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Summary 

Many canonical signaling pathways exhibit complex time-varying responses, yet how 

minutes-timescale pulses of signaling interact with the dynamics of transcription and gene 

expression remains poorly understood. Erk-induced immediate early gene (IEG) expression is a 

model of this interface, exemplifying both dynamic pathway activity and a rapid, potent 

transcriptional response. Here, we quantitatively characterize IEG expression downstream of 

dynamic Erk stimuli in individual cells. We find that IEG expression responds rapidly to acute 

changes in Erk activity, but only in a sub-population of stimulus-responsive cells. We find that 

while Erk activity partially predicts IEG expression, a majority of response heterogeneity is 

independent of Erk and can be rapidly tuned by different mitogenic stimuli and parallel signaling 

pathways. We extend our findings to an in vivo context, the mouse epidermis, where we observe 

heterogenous immediate-early gene accumulation in both fixed tissue and single-cell RNA-

sequencing data. Our results demonstrate that signaling dynamics can be faithfully transmitted to 

gene expression and suggest that the signaling-responsive population is an important parameter 

for interpreting gene expression responses. 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442166doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442166
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction 

Many cell signaling pathways do not simply switch from off to on when stimulated, but 

instead exhibit complex dynamics such as pulses whose frequency, amplitude, or width depend 

on the stimulus or cellular context1-8. Although they vary between pathways and contexts, 

timescales of signaling dynamics typically range from minutes to a few hours (e.g. ~10 min 

signaling pulses for the Erk kinase7,8; ~1 h pulses for the p531-3 and NF-kB transcription 

factors5). Signaling dynamics have been proposed to activate distinct sets of target genes 

compared to constant-on and constant-off signaling states9-11. Such a regulatory role could 

potentially enable a single pathway to trigger distinct cellular responses depending on the cell 

state or the stimulus received. Indeed, many dynamically-varying signaling nodes (including Erk, 

p53, and NF-kB) are themselves transcription factors or kinases whose primary targets include 

transcription factors. 

 

Yet if signaling dynamics are to regulate target gene expression, they must be faithfully 

transmitted through transcription, which itself is a noisy, dynamic process. Complicating matters 

further, the timescale of transcriptional fluctuations can overlap that of signaling dynamics. For 

example, a detailed study of the estrogen-responsive gene TFF1 revealed bursts of RNA 

production that each last tens of minutes and occur every few hours12, whereas other signaling-

responsive genes may even fluctuate on a more rapid single-minute timescale13. In light of these 

overlapping timescales of fluctuation, it is unclear how much information can be accurately 

propagated from a pulse of signaling pathway activity to downstream target gene expression. 

Obtaining a quantitative picture of how signaling is transmitted to gene expression is also crucial 
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for the mammalian synthetic biologist seeking to design engineered signaling-responsive gene 

circuits to use as biosensors or cell-based therapeutics14-16.  

 

Here, we set out to address these questions using the activation of the Ras/Erk pathway and 

induction of IEGs as a testbed. The Ras/Erk pathway has been shown to demonstrate rich, 

context-dependent dynamics, with pulses and traveling waves of activity that can be observed in 

both cultured cells and in vivo tissues7,8. Erk activity also triggers a potent transcriptional 

response, particularly by activating a set of ~100 immediate-early genes (IEGs) within tens of 

minutes13. The rapid and potent induction of IEGs has led to their widespread use as biomarkers 

of cellular activity13 as well as their incorporation into synthetic gene circuits16. Nevertheless, it 

is still unknown how faithfully dynamic pathway stimuli might be transmitted to IEG expression, 

and which sources and timescales of cell-to-cell variability play a dominant role. 

 

We first use a simple mathematical model to explore how IEG expression might respond to 

dynamic Erk signaling. The model predicts three response regimes: a regime where signaling is 

faithfully transmitted to gene expression in all cells, one in which information about signaling 

dynamics is completely corrupted, and one where dynamics are transmitted in only a fraction of 

the cell population. Subsequent experiments reveal that Erk pulses can indeed be transmitted 

faithfully to IEG expression, but only in a fraction of the overall cell population. This fractional 

response occurs independently of Erk activity and can be tuned by varying either the 

extracellular stimulus or by perturbing parallel intracellular pathways including p38. Finally, we 

extend our observations to a primary cell system previously shown to exhibit spontaneous, 

pulsatile Erk dynamics – the mouse epidermis – where we observe bimodal IEG expression in 
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both fixed tissue and published single-cell RNA-sequencing data. Together, these data confirm 

that signaling dynamics can be faithfully transmitted to downstream gene expression and suggest 

that a fractional population-level response is a key control variable that can be tuned by both 

extracellular stimuli and intracellular signaling.  

 

Results 

A model of signaling and transcription reveals distinct regimes of dynamic transmission 

We first set out to gain intuition for how dynamic signaling could interact with stochastic 

gene expression using a simple mathematical model of both processes. In our model, a gene 

switches between an “inactive” and a “listening” state (see Supplementary Text; Figure 

S1)17,18. (Our model is agnostic to the molecular basis for the two states, which may represent 

changes in local chromatin state, transcription factor activity, or other cellular parameters.) The 

inactive state is incapable of producing mRNA, whereas the listening state produces mRNAs 

when a signaling stimulus is also present (Figure 1A). Transitions between the inactive and 

listening state were assumed to be stochastic according to the transition rates kIA and kAI; the 

steady-state fraction of signaling-responsive cells would thus be expected to be kIA /(kIA + kAI). 

We model the signaling stimulus as a binary input that can be dynamically switched on and off 

over time. In the presence of the signaling stimulus, a listening-state gene produces transcripts 

stochastically at a rate ktxn; these transcripts are also degraded at rate kdeg. We used prior data 

from the Erk signaling pathway and immediate-early gene expression to infer reasonable 

parameter values where possible. Erk typically remains active for 10 min to 2 h after stimulation, 

providing a typical signaling timescale6-8; immediate-early gene expression is rapid13, leading us 

to assume that ktxn is fast (~1 min-1) compared to experimentally measured signaling dynamics; 
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and the mRNA degradation rate for the fos IEG has been experimentally measured (kdeg ~20 min-

1)19. We varied other parameters, in particular the inactive-to-listening transition rates, as we 

examined different response regimes. 

