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Abstract: The use of spatial memory is well documented in many animal species and has been
shown to be critical for the emergence of spatial learning. Adaptive behaviors based on learning
can emerge thanks to an interdependence between the acquisition of information over time and
movement decisions. The study of how spatio-ecological knowledge is constructed throughout the
life of an individual has not been carried out in a quantitative and comprehensive way, hindered
by the lack of knowledge of the information an animal already has of its environment at the time
monitoring begins. Identifying how animals use memory to make beneficial decisions is fundamental
to developing a general theory of animal movement and space use. Here we propose several mobility
models based on memory and perform hierarchical Bayesian inference on 11-month trajectories
of 21 elk after they were released in a completely new environment. Almost all the observed
animals exhibited preferential returns to previously visited patches, such that memory and random
exploration phases occurred. Memory decay was mild or negligible over the study period. The fact
that individual elk rapidly become used to a relatively small number of patches was consistent with
the hypothesis that they seek places with predictable resources and reduced mortality risks such as
predation.

Keywords: Bayesian models. Hierarchical level. Memory-based movement models. Spatial mem-
ory. Attribute memory. Animal learning. Translocated Elk.

1. INTRODUCTION10

The use of spatial memory is well documented in11

many animal species. For example, humans, non-human12

primates and other large-brained vertebrates make13

movement decisions based on spatial representations of14

their environments (Wills et al. 2010). These represen-15

tations may allow animals to move directly to important16

sites in their environment that lie outside of their17

perceptual range (Normand and Boesch 2009, Presotto18

and Izar 2010), such as resource patches or safe spots to19

avoid predators, and may also allow them to estimate20

the travel cost to reach a particular place (Janson 2007,21

Janson and Byrne 2007, Lanner 1996, Noser and Byrne22

2007). Another type of memory, described for the first23

time by Schacter (1992) and retaken by Fagan et al.24

(2013), encodes the attributes of landscape features un-25

der the name of attribute memory. While spatial memory26

allows animals to reduce uncertainty about the location27

of geographical features, attribute memory reduces28

uncertainty concerning location-independent features29

of objects (Fagan et al. 2013). The information stored30
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as attribute memory may be the abundance or types31

of food, and can be linked to spatial information. For32

example, food patch quality can be spatially encoded:33

patch quality is an attribute and its location is spatial34

information (Fagan et al. 2013). The combination of35

these two types of information allows animals to choose36

among alternative movement paths as has been observed37

in bumblebees (Lihoreau et al. 2011) or large herbivores38

(Avgar et al. 2013, Merkle et al. 2014). Identifying how39

animals use memory to make decisions is fundamental40

to developing a general theory of animal movement and41

space use (Gautestad and Mysterud 2005, Morales et al.42

2010, Spencer 2012).43

44

Memory is critical in the emergence of spatial learning,45

which results from interactions with the environment46

and can be detected through changes in movement47

patterns Mueller and Fagan (2008). Adaptive behaviors48

based on learning can occur thanks to an interdepen-49

dence between the acquisition of information over time50

and movement decisions (Falcón-Cortés et al. 2017,51

2019). For instance, an animal can make decisions based52

on past successful experiences, resulting in a change of53

behaviour and improved resource exploitation. Leonard54

(1990) showed in laboratory studies that exposure to55

food rewards distributed spatially in mazes can affect56

movement decisions in rats. Something similar occurs in57

ungulates that obtain foraging benefits by remembering58

previous trajectories while migrating under seasonal59
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ranges (Bracis and Mueller 2017, Jesmer et al. 2018,60

