7
2

9
9

5
5

4
7

8
0

3
9

3
3

2
0

4
9

2
7

3
7

2
2

2
4

1
6

0
5

7
7

9
6

1
5

0
.1

9
3

3
5

6
0

.1
8

5
2

4
8

E
G

4
7

2
5

4
1

7
1

8
5

1
1

1
6

7
1

7
9

7
6

0
9

9
5

2
8

2
6

8
1

0
7

7
9

7
0

5
4

2
5

2
3

0
.0

6
3

7
9

6
0

.1
0

4
1

9
6

E
G

4
9

4
6

2
7

2
2

1
4

9
4

8
4

8
5

1
1

2
6

1
2

7
2

7
7

2
7

0
8

3
9

9
6

2
7

9
7

2
8

6
0

.0
3

6
7

0
9

0
.0

9
3

2
9

1
G

X
W

1
5

4
6

2
7

1
9

9
0

2
9

9
4

2
2

5
5

3
8

4
2

7
8

7
8

4
2

8
3

6
2

4
9

2
9

0
.0

3
6

7
2

7
0

.0
9

6
1

0
7

JT
1

1
3

9
8

3
0

9
2

2
0

8
6

6
8

8
3

1
1

3
7

9
0

0
2

7
5

2
6

2
5

5
7

3
9

5
6

6
4

2
2

8
0

.0
2

7
6

5
2

0
.0

9
3

4
2

6
JU

3
9

4
2

5
2

2
3

4
1

4
1

3
6

3
5

1
2

0
0

4
1

1
2

0
8

2
7

3
7

4
7

1
5

6
7

9
5

3
3

7
0

.0
1

4
5

7
1

0
.1

0
9

0
2

9
JU

7
5

1
4

2
4

1
9

2
4

0
2

5
7

1
2

8
8

0
8

7
3

4
3

1
2

6
3

9
7

1
1

5
6

8
4

2
4

7
1

0
.0

4
3

1
5

2
0

.0
9

9
7

3
4

JU
7

7
5

5
0

9
5

5
2

3
2

4
0

5
7

1
9

8
8

5
7

4
9

4
2

7
1

1
1

7
5

3
2

2
5

8
9

8
6

5
0

.1
1

5
1

9
9

0
.1

6
5

9
9

7
L

K
C

3
4

3
3

6
2

0
3

9
3

5
1

5
3

7
6

3
4

5
9

3
7

8
2

6
1

9
0

9
6

6
4

7
1

0
9

4
5

0
.0

3
7

9
5

6
0

.0
8

8
7

5
4

M
Y

2
3

4
7

2
1

8
7

2
0

7
9

5
1

5
4

8
0

2
4

2
5

5
5

2
7

9
1

2
2

7
0

1
0

5
0

0
5

5
5

0
.0

8
2

6
6

0
.1

3
9

2
4

2
N

2
1

0
2

1
2

3
9

3
4

4
5

7
6

5
4

1
1

3
2

4
6

2
0

4
1

4
5

2
0

7
2

6
0

0
.0

9
6

3
3

6
P

B
3

0
6

5
4

0
2

5
8

2
2

2
6

5
6

7
1

0
4

2
3

0
0

4
5

8
2

8
4

8
5

4
0

8
3

7
3

5
2

3
3

0
.0

5
6

8
3

2
0

.1
1

3
4

1
4

P
S

2
0

2
5

5
7

1
2

1
0

3
3

8
1

6
7

9
8

5
6

2
5

6
5

2
1

2
5

7
1

0
1

8
2

2
8

7
3

8
0

9
5

0
.0

7
1

3
6

3
0

.1
2

7
9

4
5

Q
X

1
2

1
1

8
3

1
2

9
7

3
5

5
6

4
6

6
9

3
6

1
2

0
8

6
2

3
7

1
1

8
9

5
2

5
4

7
2

3
4

4
1

0
.1

9
4

8
9

1
0

.1
8

6
7

8
3

Q
X

1
7

9
1

8
4

8
2

8
9

5
5

7
1

4
6

6
1

2
3

2
9

4
1

6
6

5
2

9
5

1
5

2
1

7
3

7
8

6
0

0
0

0
0

.1
0

5
9

3
1

0
.0

9
7

8
2

3

Table S9 Detection: Genetic distance and number of transposition events found. This table shows
the number of observed transposition event candidates, the length of their mask in bp, and the
phylogenetic distance of probe and reference genome.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442214
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Materials and methods
	Transposon classification module, RFSB
	Transposon annotation module, reasonaTE
	Transposition event detection module, deTEct

	Results
	RFSB outperforms other transposon classifiers
	The ensemble strategy reasonaTE finds more transposons and reduces bias
	29,554 transposition event candidates were observed analyzing 20 wild type strains of Caenorhabditis elegans using deTEct

	Discussion
	Conclusions