 

Figure 1: A two-state model of gene regulation explores possible responses to signaling dynamics. 
(A) Signaling pathways that exhibit complex dynamics must also activate genes with time-varying 
“bursts” of gene expression. We employ a two-state model of gene expression, where a target gene 
switches between an inactive and active state. Signaling inputs trigger active-state genes to produce 
mRNA transcripts. (B) We simulate three regimes: where gene states switch slowly relative to signaling 
dynamics (case I), where gene states switch rapidly (case II), and where gene states switch on a 
comparable timescale to signaling dynamics (case III). 
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The model predicted qualitatively different responses as we varied the timescale of transition 

between gene states relative to the timescale of signaling. We first simulated the model in a 

regime (Regime I) where transitions between the inactive and listening states (Figure 1B, yellow 

and purple bars) were fast relative to signaling dynamics (blue curves). In this regime, the model 

predicts that both transient pulses and sustained signaling inputs are faithfully transmitted to 

gene expression in all cells (Figure 1B, red traces). This result is intuitive: a rapidly switching 

gene spends some time in a listening state, even during transient signaling pulses, so 

transcription is proportional to stimulus duration in all cells. In contrast, we observed a 

breakdown of information transfer when signaling and gene state changes occur on a similar 

timescale (Regime II). Here, individual signaling pulses may be entirely missed by the target 

gene, and a sustained stimulus cannot be distinguished from a pulsatile stimulus because each 

may exhibit similar alternating periods of transcriptional activity and silence (Figure 1B, middle 

column). In this case, signaling dynamics cannot be distinguished from transcriptional 

fluctuations because transcription and signaling fluctuate on the same timescale. Finally, we 

simulated the case where genes switch very slowly between inactive and listening states (Regime 

III). In this regime, gene expression again accurately reflects the signaling stimulus, but only in 

the subset of cells that were in the listening state throughout the time of stimulation. Regime III 

would thus predict faithful transmission of signaling dynamics in only in a sub-population of 

cells. Our simple model suggests that the timescale with which target genes switch between 

responsive and non-responsive states can substantially affect the faithful transmission of 

upstream signaling dynamics (comparing Regimes I & III vs. Regime II), as well as the fraction 

of the cell population where transmission is observed (Regime I vs. Regime III). 
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Mitogenic stimuli only drive IEG transcription in a fraction of the cell population 

How might the regimes predicted by our model be discriminated experimentally? We 

reasoned that the three model regimes predicted different responses to an acute change in Erk 

activity according to two key metrics: (1) the fraction of cells that activated transcription and (2) 

how rapidly transcription was initiated. Specifically, Regime I should be associated with a rapid 

transcriptional response in all cells upon the onset of signaling, Regime II predicts transcription 

responses that are slower than signaling dynamics in all cells, and Regime III would be 

consistent only with a rapid response in a subpopulation of transcriptionally-responsive cells. 

Model simulations of the time until each cell’s first transcriptional burst corresponded closely to 

this conceptual picture. In our model, response timescale could be observed by quantifying the 

time until a first transcriptional burst in all responding cells (Figure 2A), whereas the responsive 

fraction could be quantified from the total fraction of the overall cell population that exhibited 

any bursts (Figure 2B). We thus set out to compare the results of our simulation to direct 

measurement of cells’ transcriptional responses. 

 

We turned to the MS2/MCP system, where instantaneous transcription can be visualized as a 

bright focus in the nucleus of individual live cells (Figure 2C)20. We used a previously-

developed NIH3T3 cell line in which 24 MS2 stem-loops were appended to the 3’UTR of the 

endogenous RHOB IEG using CRISPR genome editing, and which also express the optoSOS 

system for driving acute light-induced Erk activation13. RHOB was an ideal target: as an IEG, it 

is rapidly induced by Erk activity and it exhibits bright MS2-tagged foci at sites of nascent 

transcription due to its relatively long 3’UTR13. Additionally, we previously found that RHOB 

and other IEGs share similar overall transcriptional dynamics, making it a good representative of 
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this general class. In each case we pre-incubated cells in growth factor-free (GF-free) media and 

then monitored responses after three stimuli expected to drive saturating Erk pathway activation: 

acute optogenetic stimulation with constant 450 nm light, 10 ng/mL PDGF, or 10% serum. To 

Figure 2: Transcriptional responses to acute stimuli. (A) Simulated responses of Cases I-III to the duration-
varying experiment are shown. For Case I, a plateau is observed where only a fraction of the overall cell population 
responds; this fraction is set by the ratio between inactive and active promoters. In all cases, the time to half-
maximal response is related to the rate of active-state transcription; in Case II this timescale also reflects the 
inactive-to-active transition rate. (B) Fraction of transcriptionally-active cells in each regime, showing a limited 
fraction in Regime III. (C) MS2-MCP imaging of RhoB reveals heterogeneity in transcriptional response, with some 
cells transcribing (black arrow) and others abstaining. (D) Rapid imaging of MS2-MCP bursting of the RhoB gene 
allows for careful dissection of rates of burst initiation and termination. (E) Raw MS2-MCP traces for optoSOS, 
PDGF, and serum stimulus over 60 minutes. (F) Raw MS2-MCP trace (red) and binarized states (black). (G) MS2-
MCP reporting on RhoB transcription suggests that when cells burst, their kinetics are not significantly different 
between the three Ras/Erk agonists, with a half-maximal point occurring between 11 and 15 minutes in all cases. (H) 
The total percentage of transcriptionally-active cells varies between ~10% and ~45% and can be modulated with 
different stimuli. 
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obtain complete transcriptional dynamics from responsive cells, we imaged nuclei at high spatial 

and temporal resolution (z-planes every 0.5 μm throughout the nucleus, every 30 sec). We then 

estimated the total intensity of mCherry-MCP puncta (Figure 2C-D, black arrows) by summing 

all z-slices and fitting to a 2-dimensional Gaussian function to generating transcriptional 

trajectories of MCP burst intensity over time (Figure 2E), and used an automatic threshold to 

identify all time periods of transcriptional activity and inactivity for at least 50 transcriptionally-

active cells per condition (Figure 2F; see Methods).  