Merkle et al. 2019). On the other hand, non-informed61

movements may facilitate exploration of unknown62

profitable areas (Bouton 2007, Miller and Shettleworth63

2007). Ecological knowledge is the result of a continuous64

learning process through the entire life of an individual65

(Brent et al. 2015). For example, adult seabirds have66

a better knowledge of possible exploitation zones and67

forage more efficiently than young individuals, whose68

movements are more unpredictable (Grecian et al.69

2018). Large herbivores that were introduced in a new70

environment took many years to adopt home range71

movements, presumably as they built up new spatial72

memory (Fryxell et al. 2008). Learning is consistent,73

for example, with frequent visits to certain locations,74

or site fidelity (Bonnell et al. 2013, Falcón-Cortés et al.75

2017), and with the emergence of home range behaviour76

or preferential travel routes (Boyer and Walsh 2010,77

Van Moorter et al. 2009). The capability of learning78

can also bring other benefits beyond improved foraging;79

e.g. providing advantage in territorial defense (Potts80

and Lewis 2014, Schlägel and Lewis 2014, Schlägel et al.81

2017), more effective escape from predators (Brown82

2001), and improving the route choice in migration83

(Bischof et al. 2012, Poor et al. 2012). Nevertheless,84

the connections between memory and spatial learning85

is not well understood. Theoretical models bring useful86

insights by predicting, for instance, how often memory87

should be used for the emergence of recurrent move-88

ments to a particular resource patch (Boyer et al. 2019,89

Falcón-Cortés et al. 2017).90

91

Many theoretical studies have attempted to relate92

spatial learning with movement and with the advantages93

such learning brings. These theoretical approximations94

are diverse. Agent-based models can be used to study95

the connection between cognitive abilities and foraging96

success (Boyer and Walsh 2010). Several studies have97

highlighted the role played by memory for home range98

formation (Berger-Tal and Avgar 2012, Börger et al.99

2008, Van Moorter et al. 2009) and paved the way for100

inferring individual memory capacities from movement101

and environmental data (Avgar et al. 2013). Models that102

incorporate distance, resources, and memory into anal-103

yses of movement data (Dalziel et al. 2008), as well as104

models that mix spatial and attribute memory (Merkle105

et al. 2014), have revealed that large herbivores are likely106

to choose previously visited patches of high quality, thus107

offering a promising template for understanding the role108

of memory in animal movement. The applications of109

these theoretical approaches to free-ranging animals are110

varied. For example, predictions of a simple memory111

model based on linear reinforcement through preferential112

revisits have been compared with the movements of113

capuchin monkeys, revealing movement rules found to114

generate very slow diffusion and heterogeneous space115

use (Boyer and Solis-Salas 2014a). On the other hand,116

Merkle et al. (2014) applied a patch-to-patch model to117

ranging data of American bison, finding that these ani-118

mals remember valuable information about the location119

and quality of meadows and use this information to120

revisit profitable locations.121

122

The study of how spatio-ecological knowledge is123

constructed throughout the life of an individual has124

not been developed thoroughly. Data analyses that125

employ memory based models are promising but are126

often difficult to implement due to the short observation127

periods available, and the fact that the animals are128

observed in an environment already familiar to them. If129

memory is long-ranged, the above limitations may affect130

the results. To avoid these shortcomings, we used data131

from relocated animals. This means that the observed132

animals explored an unknown landscape at the start of133

their movement trajectories. In this new environment134

the spatial locations of different environmental features135

and patches were initially unknown to them. We136

analyzed the movement data from 21 relocated elk137

(Cervus canadensis) as described in (Frair et al. 2007,138

Wolf et al. 2009). We expected elk to show an initial139

exploratory phase in which the animals were getting140

familiarized with their new environment and collecting141

information about the location and quality of different142

habitat patches. We then expected an exploitation143

phase showing less random space use, eventually leading144

to the formation of home ranges. Furthermore, as the145

relocated animals came from three different sources with146

different degrees of similarity with the release site (see147

below), it is possible that some animals would show148

different strategies.149

150

In a recent study, a memory-based movement model151

similar to the ones that we propose below was fitted152

to roe deer reintroduced into a novel environment,153

showing that home ranges in the absence of territoriality154

could emerge from the benefits of using memory during155

foraging (Ranc et al. 2020). Here we followed a similar156

approach, but placed emphasis on comparisons among157

alternative movement models. This allowed us to reveal158

possible differences in behaviours. We also paid special159

attention to the estimates of certain key parameters160

characterizing informed movement, such as the rate at161

which an animal used memory, and whether memory162

decayed over time and how.163

164

We present four simple patch-to-patch movement165

models, defined through the probabilities of transiting166

from one patch to another. The simplest model is167

memoryless as it assumes that the transition prob-168

abilities depend only on the distance between the169

two patches and on the quality (size) of the target170

patch. The remaining three models consider the role of171

memory. The manner in which we introduce memory172

in the dynamics is very similar to that of (Boyer and173

Solis-Salas 2014a) and (Falcón-Cortés et al. 2017) in174

which the patches previously visited by the forager are175

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.04.30.442197doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442197
http://creativecommons.org/licenses/by/4.0/