 

We first measured the time until the first MCP focus appearance for each transcriptionally-

active cell to obtain the cumulative distribution of first-transcription times (Figure 2G). This 

analysis revealed that RHOB transcription was initiated rapidly and on a similar timescale 

regardless of the Erk-activating stimulus (Figure 2G). In each condition, transcriptionally-active 

cells exhibited their first burst of gene expression within 30 min of Erk stimulation, with few 

cells bursting for the first time between 30-60 min, indicating that transcription was induced 

rapidly in signaling-responsive cells, not gradually across the full 60 min time window. We next 

measured the fraction of the total cell population in which RHOB transcription was observed at 

any time during the 60 min imaging interval (Figure 2H). In all cases, we only observed RHOB 

transcriptional foci in a minority of cells. Moreover, the responsive subpopulation varied 

substantially between different Erk-activating stimuli, with light-induced Ras activation21 

triggered the fewest responding cells, followed by PDGF stimulation, and then serum 

stimulation. Other parameters such as the duration of transcription bursts, time between bursts, 

and intensity of MCP foci were similar across stimuli (Figure S2), indicating that the fraction of 

signaling-responsive cells, not details of the transcriptionally-active state, accounted for the 
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stimulus-dependent effects. Similar fractional responses were seen in an orthogonal 

measurement, where the protein accumulation of the IEG Fos was found to be similarly 

responsive in only a fraction of cells (Figure S3). The rapid and fractional response we observe 

is consistent with our model’s Regime III, where Erk signaling dynamics are rapidly and 

faithfully transmitted to immediate-early gene expression, but only in a sub-population of 

signaling-responsive cells.  

 

Stimulus-dependent heterogeneity in FOS expression is independent of Erk signaling 

While our data so far is consistent with the model’s Regime III, an alternative model might 

hold that heterogeneity in IEG expression is simply a consequence of variability in cells’ 

upstream Ras/Erk signaling activity. We next sought to measure both transcription and signaling 

state in the same cells to test which source of variability might be dominant. To do so, we 

combined single molecule nascent RNA fluorescence in situ hybridization (smnFISH) with 

immunofluorescence for doubly phosphorylated Erk (ppErk). By labeling sites of nascent 

transcription, smnFISH reports rapidly on the cell’s current transcriptional state, not the total 

amount of mRNA produced over a longer time window. Our approach should thus be able to 

correlate cells’ signaling states with their transcriptional responses across large numbers of 

cells22-25.  

 

We performed ppErk immunofluorescence and fos smnFISH in at least 1000 cells exposed to 

either serum, PDGF or optogenetic Ras stimulation (Figure 3A). Untreated cells and cells 

treated with the MEK inhibitor U0126 were used as low signaling activity controls (Figure 3A). 
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We measured responses after 15 min, a time point at which we previously observed maximal 

immediate-early gene expression13. Overall, ppErk levels were similar across all activating 

stimuli and remained low in unstimulated and MEK-inhibited conditions, confirming that each 

stimulus triggered similarly potent activation of this intracellular signaling pathway (Figure 3B). 

In contrast, nascent transcription varied substantially between all three stimuli (Figure 3C): 

smnFISH foci observed in ~5% of cells after optogenetic stimulation, rising to ~20% of cells in 

Figure 3: Correlation of signaling to bursting kinetics. (A) Simultaneous staining for ppERK and fos nascent 
transcripts in the same cells. ppERK increases upon PDGF stimulation, as does the fraction of nascent transcribing 
puncta (white arrows, right). (B) ppERK staining shows increases in Erk activity upon stimulation, but notably no 
difference between optoSOS and serum, the two stimuli with the most different responsive fractions. (C) fos 
smnFISH shows increasing fractions of actively transcribing cells for the three stimuli (optoSOS, PDGF, and 
serum). (D) Correlation of ppERK level with bursting fraction demonstrates dependency of Erk activity on bursting 
kinetics within a stimulus, but clear differences between stimuli. Size of dots represent the number of cells in the 
corresponding ppERK bin, with each bin containing at least 50 cells. (E) Primary mouse keratinocytes display rapid 
Erk dynamics in both serum and serum-free conditions, as measured by the Erk kinase translocation reporter (ERK-
KTR). (F) Levels of ppErk are not different between serum and serum-free conditions. (G) Bursting fractions are 
significantly lower in serum-free conditions than in serum conditions. (H) Correlations between ppERK and bursting 
fraction show consistently higher bursting fractions in serum conditions. This behavior carries forward to protein-
expressing fractions (I). Statistics for b,c,f,h,i,j calculated using unpaired t-test, with * p < 0.05, *** p < 0.001, **** 
p < 0.0001, n.s. = not significant. 
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serum, a fold-change between conditions that is comparable to the RHOB measurements in live 

cells (Figure 2H). 

 

We next tested whether the level of Erk phosphorylation was predictive of nascent IEG 

expression in individual cells. For each stimulus, we binned cells by their nuclear ppErk intensity 

and calculated the fraction of actively-transcribing cells within each bin (Figure 3D). We found 

that a cell’s Erk phosphorylation state was indeed highly correlated with its probability of fos 

transcription, supporting a close relationship between Erk activity and IEG induction13. 

However, the probability of fos transcription at a fixed ppErk level depended strongly on the 

stimulus condition, with a 3-fold difference in the likelihood of IEG expression at the same 

ppErk dose between optogenetic Ras and serum stimulation (Figure 3D, solid lines). From these 

data we conclude that the variability in IEG expression between stimuli cannot be explained by 

changes in upstream Erk phosphorylation. Nevertheless, Erk appeared necessary for fos 

transcription in all cases: cells exhibiting low ppErk levels had a similarly low probability of fos 

transcription regardless of stimulus condition (Figure 3D), and the Erk pathway inhibitor U0126 

completely blocked fos transcription even in serum-stimulated cells (Figure S4). 

 

Our data also refines the classical view in which Erk activity triggers rapid, potent IEG 

expression in all cells. Instead, we observe a rapid but fractional response: fluctuations in Erk 

signaling above a critical timescale of 15 min are transmitted to a gene expression, but only in a 

subpopulation of cells. Interestingly, the responsive fraction is also rapidly altered depending on 

the extracellular stimulus, ruling out the possibility that the fractional response is governed by 
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traditional slowly-varying properties of cell state such as cell cycle position or slow epigenetic 

modification. 

 

Spontaneous Erk signaling pulses elicit heterogeneous gene expression responses 

How might the heterogeneity in IEG expression generalize to other cellular contexts and 

stimulus dynamics? To address this question, we turned to primary mouse epidermal stem cells, 

or keratinocytes26. We previously found that keratinocytes robustly and reproducibly exhibit 

spontaneous Erk signaling pulses in conditions ranging from standard growth media (containing 

serum, EGF and insulin) to media devoid of any externally supplied growth factors (GF-free 

media)7,8. Interestingly, the same light-induced Erk signaling dynamics were observed to 

stimulate different degrees of cell proliferation depending on the culture media, suggesting that 

mitogenic gene expression may also be under some form of combinatorial control7,8. We thus set 

out to characterize IEG expression in spontaneously Erk-pulsatile keratinocytes in standard and 

GF-free media conditions. 

 

We first confirmed prior reports that keratinocytes trigger similar spontaneous Erk activity 

pulses in both growth media and growth factor free (GF-free) media, using both a live-cell Erk 

biosensor and ppErk staining (Figure 3E-F; Figure S5). We then performed smnFISH for 

nascent fos transcription, imaging from at least 1000 keratinocytes per condition (Figure 3G). 

As in fibroblasts, we found that the fraction of IEG-expressing keratinocytes varied depending 

on culture conditions, with cells cultured in GF-free media exhibiting fewer nascent fos 

transcripts than cells cultured growth media, despite similar ppErk levels in both cases. The 

correlation between ppERK level and the fraction of actively-transcribing cells was weaker in 
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keratinocytes than fibroblasts, likely because keratinocyte Erk pulses arise sporadically and 

asynchronously between cells. Nevertheless, we again observed an increase in the fraction of 

transcriptionally-active cells in growth vs GF-free media, even at the same level of ppERK 

(Figure 3H). Similar stimulus-dependent results were again observed for Fos protein levels 

(Figure 3I; Figure S5). Overall, these results are in close correspondence with our data from 

acutely-stimulated fibroblasts, indicating that spontaneous Erk pulses are also interpreted in the 

context of other Erk-independent cues to trigger IEG expression. 

 

p38 activity tunes the population-level response of immediate-early genes to Erk 

What factors control the fraction of IEG-expressing cells produced by different Erk-

activating stimuli? Previous work has implicated the p38 signaling pathway as a possible 

regulator of Erk-induced FOS expression27-29. It was previously shown that p38 and Erk both 

converge to phosphorylate the transcription factor Elk1, a key transcriptional activator of fos 

expression28, and work from our group using synthetic IEG-based biosensors revealed increased 

Erk-stimulated transgene expression in cells co-treated with anisomycin, a p38 agonist30. We 

thus hypothesized that p38 activity might tune the fraction of the cell population that transmits 

Erk dynamics to immediate-early gene expression.  

 

We began by testing whether FOS expression in PDGF-stimulated fibroblasts was sensitive 

to anisomycin. We first stained cells for phosphorylated p38 and ppErk in response to 10 ng/mL 

anisomycin, 10 ng/mL PDGF, or their combination, confirming that both agonists modulated 

their respective target pathways (Figure 4A). We then assessed FOS gene expression in the 

presence of PDGF, anisomycin, or both, measuring either nascent transcripts or total protein 
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Figure 4: p38 synergistically modulates responsive population fraction. (A) PDGF and anisomycin 
independently activate the Ras/Erk and p38 pathways, respectively, as measured by ppERK and p-p38 
immunofluorescence staining. (B) Anisomycin increases bursting fraction in combination with PDGF, but not 
on its own. (C) Anisomycin increases Fos(+) fraction in combination with PDGF, but not on its own. (D) 
Addition of p38 inhibitor decreases fractions of Fos(+) cells under serum treatment (quantified in (E)). (F) 
Anisomycin independently activates the p38 pathway in primary keratinocytes without altering ppERK levels, 
as measured by ppERK and p-p38 immunofluorescence staining. (G) Anisomycin increases primary 
keratinocyte bursting fraction in both serum and serum-free conditions. (H) Anisomycin increases primary 
keratinocyte Fos(+) fraction in both serum and serum-free conditions. Statistics for b,c,e,f,g,h calculated using 
unpaired t-test, with * p < 0.05, *** p < 0.001, **** p < 0.0001, n.s. = not significant. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442166doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442166
http://creativecommons.org/licenses/by/4.0/


17 
 

(Figure 4B-C). These experiments revealed that anisomycin and PDGF acted synergistically: 

treatment with anisomycin alone was unable to trigger FOS expression at the mRNA or protein 

levels (Figure 4B-C; left bars), yet the combination of anisomycin and PDGF yielded 

substantially higher fractions of FOS-expressing cells compared to PDGF alone (Figure 4B-C; 

right bars). We next tested whether the converse might also hold: that p38 inhibition might 

decrease the relatively high fraction of Fos-expressing cells induced by serum, a stimulus that 

was previously shown to activate p38 as well as Erk25. We measured Fos protein levels after 60 

min of serum stimulation in the presence or absence of the p38 inhibitor SB203580. Indeed, we 

found that p38 inhibition reduced the fraction of serum-responsive cells to PDGF-like levels 

(Figure 4D-E).  

 

We further confirmed that fos expression was similarly anisomycin-dependent in primary 

mouse keratinocytes. Just as in fibroblasts, anisomycin increased p38 phosphorylation without 

altering Erk phosphorylation (Figure 4F). In both GF-free and growth media, anisomycin led to 

an increase in the fraction of cells with nascent fos transcripts after 15 min (Figure 4G) and Fos 

protein after 60 min (Figure 4H). These results are consistent with anisomycin treatment tuning 

the fraction of cells triggering IEG expression in response to spontaneous Erk pulses in 

keratinocytes.  