3

reinforced. Therefore, in these memory-based models we176

mix spatial memory (animals remember patch locations)177

and attribute memory (animals remember, through178

reinforcement, patch quality). The main difference179

between these three models is the way in which animals180

use their memory. In the simplest case we suppose that181

animals have infinite memory, i.e., they can remember182

all the patches previously visited, and they use their183

memory at a constant rate. In another model we assume184

infinite memory but the rate at which the animal decides185

to use its memory increases with the number of explored186

patches. In the last model we relax the assumption187

of infinite memory by introducing a memory decay188

associated to each patch visit (McNamara and Houston189

1985), whereas the rate of memory use increases as in190

the previous model.191

192

2. METHODS193

2.1. Ranging data194

We used data collected and presented by Frair et al.195

(2007); see also Wolf et al. (2009). The study area196

consisted of 15 800 km2 along the eastern slopes of the197

Rocky Mountains in central Alberta, Canada. Approx-198

imately 2000 elk inhabited the area during the study199

period, from December 2000 to September 2002 (Frair200

et al. 2007). Elevation was 500-1500 m and the area was201

largely forested (68.7% of the total area). Dominant202

tree species included lodgepole pine Pinus Contorta,203

white spruce Picea Glauca, and aspen/poplar Populus204

Tremuloides and P. Balsamea. Interspersed throughout205

the forested matrix were wet and dry meadows (7.1%),206

cutover forest following timber harvest (4.3%), bare207

soil/rock outcrops (12.3%), rivers and lakes (2.1%),208

and areas regenerating from wildfire or site reclamation209

(<1%) (Frair et al. 2007, Wolf et al. 2009).210

211

Over the study period, female elk were translocated212

to the study area from three source sites within Alberta:213

1) Banff and Jasper National Parks, mountainous areas214

with the full suite of predators present in the study area215

but protected from hunting, 2) Cross Ranch Conserva-216

tion Area (ca 20 km southwest of Calgary), a hunted217

area of foothills and agricultural lands largely without218

predators, and 3) Elk Island National Park, a flat aspen219

parkland without predators or hunters, see (Frair et al.220

2007) for more details about these three sites. Collared221

animals included six females from the town site of Banff222

released in February 2001. Nine females were released223

from the Cross Area, six during December 2000 and224

three in December 2001, and six females were released225

from Elk Island between January and February 2002.226

The animals were captured primarily using corral traps227

baited with hay. These animals were transported to228

release areas in livestock trailers that held between 9229

and 16 animals depending on the sex and age class230

composition. Elk were released directly from the trailers231

into the study area. The animals were released in a232

number of separate locations to increase independence233

between results from different individuals (Frair et al.234

2007, Wolf et al. 2009).235

236

Prior to release, translocated elk were fitted with237

GPS collars (LMRT4 and GPS2200, Lotek Wireless,238

ON, Canada) that collected locations every 2 h for up239

to 11 months. We used all locations of each collared240

animal during a season or until radio-contact was lost,241

the animal died, or GPS collars were retrieved via242

breakaway device (11 months post-release). All collars243

were equipped with mortality sensors that activated244

after 7 h of immobility. Collar tests across the range245

of cover and terrain conditions encountered within the246

study area indicated a high fix rate and positional247

accuracy of ≤50 m 80% of the time (Frair et al. 2007,248

Wolf et al. 2009).249

250

We identified foraging patches for elk from a 27-class251

landcover grid developed for this region (see Frair et252

al. 2005). The grid had a 28.5 m cell size, and an253

overall classification accuracy of 82.7%. Using ArcGIS254

(Environmental Systems Research Institute, Redlands,255

California), we reclassified dry/mesic and wet mead-256

ows, shrubland, clearcuts, and reclaimed herbaceous257

(pipeline) classes into a single foraging habitat class and258

converted the grid to a polygon layer without simpli-259

fying lines, which is equivalent to an 8-cell neighbor-260

hood rules for patch definition. We eliminated polygons261

<0.27 ha in size (essentially <3 contiguous pixels), and262

retained 16,782 patches for analysis. The resulting forag-263

ing patches averaged 6.93± 29.4 ha in size. For each elk264

GPS location occurring within a patch, we recorded the265

unique number for that patch, which allowed us to derive266

information on the time spent moving between foraging267

patches, the residency time within patches, and the re-268

turn time to previously visited patches. Thus, we trans-269

formed the original GPS trajectories into a time series270

of patch to patch visits which included the time spent271

in each patch and the time travelling between patches.272

We assumed that most foraging occurred in these high273

biomass patches.274

2.2. Models275

For each model below, we made the following assump-276

tions:277

• The animals were moving in a stationary 2d en-278

vironment which consisted of a set of N available279

patches (resource sites), N is obtained from envi-280

ronmental data as detailed in the previous subsec-281

tion. Patches were characterized by their area an,282

with n in {1, ..., N}, taken as a proxy for resource283

abundance. The euclidean distance between the284
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centroids of the patches n and m is denoted by285

dn,m.286

• We modeled discrete movement events: at each287

time step t → t + 1 an animal decides to move to288

another patch (patch-to-patch movement) follow-289

ing a set of rules that we will explain below. The290

model does not take into account the actual time291

spent in a patch or between patches.292

• An animal will go from patch n to patch m with293

probability Pn,m. This probability were computed294

in different ways for each model.295

• All the parameters to estimate were positive num-296

bers.297

2.2.1. Model I298

The first model is Markovian as it assumes that the299

forager chooses to visit a patch (m) in the environment by300

considering the distance (dn,m) from its current patch (n)301

and the area (am) of the patchm. We define a probability302

vector k = (k1, ..., kN ) whose m-th entry denotes the303

probability that the animal goes to patch m from patch304

n. Each entry is defined by:305

km = dm ∗ cm/
∑
r

dr ∗ cr, r = 1, ..., N (1)

with,

dm = exp(−(dn,m/α)β)

and

cm = exp(xm)/(1 + exp(xm))

where xm = λam+κ, i.e., we assume that the probability306

to visit patch m decays exponentially with the distance307

to patch n (dn,m) and increases with the area of patch m308

(am). We aim at obtaining a hierarchical estimation for309

the parameters α, β, λ and κ (see Table I).310

2.2.2. Model II311

We next incorporate memory effects through a param-312

eter q ∈ (0, 1) that defines the probability with which an313

animal decides to use its experience to revisit a patch.314

In this Model II, we assume that the forager has infinite315

memory, i.e., is capable of remembering all previously316

visited sites. Linear reinforcement is implemented by set-317

ting that the probability to choose a particular site for318

revisit is proportional to the accumulated number of vis-319

its to that site. This model has two types of movement320

decisions:321

◦ With probability q the forager moves from patch322

n to patch m considering, besides the distance and323

area, the number of visits that patch m has received324

in the past. The entry m of the probability vector325

k is now defined by:326

km = dm ∗ cm ∗mm/
∑
r

dr ∗ cr ∗mr, r = 1, ..., N (2)