 

In summary, we find that the activation of parallel signaling pathways can modulate the 

heterogeneity of IEG expression in a similar fashion to distinct Erk-activating stimuli (e.g., 

optogenetic Ras stimulation, PDGF and serum). Treatment with the p38/JNK agonist anisomycin 

and the p38-specific inhibitor SB590885 indicate that p38 activity serves as one of these parallel 
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signals. Our observations can be interpreted in the context of previous studies, where the levels 

of Fos expression was seen to be anisomycin-sensitive in population-averaged 

measurements28,29. Our data would suggest an alternative interpretation: that anisomycin 

sensitivity might reflect a change in the fraction of Fos-expressing cells rather than change in the 

expression level of responsive cells. Single-cell studies that account for both the possibility of 

spontaneous Erk signaling pulses and heterogeneity in gene expression responses would be 

necessary to accurately discriminate between these possibilities. 

 

A fractional population-level response is a hallmark of IEG expression in vivo  

Our data so far indicates that immediate-early gene expression in a subpopulation of Erk-

stimulated cells, and that this gene expression heterogeneity is rapidly tuned by additional 

contextual factors, such as the identity of the mitogenic stimulus or activation of the p38 

signaling pathway. How might these observations extend to in vivo contexts of Erk signaling and 

gene expression? To address this question, we turned to the murine epidermis, the first model 

system in which spontaneous Erk pulses were reported in vivo31-33 and the source of Erk-pulsing 

keratinocytes used in our current and prior study7, but a system where heterogeneity in 

transcriptional responses to Erk signaling have remained largely unexplored. 

 

We first characterized Erk activity and Fos protein levels in E14.5 embryonic mouse skin. 

Erk has been found to be highly dynamic in vivo31 and associated with exit from the basal stem 

cell compartment8; furthermore, Fos protein accumulation has been associated with the process 

of differentiation in keratinocytes in vivo33. We stained mouse epidermis for either doubly 

phosphorylated Erk or Fos protein and imaged the basal and suprabasal layers of the inter-
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follicular epidermis (Figure 5A). In the basal layer, Erk phosphorylation was variable with 

patches of high-ppErk and low-ppErk cells, a finding that would be consistent with prior reports 

of Erk activity waves that propagate from cell to cell, termed SPREADs, in epidermal tissue31 

(Figure 5A, top row, quantified in Figure 5B). Staining for Fos protein expression revealed even 

more pronounced heterogeneity, particularly in the suprabasal layer that is associated with Fos 

expression and differentiating cells: most cells showed no detectable Fos expression, but 

sporadic cells harbored bright nuclear Fos signals (Figure 5A, bottom row, quantified in Figure 

5C). Immediate-early gene expression appears to be triggered in a smaller subpopulation of cells 

than those exhibiting high ppErk staining, consistent with the fractional IEG response to Erk 

stimulation that we previously observed in cultured fibroblasts and keratinocytes. 

 

We next sought to obtain a more complete picture of IEG expression in vivo. Although the 

tools available for studying signaling and transcriptional dynamics in this context are limited, we 

reasoned that high quality single-cell RNA-sequencing datasets are increasingly available in 

which IEG expression might be quantified11,35. We reasoned that our hypothesis of 

heterogeneous Erk-stimulated IEG expression makes three predictions: (1) IEG expression 

should be bimodal, with cells exhibiting distinct zero- and nonzero-IEG states; (2) cells should 

exhibit correlated expression of multiple IEGs; and (3) IEG expression should be primarily 

controlled by Erk activity state and thus should not be explained solely by differences in cell 

type. 

 

We set out to test these predictions using a recently published scRNAseq dataset of 1422 

epidermal cells published by Joost et al35. We first tested for correlations in the transcript levels 
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Figure 5: Bimodal IEG expression is a hallmark of epidermal cells in vivo. (A) ppERK and Fos staining in e14.5 
mouse embryonic dorsal skin, demonstrating heterogeneity in both signaling and gene expression. Quantified cells 
and rare Fos(+) cells can be seen in histograms in (B and C). (D) Correlation matrix for single cell RNAseq data 
from murine epidermis, showing high correlation of IEGs and low correlation between non-IEGs. (E) Distribution of 
ier2 counts across the epidermis, displaying bimodality between cells with zero (orange) or nonzero (blue) counts of 
ier2. (F) fos counts for cells with nonzero (blue) and zero (orange) counts of the representative IEG ier2. p-value 
given for the Kolmogorov-Smirnov test between the two distributions. (G) The IEG transcriptional program is  
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across all pairs of IEGs after normalizing to the total number of transcripts detected per cell. We 

found that a subset of immediate-early genes (e.g., fos, jun, ier2, egr1, zfp36) indeed exhibited 

highly correlated expression, a relationship not shared with other randomly selected genes at 

similar expression levels (Figure 5D). We next examined whether the distribution of IEGs 

transcript levels across single cells was consistent with a fractional population-level response. 

Indeed, many IEGs (e.g., ier2, egr1) exhibited a bimodal response, with an approximately log-

normal distribution of nonzero expression in some cells and zero- or near-zero expression in 

others; this effect appeared most prominent for IEGs with low mean expression levels (Figure 

5E).  

 

We performed additional tests to rule out alternative explanations for bimodal IEG 

expression. A near-zero expression state is sometimes associated with “drop-out”, or a technical 

failure to detect transcripts despite their presence in the cell. To rule out the possibility that 

bimodal IEG expression arose simply due to drop-out artifacts, we tested whether a zero value 

for one IEG was predictive of a second IEG (e.g. fos). For example, examining the distribution of 

fos transcripts for cells exhibiting zero or nonzero ier2 expression revealed qualitatively different 

distributions of fos transcript levels in both cases (Figure 5F). Similar results were observed 

across the entire set of correlated IEGs (Figure S6). No shift in the fos transcript distribution was 

observed when conditioned on zero/nonzero expression of non-IEGs with bimodal distributions 

of observed transcripts consistent with “drop-out” (e.g. mapk1). Higher-order correlations in IEG 

expression states were also evident: the number of distinct IEGs expressed in each cell was 

correlated within cells, with Fos (+) cells coexpressing, on average, 36 IEGs, and Fos (-) cells expressing only 25 on 
average. (H) fos heterogeneity occurs across the epidermis and is not restricted to cell types like some differentiation-
specific genes (flg2). Shown are t-SNE plots for the entire epidermal dataset, with darker red representing higher
counts for either fos or flg2. Statistics for h calculated using unpaired t-test, with **** p < 0.0001. 
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significantly shifted in cells with zero or nonzero fos transcripts (Figure 5G). Finally, we sought 

to perform an unbiased analysis to identify any genes whose zero/nonzero expression predict 

differences in the distribution of fos expression levels, or whose expression levels correlate with 

fos (see Methods, Figure S6). Immediate-early genes were heavily enriched using either metric, 

again indicating a specific association within the immediate-early genes subfamily. Rather than a 

system in which IEG expression is heterogeneous between IEGs within the same cell as well as 

between cells in a population, our analysis therefore suggests a model in which the IEG program 

is robustly activated in a subpopulation of cells. 

 

We also considered the alternative hypothesis that IEG expression levels were associated 

with certain cell types rather than distinct signaling states within each cell type. We produced a t-

SNE map of gene expression that was successful in separating cells according to the cell-type 

classification identified in the original paper (Figure 5H, inset, where cell types are colored as in 

Joost et al), and colored each cell by IEG expression (Figure 5H). This analysis revealed that 

variable IEG expression could be found within each cell type (e.g., fos; Figure 5H), unlike 

classical epidermal cell markers that were well segregated according to cell type (e.g., flg2; 

Figure 5H). Taken together, our data and analyses reveal an all-or-none pattern of IEG 

expression in the mouse epidermis, a tissue that exhibits spontaneous pulses and waves of Erk 

activity in resting tissue31. These data are consistent with our results in cultured cells, where Erk 

activation only drives IEG transcription in a fraction of cells. While it is currently impossible to 

directly correlate Erk activity dynamics with IEG expression in the same individual cells in vivo, 

the observation of both dynamic Erk pulses and heterogeneous IEG expression suggest that 

similar processes may be at play across cellular contexts. 
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Discussion 

How much information is passed from cell signaling to gene expression in a mammalian 

cell? Addressing this question requires careful accounting for heterogeneity in all three 

constituents of the sentence: fluctuations in signaling pathway activity, stochastic gene 

expression, and pre-existing differences between cells (e.g., cell states). Disentangling all of 

these contributions requires measurement techniques that span the timescales of rapid signaling 

and slow cell state transitions, quantification of multiple responses in hundreds or thousands of 

single cells, and perturbations that target different nodes along the path between signaling and 

target gene expression. Here, we use this formalism to quantitatively analyze immediate-early 

gene (IEG) expression in response to Ras/Erk pathway activity. We find that most of the 

heterogeneity in this process occurs at the interface between Erk activity and initiation of 

transcription, leading to target gene expression in only a subset of cells. Moreover, the signaling-

responsive subpopulation is not fixed; instead, it varies from a small minority to a large majority 

of cells depending on which stimulus a cell receives. 

 

Our study offers a path to pinpointing the dominant contribution to heterogeneity in 

signaling-induced gene expression. We find that heterogeneity in IEG expression cannot be 

predicted from variability in Erk activity, because different stimuli may drive the same level of 

Erk phosphorylation yet lead to dramatically different probabilities of IEG expression (Figure 

3D). IEG expression heterogeneity is also not dominated by transcriptional bursting dynamics, 

since live-cell measurements of nascent transcription show that it is the fraction of 

transcriptionally-active cells, not their burst dynamics, that varies between stimuli (Figure 2H). 

Instead, our experiments point to cells occupying distinct, long-lived states: some cells trigger no 
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Erk-induced gene expression over 1 h, whereas others initiate transcription rapidly enough to 

faithfully capture ~15 min fluctuations in signaling dynamics13. Our experiments also place 

strong constraints on the nature of the cell state. Our data is inconsistent with control by 

canonical cell state variables such as the cell cycle or long-lived epigenetic modifications, 

because varying the stimulus (e.g. serum stimulation versus optogenetic Ras activation) is 

sufficient to alter the fractional response within minutes. We thus conclude that the IEG-

expressing population is controlled by a long-lived but highly plastic cell state that can be tuned 

by additional stimulus-dependent signaling pathways.  

 

Nevertheless, there is still much left to do to fully define the fractional Erk-to-IEG response 

and its control by parallel signaling pathways. First, our data points to a switch-like transition 

between signaling-responsive and unresponsive states, but where does this switch lie? Many 

potential molecular programs might regulate an all-or-none transcriptional response, including 

multi-site phosphorylation and ultrasensitivity of a transcription factor36,37, all-or-none 

biophysical processes such as phase separation of transcriptional machinery38, or rapid histone 

repositioning at IEG loci40. Second, we still await a complete molecular accounting of how 

parallel signaling pathways like p38 modulate the fraction of transcriptionally responsive cells to 

Erk activity. Here, again, multi-site phosphorylation is an attractive candidate, given the overlap 

in substrate specificity between these two homologous MAP kinases and prior studies suggesting 

co-regulation of target transcription factors28,29,37. 

 

A fractional response to signaling is likely to be crucial for cell fate decisions in a developing 

tissue, where the appropriate distribution between multiple cell types needs to be maintained. If 
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all cells exposed to a diffusible ligand adopted an identical fate, large patches of distinct 

responses would corrupt local relationships between distinct cell types. Conversely, the 

bioengineer who aims to direct differentiation towards a particular cell type40 may find that a 

fractional response is undesirable. In this case, techniques to increase the responsive fraction 

could play a crucial role in future efforts to engineer cell differentiation. Immediate-early genes 

are also frequently used as biosensors of cellular activity, particularly in neuroscience41, and our 

work cautions that IEG expression may only reflect a subset of Erk-stimulated cells. Finally, 

there is interest in using immediate-early genes as components of synthetic intracellular 

circuits16,30. It is likely that the bimodality in gene expression that was recently observed for a 

synthetic IEG30 reflects similar underlying processes, suggesting that synthetic IEG-based 

circuits also report only on the signaling-responsive fraction of cells. 