with dm and cm defined as in (1) and mm = nm,327

where nm is the number of visits at site m until the328

present time t. Hence, mm = 0 if the animal has329

never visited m.330

◦ With probability 1− q the forager does not use its331

memory and will choose a patch m using the prob-332

ability vector k defined in (1). Hence the forager333

performs an exploratory movement.334

2.2.3. Model III335

Given that the data trajectories belong to animals336

that were released in an unfamiliar environment, it337

is reasonable to hypothesize that movements were338

dominated by exploration at early times and by memory339

at later times. In such case, one may allow the memory340

parameter q to vary with time.341

342

In this model, the memory parameter depends on the343

number of unique visited sites (UVS) of the forager up344

to time t. To this end, we define u = (u1, ...,uT ) as a345

vector of length T , with T the trajectory length and uT346

the number of distinct patches visited by the forager up347

to time T (u1 = 1). This vector is an observed data and348

q will depend on it as follows:349

q(ut) = 1− exp(−(ut/ρ)ε) (3)

In this model the total number of parameters to esti-350

mate is six, four of them already considered in Model I,351

plus two parameters for the increase of memory use as352

function of the UVS (ρ and ε. See Table I).353

2.2.4. Model IV354

So far we have considered in Model II and III that355

foragers possess infinite memory. Besides, we have con-356

sidered that reinforcement is linear, i.e., that an animal357

chooses a site for revisit with probability proportional358

to the total number of visits to that site. To incorporate359

memory decay, we assume in Model IV that the weight360

of any visit decays exponentially in time, from the value361

unity. Hence, the animal will forget those visits that are362

far away in the past and will remember very well those363

that are recent. Therefore, the recently visited sites have364
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Parameter Prior distribution Interpretation

α normal(0,10) Scale parameter for the exponential function that defines the probability decay with distance.
β normal(0,1) Shape parameter for the exponential function that defines the probability decay with distance.
λ normal(0,1) Slope parameter for the logit function that defines the probability increase as function of patch area.
κ normal(0,1) Intercept parameter for the logit function that defines the probability increase as function of patch area.
q beta(1,1) Parameter that defines the memory use frequency.
ρ normal(0,10) Scale parameter for the exponential function that defines the increase of probability memory use

as function of the number of unique visited sites.
ε normal(0,1) Shape parameter for the exponential function that defines the increase of probability memory use

as function of the number of unique visited sites.
ν normal(0,10) Shape parameter for the exponential function that defines memory decay as function of time since

last visit for each patch.
θ normal(0,10) Scale parameter for the exponential function that defines memory decay as function of time since

last visit for each patch.

TABLE I. Prior distributions

a larger probability to be visited again.365

366

The memory factor defined in Model II now takes the367

form:368

mm(t) =

nm∑
i=1

exp{−[(t− ti)/ν]θ} (4)

with nm the number of visits to patch m until time t,369

and ti the time at which the i-th visit to this patch370

occurred. It is important to note that mm defined in371

Eq.(4) will be characterized by an exponential memory372

decay for θ = 1, a stretched exponential decay for373

θ < 1, and a super-exponential decay for θ > 1. In this374

model, one needs to estimate eight parameters. The375

six parameters already considered in Model III and two376

more describing memory decay (ν and θ. See Table I).377

378

We fitted these four models to the data and then we379

performed a model comparison. We used two different380

tools to perform this comparison: a Posterior Predictive381

Check (PPC) to asses the model’s ability to “predict”382

the data used to parameterize it, and the Watanabe-383

Akaike Information Criterion (WAIC) (Watanabe and384

Opper 2010) as an approximation for out of sample pre-385

dicting capacity of each model. These two tools help us386

to compare the four models above. Specifications about387

fitting and comparison are shown in the next sections.388

2.3. Model fitting389

For some parameters such as q, the frequency of mem-390

ory use, we used non-informative priors while for other391

parameters we used weakly informative priors (Table392

I). All priors were truncated to take only non-negative393

values.394

395

The models were fitted by using a two-stage approach396

as proposed by (Hooten and Hefley 2019). The first397

stage involves fitting the set of individual-level models398

independently using placeholder priors for all model399

parameters. Each individual has its own set of pa-400

rameters for each model. This first-stage was achieved401

using Hamiltonian Monte Carlo (HMC) techniques402

implemented within the software Stan (Carpenter et al.403

2017) and accessed via RStan (Team et al. 2018). For all404

models we ran three HMC chains with: 5 000 iterations405

each for Model I and II, and 10 000 iterations each for406

Model III and IV (with 2 500 (5 000) iterations for407

warmup, a Rhat < 1.1, and a reasonable number of408

effective samples (n eff)), from which samples from the409

posterior distribution of all parameters were obtained.410

411

The second stage involved a simple MCMC algorithm412

to fit the full hierarchical Gaussian model using the413

posteriors from the first stage as priors (Hooten and414

Hefley 2019). This second stage ran only one chain with415

7 500 (15 000) iterations (the union of the three chains416

from the first stage) with 3 750 (7 500) iterations for417

warmup, a p−value pv > 0.05 for the Geweke’s statistic418

and a reasonable n eff for all the relevant parameters419

in the different model dynamics. With this second420

step, we obtained the posterior distributions at the421

individual-level for the parameters of each animal (this422

fit takes into account the variability between individuals)423

as well as the posterior distributions of the parameters424

at the population-level.425

426

2.4. Model assessment and comparison427

In order to assess and compare the descriptive and428

predictive capacity of the different models, we use two429

kinds of tools: one qualitative and the other quantitative.430

431

As qualitative assessments, we performed PPC on the432

number of unique patches visited by the animals through433

time. That is, for each animal we determined the number434

of unique patches visited (or UVS) as a function of the435
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number of between-patch movements and compared this436