  

Lastly, our study has implications for understanding what information can be transmitted 

about signaling dynamics to the expression of a target gene. Recent studies suggest that cell-to-

cell variability limits information transmission42, but that by measuring the same signaling 

pathway multiple times during a dynamic response, cells may be able to overcome these 

limitations43. Our data suggests that stimulated cells may fall into two groups: a signaling-

unresponsive group in which no information about extracellular stimuli is transmitted, and a 

signaling-responsive group in which dynamics are transmitted to gene expression with high 

fidelity. When combined with extracellular stimuli that precisely modulate the proportion of 

responsive cells in a population, heterogeneity in gene expression may be a feature, rather than a 

bug, of the signaling response.  
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Materials and Methods 

Modeling transcriptional kinetics 

To model transcriptional kinetics, we designed a model in which a gene could switch back 

and forth between an inactive state in which transcription could not occur, a listening state in 

which signals could be interpreted but no mRNA could be produced, and a transcriptional state 

in which mRNA could be produced at a certain rate. To distinguish fast and slow timescales, we 

assigned fixed rates ranging between (0.003, 0.3) to the set of kinetics (kIA and kAI). The rate of 
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transcription ktxn and degradation kdeg were fixed at (1, 0.3). To reflect steady state, kIA/(kIA+kAI) 

of cells were initialized in the listening and inactive states at the start of each simulation. All 

kinetic simulations were performed using the Gillespie direct method algorithm, and all code was 

written in MATLAB. 1000 cells were simulated for each combination of parameters.  

 

Fibroblast cell culture 

NIH-3T3 fibroblasts were cultured in DMEM containing 10% Fetal Bovine Serum (FBS) and 

Penicillin/Streptomycin in Nunc Cell Culture Treated Flasks with filter caps (Thermo) and were 

maintained in a humidified incubator at 37 C with 5% CO2. For all optogenetic and growth factor 

stimulation experiments, cells were starved for 5 hours in DMEM containing 0% FBS, 1 mg/mL 

BSA. PDGF was a product of Thermo-Fisher and was diluted in DMEM and added to the 

working concentration. For drug addition experiments, Actinomycin D (Tocris) was added to a 

final concentration of 100 µg/ml, in DMEM containing the relevant concentration of growth 

factor. Anisomycin (Tocris) was added to a final concentration of 10 ng/mL, UO126 (Tocris) to 

10 uM. and SB203580 (SelleckChem) to a final concentration of 10 ng/mL. 

 

Confocal imaging 

Live and fixed samples were imaged using a Nikon Eclipse Ti microscope with a Prior linear 

motorized stage, a Yokogawa CSU-X1 spinning disk, an Agilent laser line module containing 

405, 488, 561 and 650 nm lasers, and an iXon DU897 EMCCD camera. For live experiments, an 

environmental chamber maintained at 5% CO2 and 37C was used. To prevent evaporation during 

time-lapse imaging, a 50 mL layer of mineral oil was added to the top of each well immediately 

before imaging. 
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Optogenetic experiments 

For all optogenetic experiments, cells (fibroblasts or keratinocytes) were kept as described 

earlier. Fibroblasts were plated on 96-well, black-walled, 0.17 mm high performance glass 

bottom plates pretreated with 10 mg/ml fibronectin in phosphate buffer saline (PBS). Cells were 

allowed to adhere overnight in DMEM + 10% FBS. To activate the Phy-PIF optogenetic system 

10 mM phycocyanobillin in DMSO was added to cultures for 1 hr. Cells were maintained under 

continuous 750 nm deactivating light supplied by custom designed LED-bearing circuit boards. 5 

hours prior to the experiment DMEM + 10% FBS was exchanged by washing cells twice in 

DMEM + 1 mg/ml Bovine Serum Albumin (BSA). Keratinocytes were prepared as described, 

and shifted to high-calcium P media (i.e., DMEM/F12 containing only pH buffer, 

penicillin/streptomycin, and 1.5 mM CaCl2) eight hours before imaging. For both cell types, 

optogenetic inputs were delivered using both 650 nm red and 750 nm infrared light (for Phy-PIF) 

and 450 nm blue light (for iLiD) using two X-Cite XLED1 light sources. XLED1s were 

individually coupled to their own Polygon400 Mightex Systems digital micromirror device to 

control the temporal dynamics of light inputs. 

 

MS2/MCP transcriptional imaging and analysis 

Bursting cells were imaged by taking a 9-layered z stack spanning 4.5 mm (0.5 mm between 

z-slices) to give a volumetric readout of all cells. Cells were imaged every 35 seconds for 60 

minutes immediately after serum or PDGF addition, or optogenetic stimulation of the Phy-PIF 

system. A maximum-intensity Z projection was performed on the resulting videos. Positional 

information about the location of each burst over time was then annotated by hand using the 
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ImageJ measure tool, and a previously described MATLAB script12 that identifies a burst region 

in the maximum intensity projected time series, fits a 2-dimensional Gaussian to the identified 

region whose parameters were limited to exclude relatively large underlying fluctuations in 

background intensity, and calculates the integrated area under the fit Gaussian as the burst 

intensity was used to produce analyzed burst traces. Traces were binarized by taking a 

background value and delineating a threshold of fluorescence that would quality as active. 

Kinetics of activation and deactivation were calculated using this binarized trace, using the mean 

amount of time spent in the inactive and active states over all cells for one condition. 

 

Keratinocyte cell culture 

Dorsal epidermal keratinocytes derived from TARGATT™ mice were obtained from the 

Devenport lab (B. Heck) and were cultured as described previously43. Briefly, keratinocytes were 

grown in complete low calcium (50 mM) growth media (E media supplemented with 15% serum 

and 0.05 mM Ca2+) in Nunc Cell Culture Treated Flasks with filter caps (Thermo) and were 

maintained in a humidified incubator at 37 C with 5% CO2. Cell passage number was kept below 

30. For drug addition experiments, Cycloheximide (SelleckChem) was added to a final 

concentration of 100 µg/ml, EGF (Thermo-Fisher) to a final concentration of 0.2 ng/mL, 

Anisomycin to a final concentration of 10 ng/mL, and UO126 to 10 uM. 

 

Keratinocyte gene expression experiments 

For all experiments (both live imaging and RNA-FISH/IF), cells were first plated in 96-well 

black-walled, 0.17mm high performance glass-bottom plates (Cellvis). Before plating, the 

bottom of each well was pre-treated with a solution of 10 mg/mL bovine plasma fibronectin 
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(Thermo Fisher) in phosphate buffered saline (PBS). Two days before imaging, keratinocytes 

were seeded at 16,000 cells/well in 50 mL of low-calcium E media. Plates were briefly 

centrifuged at 100 x g to ensure an even plating distribution, and cells were allowed to adhere 

overnight. 24 h before imaging, wells were washed 2-3X with PBS to remove nonadherent cells 

and were shifted to high-calcium (1.5 mM CaCl2) complete E media to promote epithelial 

monolayer formation. For experiments in GF-free media, cells were washed once with PBS and 

shifted to high-calcium P media (i.e., DMEM/F12 containing only pH buffer, 

penicillin/streptomycin, and 1.5 mM CaCl2) eight hours before the experiment began.  

 

Immunofluorescence 

Cells were plated in 96-well glass bottom plates as described in the previous section. After 

stimulation, cells were washed with 1x PBS and immediately fixed in 3.7% PFA for 10 minutes 

at room temperature, followed by permeabilization in ice-cold 90% methanol for 10 minutes at -

20C. Cells were blocked in PBS +10% FBS + 2 mM EDTA overnight at 4C, followed by 

primary antibody incubation in PBS +10% FBS + 2 mM EDTA + Triton X-100 overnight at 4C. 

After three 10-minute washes with PBS +10% FBS + 2 mM EDTA + Triton X-100, secondary 

antibody incubation was performed at room temperature in PBS +10% FBS + 2 mM EDTA + 

Triton X-100. After three 10-minute washes with PBS +10% FBS + 2 mM EDTA + Triton X-

100, cells were incubated with DAPI in 1x PBS for 30 minutes before confocal imaging. Primary 

antibodies used were Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell Signaling 

Technology #9101), c-Fos (Cell Signaling Technology #2250), and Phospho-p38 MAPK 

(Thr180/Tyr182) (Cell Signaling Technology #9211). 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442166doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442166
http://creativecommons.org/licenses/by/4.0/


31 
 

RNA-FISH 

Fos intronic probes were designed using the Stellaris ™ probe designer tool and ordered 

from Stellaris. MS2 probes were designed using the Stellaris ™ probe designer tool and ordered 

from IDT. Both probes were conjugated to Alexa Fluor 650 dyes. Cells were grown in 96-well, 

black-walled, 0.17 mm high performance glass bottom plates from In Vitro Scientific that had 

been pretreated with 10 mg/ml fibronectin in phosphate buffer saline (PBS) prior to all treatment 

and RNA-FISH staining. RNA-FISH was performed as per the Stellaris instructions for 

hybridization in 96-well plates, with the DNA dye DAPI added during the final wash for nuclear 

segmentation. For all dual RNA-FISH/Immunofluorescence experiments, primary antibody was 

added during the hybridization step and secondary antibody was added in the Wash Buffer A 

step, post-hybridization, as per Stellaris suggestion. For confocal imaging, 13 z-stacks taken at 

0.5 um spacing were taken to collect volumes of cell monolayers, then maximum-intensity 

projected. 

 

Automated RNA-FISH analysis 

To build accurate measurements of thousands of cells per condition and timepoint, a custom 

MATLAB code was used for systematic, semi-automated analysis of all cells in a field. We 

noticed that upon proper imaging conditions, each nascent RNA-FISH puncta can be 

distinguished as a spot many-fold brighter than the rest of the nucleus. In MATLAB, DAPI 

staining was used to segment the nucleus of every cell in the field. For each sample, a subset of 

100 random cells was presented for annotation. Cells were then subjected to a calculation where 

the intensity of the brightest pixel was divided by the mean over all other pixels in the nucleus. A 

range of thresholds for this calculated value was used for the hand-annotated dataset to determine 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442166doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442166
http://creativecommons.org/licenses/by/4.0/


32 
 

the threshold that gave the most accurate distinction between transcriptionally-active and 

inactive cells (usually at ~90% accuracy), and this threshold was used for the remaining cells in 

the field. For combined RNA-FISH/IF experiments this code could be combined with additional 

nuclear segmentation-aided measurements of nuclear ppERK to yield an activation/deactivation 

state and signaling state for each cell. 

 

Statistics of Keratinocyte Dynamics 

To confirm the dynamics of Ras/ERK dynamics in our keratinocyte cell line, we transduced 

keratinocytes with a histone marker (H2B-FusionRed) for single-cell tracking, along with a live 

cell kinase translocation reporter of ERK activity (ERK-KTR). Cells were monitored for 16 

hours, and nuclei were segmented and fluorescence analyzed in order to measure the ERK-KTR 

pulses over time for each cell, using the previously reported approach in Goglia et. al (2021). 

 

In vivo keratinocyte staining 

Dorsal skin was surgically removed from a fixed e14.5 mouse embryo and blocked in PBS 

with 10% FBS. Skin explant was permeabilized with triton-X and stained with antibodies to 

either c-Fos (Cell Signaling Technologies, 9F6), or doubly phosphorylated ERK (Cell Signaling 

Technologies, 9101) overnight at 4C. In both cases explants were washed 3x in Tris-buffered 

saline with triton (TBST) and then incubated with Alexa Fluor 561 conjugated goat anti-rabbit 

secondary antibody overnight at 4C, washed 3x in TBST, then stained with DAPI nuclear stain 

and mounted on glass microscope slides with ProLong Diamond Antifade mountant. 

 

Keratinocyte scRNA-seq analysis 
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 Single-cell reads were obtained from Joost et. al.35. Cells with fewer than 5000 reads total 

were discarded to not confuse low-depth sequencing with low or zero counts of IEGs. 

Additionally, we discarded any cells with < 1 transcript/gene on average, for the same reason. 

The resulting matrix represented 12,104 genes and 1422 cells. Representative IEGs were 

analyzed alongside randomly selected genes using the built-in correlation function in MATLAB 

(Mathworks). For the representative ier2 comparison with fos, as well as IEG comparisons in 

Figure S6, fos distributions of all cells with 0 counts of the IEG from the matrix were compared 

to all other cells using MATLAB’s inbuilt Kolmogorov-Smirnov test. tSNE plots in Figure 5H 

were generated using Python software based on the protocol described in Kobak et. al. (2019). 
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