quantity with the predictions of simulated trajectories437

from the different models. For each simulated trajectory,438

we used parameter combinations sampled from the439

joint posterior of each of the corresponding model. For440

each model and individual animal, we simulated 1 000441

trajectories and we checked whether the observed change442

in number of UVS fell within the credible interval of443

the simulated ones. We thus could asses whether the444

observed pattern was consistent with the parametrized445

model.446

447

As a quantitative assessment of model predictive ca-448

pacity we used WAIC (Watanabe and Opper 2010). This449

quantity is computed from the log-pointwise-predictive-450

density of each model, which was calculated from the pos-451

terior distributions obtained from the second-stage algo-452

rithm. This quantity helped us to suggest the best model453

for each individual: we say that a model is the best when454

it obtained the lowest WAIC and when the difference be-455

tween this and other model’s WAIC were grater than 2.456

3. RESULTS457

3.1. Model comparison458

Considering the PPC for all individuals and models459

(Fig. 9 of the Supplemental Material (SM)), we found460

that 6 trajectories (out of the 21 individuals) were461

contained within the 95 percent credible interval (CI) of462

Model I, while 17 did so for Model II, 10 for Model III463

and 15 for Model IV.464

465

The WAIC comparisons displayed in Table II show us466

that Model I was not the best model for any individual,467

i.e. the calculated WAIC for Model I was never the468

smallest one for any animal. Model II had the smallest469

WAIC for 12 individuals. Model III was the best for470

9 animals, and Model IV was not the best for any471

individual. Therefore, in most cases, a constant rate of472

memory use and a linear reinforcement without memory473

decay provided a good description of their trajectories.474

These results agree qualitatively with those of the PPC.475

476

To illustrate these general results, we present a closer477

analysis of the PPC and WAIC for 4 representative478

individuals that portray different kinds of behaviors on479

a trajectory. Figure 1 displays the PPC for each model480

and animals 1, 7, 11 and 17. Table II shows WAIC for all481

models and the same 4 representative animals in grey).482

The lowest WAIC between models for each individual483

is indicated in bold. We denoted as δ the difference484

between the WAIC of each model and the lowest one,485

and PW as the effective number of parameters.486

487

Fig. 1-First Row shows the PPC results for individual488

1 from Banff. Model I fitted well only the first steps of489

the trajectory, indicating that the animal was probably490

in exploration phase. Later on, the trajectory is no491

longer contained within Model I credible interval. Model492

II fitted well the final steps of the trajectory from this493

animal, suggesting that it followed an exploitation phase494

with q = 0.68 (from here on, all reported parameters495

values are the mean from their correspond posterior496

distribution). However, like Model I, neither Model II497

OR IV described the entire time series. Thus, Model III498

was the only acceptable model for animal 1, indicating499

that this particular individual increased its memory use500

as it explored the environment. In agreement with this501

finding, Model III had the lowest WAIC for this animal502

(Table II).503

504

Fig. 1-Second Row displays the PPCs for animal 7505

from Cross Ranch. Here, Models I and III fitted well506

just the first trajectory steps, indicating a exploration507

phase, but overall, they were not acceptable for animal508

7. In contrast, Model IV contained all the observed509

trajectory within its CI, suggesting that this particular510

individual increased its memory use as it explored the511

space and its memory decayed over time. Model II was512

also acceptable for animal 7, with a constant rate of513

memory use of q = 0.38. Therefore, animal 7 had two514

possible acceptable models. However, the lowest WAIC515

for individual 7 was for Model II, and the δ for Model516

IV was quite large (Table II).517

518

Fig. 1-Third Row corresponds to animal 11, also from519

Cross Ranch. Models I, III and IV fitted well only the520

first steps of the observed trajectory. Model II contained521

within its CI the entire observed data, indicating that522

this particular animal used its memory at a constant and523

very high rate (q = 0.80), being most of the time visiting524

known patches. Table II indicated the lowest WAIC for525

Model II, confirming the conclusion drawn from the PPC.526

527

Fig. 1-Fourth Row corresponds to animal 17 from528

Elk Island. Model III fitted well just the first steps529

of the trajectory and it was not acceptable for this530

individual. Otherwise Models I, II and IV contained531

within their respective CI all the observed trajectory.532

This give us three possible interpretations for animal 17:533

i) The animal was always in exploratory phase. ii) The534

individual used its memory at constant rate q = 0.25.535

iii) The animal increased its memory use with time536

and its memory decayed over the time. Table II shows537

that Model II actually had the lowest WAIC. Therefore,538

Model II can be considered as fairly good to describe539

and predict the trajectory of animal 17.540

541

Table II summarizes models fit to each elk by their542

source population. Elk from 1 to 6 belong to the Banff543

and Jasper Source, animals from 7 to 15 to Cross Ranch,544

and elk from 16 to 21 to Elk Island. Models having545

the lowest WAIC are bolded. We can see that for all546

animals from Banff and Jasper, Model III was the best547
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7

FIG. 1. Posterior predictive check (PPC) of models I-IV for elk with ID 1 (1st row), 7 (2nd row), 11 (3rd row) and 17 (4th
row). The number of UVS is shown as a function of time. The PPC curves (obtained from sampling the parameters posterior
distributions) are in light grey, with the 95% CI in dark grey. The red curves were obtained from the real trajectories. The
y-scale for each graph in the same row is different in order to show in a better way which parts of the real trajectory are inside
of the CI.

according to WAIC. For animals from Cross Ranch,548

model II was the best for most of them. And for 66%549

of elk from Elk Island, Model II was the best. This550

suggests that animals from different source populations551

reacted differently to the new environment.552

553

We discuss in the following the different parameters554

obtained from the fits.555

3.2. Spatial Parameters556

The spatial parameters α, β, λ and κ are present in557

all models. The estimated values for these parameters558

do not vary too much between the four different models.559

We present here a common interpretation for these560

parameters. From now on the analysis focuses on the561

individual-level estimate of each parameter (say pj562

(j = 1 : 21)) as well as on the population-level parameter563

p.564

565

Parameter α, which controls the scale of the exponen-566

tial decay with distance between patches, (see Tables567

VI-IX of the SM) fluctuated little among individuals568

and across the four models (0.60 ≤ αj ≤ 2.57 (km)),569

with a population average between models of α = 1.71.570

Parameter β, which controls the shape of the exponential571

decay, varied between 0.64 and 1.50 among individuals,572

with a population average of β = 1.09, i.e., close to the573

exponential shape. These values mean that distance574

played an important role in patch selection; the animals575

did not choose patches beyond one or two kilometers576

from their actual positions (maybe due to the patchiness577

of the environment) as shown by the posterior curve in578

Fig. 2-Top. These results highlight the importance of579

“distance discounting” in movement choices, even when580

memory was involved.581

582

Parameter λ, which controls the slope of the logit583

increase with patch area, also fluctuated little among584

individuals and models (2.34 ≤ λj ≤ 3.70 (ha)), with a585

population average of λ = 2.90. Whereas parameter κ,586

which controls the intercept of the logit increase, had587

fluctuations between 0.02 and 0.42 among individuals,588

and a population average of κ = 0.14. We conclude that589

patch area played a significant role during patch use: the590

probability increased rapidly for patches of area around591

1 ha, and saturated for patches with area greater than 2592
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Model I Model II Model III Model IV
Source ID WAIC PW WAIC PW WAIC PW WAIC PW

Est δ Est Est δ Est Est δ Est Est δ Est
1 916.51 148.28 12.06 788.51 20.28 7.27 768.23 0.00 7.05 801.51 33.28 11.23
2 1864.50 221.87 8.50 1645.72 3.09 8.46 1642.63 0.00 9.50 1724.00 81.37 13.08
3 2751.13 342.30 5.60 2410.23 1.40 5.73 2408.83 0.00 10.16 2499.04 94.21 14.99

Banff and Jasper 4 295.62 38.37 13.92 263.21 6.32 7.25 256.89 0.00 5.80 267.09 10.20 6.98
5 611.20 57.11 21.75 561.77 7.68 33.43 554.09 0.00 29.81 653.32 99.23 76.39
6 1161.61 169.74 21.04 994.70 2.83 31.52 991.87 0.00 29.74 1031.30 39.43 33.59
7 1670.40 70.08 8.93 1600.32 0.00 11.42 1654.73 54.41 18.34 1689.76 89.44 24.60
8 398.77 33.54 8.78 370.41 5.18 2.83 365.23 0.00 1.70 372.14 6.91 2.32
9 846.68 54.29 11.59 792.39 0.00 9.40 812.27 19.88 9.68 834.13 41.74 11.40
10 793.78 21.14 10.00 772.64 0.00 5.81 857.71 85.07 16.11 846.62 73.98 9.43

Cross Ranch 11 3406.23 677.88 6.71 2728.35 0.00 7.34 2755.67 27.32 5.99 2868.43 140.08 18.11
12 1259.08 98.78 7.88 1160.30 0.00 11.72 1193.49 33.19 18.01 1223.01 62.71 15.93
13 1732.02 160.37 7.32 1571.65 0.00 10.58 1577.72 6.07 9.88 1627.82 56.17 14.03
14 1020.30 102.70 7.39 917.60 0.00 7.29 921.85 4.25 7.55 951.79 34.19 9.45
15 2561.35 213.99 7.37 2347.36 0.00 5.49 2394.94 47.58 18.72 2467.82 120.46 23.22
16 289.98 3.03 13.39 286.95 0.00 15.68 295.28 8.33 16.24 296.51 9.56 18.12
17 499.80 34.65 27.65 465.15 0.00 10.51 468.45 3.30 8.85 469.82 4.67 10.55

Elk Island 18 1604.57 118.75 6.80 1485.82 0.00 7.30 1485.86 0.04 5.80 1540.36 54.54 10.08
National Park 19 130.98 106.86 53.14 27.41 3.29 2.84 24.12 0.00 1.40 26.20 1.21 1.81

20 23.02 5.18 0.78 18.05 0.21 0.69 17.84 0.00 0.24 18.92 1.08 0.27
21 241.79 72.34 50.91 169.45 0.00 12.35 176.70 7.25 13.92 178.27 8.82 15.73

TABLE II. WAIC from the pointwise log-likelihood for each model and each individual. Table shows point estimates (Est) for
information criterion WAIC, the effective number of parameters (PW) and difference between WAIC’s models as δ. In bold the
lowest WAIC for each individual.

ha as shown by the posterior curve in Fig. 2-Bottom.593

594

3.3. Memory Use595

Figure 3 displays the marginal posterior distributions596

of the parameter q, that defines the probability of597

memory use in Model II. As mentioned earlier, this598

model was considered the best for 12 individuals (the599

ones in blue in Fig. 3). For these individuals q had a600

minimum value of 0.18 and a maximum of 0.80, but601

most of them had a q ≈ 0.5. Hence, according to this602

model, roughly half of the moves from patch to patch603

performed by most of the animals are informed by604

memory, while the other half can be considered as ex-605

ploratory. For those animals with values of q far from 0.5,606

the trajectories are either dominated by memory (e.g.607

ID 11) or by exploratory movements (e.g. ID 10 and 21) .608

609

Model III assumes that q grows from zero with the610

number of UVS at time t (ut), as defined by Eq. (3).611

Figure 4 displays the marginal posterior distributions of612

the parameter ρ. This parameter defines the number of613

visited sites needed for the onset of important memory614

effects. For those individuals for which this Model III615

was considered the best (in blue on Fig. 4) ρ had values616

between 12.87 and 12.93. Likewise, the shape parameter617

ε (Fig. 4) of the exponential ranged between 0.03 and618

0.86. Fig. 4-Bottom displays the growth of memory use619

as a function of u at the population-level. Memory use620

increased rapidly to 0.5 when the unique visited sites were621

between 5 and 10, before slowly tending to its asymptotic622

value.623

3.4. Memory Decay624

Model IV takes into account all the assumptions of625

Model III, with the addition of a decay in memory. Fig-626

ure 5 displays the marginal posterior distribution of the627

scale parameter ν that defines the time scale of mem-628

ory decay. For the population-level this parameter was629

estimated as ν = 10.78 (Fig. 5 in dashed grey line).630

The shape parameter θ was estimated as θ = 0.30, thus,631

memory decayed as a stretched exponential.632

4. DISCUSSION633

We have presented four simple models to fit a set634

of movement data collected in western Canada for 21635

elk relocated into a new environment. In a first stage,636

Bayesian estimates were carried out at the individual-637

level using Hamiltonian Monte Carlo sampling. A638

hierarchical analysis was next implemented following the639

algorithm proposed in (Hooten and Hefley 2019), allow-640

ing us to infer how the population as a whole is adapting641

to a new environment. All the results obtained at the642

individual-level can be found in the SM. To compare and643
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FIG. 2. Probability weights (see Eq.1) for choosing a patch
as a function of distance (Top) and area (Bottom) at the
population-level for Model I. The curves (obtained from sam-
pling the parameters posterior distributions) are in light grey,
with the 95% CI in dark grey. Very similar results were ob-
tained for Models II-IV, see Figs. 6-8 of the SM.

evaluate these four different models we used two tools,644

one quantitative the other qualitative. We used, on the645

one hand the Watanabe Akaike Information Criterion646

(WAIC) and on the other hand, a Posterior Predictive647

Check (PPC) based on the number of unique patches648

visited by the animals. The results obtained by these two649

tests were in agreement. We found that the trajectories650

of all animals were far from being described by a mem-651

oryless random walk and rather exhibited patterns of652

recurrent revisits to patches. Our models II and III, that653

consider an infinite memory capability (with constant654

and dynamic rate of use, respectively) combined with655

a linear reinforcement of the visited patches, fitted and656

predicted well all the trajectories. This is consistent657

with the results exposed by Wolf et al. (2009) in which,658

after a thorough statistical study of habitat selection,659

found that elk have a strong tendency to select the most660

recently visited locations to forage instead of selecting661

locations only by their quality. Moreover, the values662

of our spatial parameters, and the curves that they663

FIG. 3. Mean marginal posteriors (points) and 95% CI (ver-
tical lines) for individuals (denoted by ID number) and the
population (denoted by ‘pop’) for the parameter q of Model II.
The black intervals correspond to the results of the first-stage
algorithm and the solid light gray intervals correspond to the
results of the hierarchical, second-stage algorithm across all
animals. Dashed gray interval correspond to the population-
level.

defined, correspond well with resident elk movement664

scales reported in (Frair et al. 2005); foraging movements665

are on the order of hundreds of meters and relocating666

moves on the order of 1.6 km. Our fourth model,667

that considered a dynamic use of memory and memory668

decay, was not considered as the best model for any669

individual. It thus seems to be too sophisticated for this670

population over this time period of the data (11 months).671

672

The exploitation-exploration paradigm is a well673

known concept in ecology. There are several models674

that have focused on identifying and predicting these675

two phases from single animal trajectories (Jonsen et al.676

2007, Morales et al. 2004) but they are often based on677

memoryless dynamics and the exploitation-exploration678

phases are the result of different types of random walks679

movements. Our Model II is memory-based and the680

use of memory is represented by a constant parameter681

q. While the exploration phase is governed by random682

decisions, the exploitation phase is ruled by the use683

of memory and the reinforcement learning acquired684

by experience. These simple assumptions were enough685

to adequately represent the temporal changes in the686

number of unique patches visited (Fig. 9 in SM) by687

twelve animals and therefore to identify the presence688

of these two phases. It is important to note that those689

twelve individuals for which Model II was considered the690

best model, as well as the nine animals for which Model691

III gave better results, had a high value of q (near 1/2 on692

average). This suggests that these animals used memory693

intensively, instead of performing pure random walks694

(which correspond to the limit q → 0). A previous study695

on capuchin monkeys that used a similar model found a696

value of q near 0.12 over a 6-month period (Boyer and697
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FIG. 4. Top and Center: Same as Figure 3 but for pa-
rameters ρ and ε (resp.) of Model III. Bottom: Increase of
the probability of memory use q as a function of the number
of unique visited sites u at the population-level. The curves
(obtained from sampling parameters from the joint posterior
distributions) are in light grey, with the 95% CI in dark grey.

Solis-Salas 2014b). In that model the environment was698

represented as a regular discrete lattice in which each699

point was a site to visit. The high values of q observed700

here could be explained by frequent decisions to return701

to high-resource patches or safe places, for instance those702

where the predation risk (by wolves or humans) is lower.703

This is also consistent with the scale movement results704

exposed in (Frair et al. 2005) that shows that elk make705

use of certain patches and do not explore beyond them,706

possibly to reduce their mortality rate and predation risk.707

FIG. 5. As same as Figure 3 for the parameters ν (Top) and
θ (Bottom) of Model IV.

708

We also found that animals from the same source709

population tended to behave similarly: for most of the710

animals from Banff and Jasper, Model III was considered711

the best model, whereas most of the elk from Cross712

Ranch and Elk Island were best described by Model713

II. These results might be explained by the experience714

animals had before translocation: we speculate that if715

the original environment was similar to the new one or716

the animal was not naive to predators, the animal relied717

more heavily on memory as they visited new patches718

(Model III). Conversely, if the original environment was719

very different or the animals naive to predators, then720

the they kept high rates of exploration (Model II). This721

hypothesis stems from the fact that Banff and Jasper722

are mountainous with similar kinds of valley meadows as723

the new habitat, and that the animals were familiar with724

predators, while Cross Ranch and Elk Island have quite725

different habitat backgrounds, mostly wide-open areas726

dominated by agriculture and flatland, respectively, and727

with animals naive to predators.728

729

It is noteworthy that the model in which memory730

decays with time (Model IV) was not supported as the731

best model for any of the animals during the period of732

this study. This suggests that elk remember very well733

the places they have visited at least within one year.734
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Similar findings have been reported for other species735

such as American bison (Merkle et al. 2014), sheep736

(Gautestad and Mysterud 2005), woodland caribou737

(Avgar et al. 2015) or chimpanzees (Janmaat et al.738

2013). These works reported evidence of long-term or739

very slowly decaying memory, with individuals having740

the ability to return sometimes to locations which had741

not been visited for months, or even years.742

743

The movement trajectories from translocated animals744

provides a way to study how animals use memory. Our745

findings are qualitatively consistent with those recently746

reported by Ranc et al. (2020) on reintroduced roe deer.747

The movements of those animals were described by a748

model including both memory and resource preferences,749

somehow similarly to ours in the memory mode, with a750

reinforcement that saturated to a limiting value instead751

of growing linearly as here. Their fitted model was752

able to predict the dynamics of home range formation753

observed in roe deer, thus bringing support to the754

hypothesis that memory constitutes an important755

mechanism for home range emergence (Börger et al.756

2008, Van Moorter et al. 2009). Although not analyzed757

in detail here, it is very likely that the models that758

we have fitted would also predict several movement759

properties indicative of limited space use and home760

range behaviour in elk but it would be important to761

have longer observation periods to verify this.762

763

Several extensions would make these models more764

realistic and complex. For example, the probability of765

moving from one patch to another could be affected766

not only by distance and patch area but also by more767

realistic estimates of movement costs due to topography768

and other landscape variables such as different habitat769

types and predation risk between patches. It would770

also be possible to consider continuous time modeling771

taking into account the time that an animal spend going772

from one patch to another, as well as the residence time773

within patches. Finally, our modelling approach ignored774

the fact that in a network of patches, nearby patches775

can compete as possible destinations due to their spatial776

configuration (Ovaskainen and Cornell 2003). This effect777

can be approximated by considered all possible ways in778

which an individual leaving a particular patch can even-779

tually reach another patch in the network, although the780

computational costs are substantial (Morales et al. 2017).781

782

Our models could capture features of the movement783

patterns of the study animals with a minimum number784

of parameters and rather simple dynamical rules. Such785

simplicity is advantageous if one wishes to apply the same786

models to other data sets. Particularly, a single parame-787

ter q quantifies the behaviour of an animal memory-wise,788

and can serve as a basis for comparisons between789

individuals or between species. Substantial variations790

of this parameter among individuals of a same species791

and in a same environment, as observed here, indicate792

that the movement strategies employed are quite flexible.793
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