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 Abstract: In this work, the unsupervised volumetric semantic segmentation of the plasma membrane 

 of HeLa cells as observed with Serial Block Face Scanning Electron Microscopy is described. The 

 resin background of the images was segmented at different slices of a 3D stack of 518 slices with 

 8, 192 × 8, 192 pixels each. The background was used to create a distance map which helped identify 

 and rank the cells by their size at each slice. The centroids of the cells detected at different slices 

 were linked to identify them as a single cell that spanned a number of slices. A subset of these cells, 

 i.e., largest ones and those not close to the edges were selected for further processing. The selected 

 cells were then automatically cropped to smaller regions of interest of 2, 000 × 2, 000 × 300 voxels 

 that were treated as cell instances. Then, for each of these volumes the nucleus was segmented and 

 the cell was separated from any neighbouring cells through a series of traditional image processing 

 steps that followed the plasma membrane. The segmentation process was repeated for all the regions 

 selected. For one cell for which the ground truth was available, the algorithm provided excellent 

 results in Accuracy (AC) and Jaccard Index (JI): Nucleus: JI = 0.9665, AC= 0.9975, Cell and Nucleus 

 JI = 0.8711, AC = 0.9655, Cell only JI = 0.8094, AC = 0.9629. A limitation of the algorithm for the 
 plasma membrane segmentation was the presence of background, as in cases of tightly packed cells. 

 When tested for these conditions, the segmentation of the nuclear envelope was still possible. All the 

 code and data are released openly through GitHub, Zenodo and EMPIAR. 

 

 
      1. Introduction 

 In 1951, cervical cells extracted from a patient called Henrietta Lacks at the Johns Hopkins Hospital 

      were to become the first continuous cancer cell line [1]. The cells are widely known as HeLa cells (from 

      Henrietta Lacks) and have become a centrepiece of biomedical research, spanning from AIDS [2] to 

      toxicity [3] to Zika [4] and, of course, cancer. As of 2021, PubMed contained more than 110,000 entries 

      related to HeLa cells (https://pubmed.ncbi.nlm.nih.gov/?term=HeLa+[all+fields]).  Since the cells 

      were removed and kept without the patient’s knowledge or consent, which was not required at that 

      time, many ethical and legal issues have also followed the HeLa cells [5–8]. 

 The   observation   of   the   cells   and   their   characteristics   like   shape,   colours,   or   size 

      and   their   relationship   to   health   or   disease   is   probably   as   old   as   the   studies   by   van 

      Leeuwenhoek   and   Hooke   [9]. Whist   the   cell   structure   and   its   organelles   have   been 

      well-known  for  many  years,  discoveries  related  to  cell  structure  continue  to  appear  in  the 

      scientific  literature;  searches  in  Google  Scholar  for  terms  such  as  cell  structure and  function 

      (https://scholar.google.co.uk/scholar?as_ylo=2021&q=cell+structure+and+function) or cell structure 

      and    transport    (https://scholar.google.co.uk/scholar?as_ylo=2021&q=cell+structure+and+transport) 

      return more than 50,000 entries in the first four months of 2021 alone. 

 Today, sophisticated instruments, such as Electron Microscopes (EM), allow the observation 

      with significant resolution, far greater than those of conventional light and fluorescence microscopes, 
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Figure 1. Representative slices of a 3D image stack acquired by Serial Block Face Scanning Electron 

Microscopy (SBF SEM) containing numerous HeLa cells. (a) Six of the 518 stack of electron 

microscopy images, and (b) For visualisation purposes two slices of a HeLa cell image have been 

presented vertical to each other. In both cases the units of the axes are in voxels and 5µm scale bars are 

shown towards the left of all horizontal images. 

 

      and in turn allow the observation of smaller structures and provide great detail of the larger ones. 

      Additionally, three-dimensional observation is possible by cutting very thin sections of a fixed sample 

      with an ultra-microtome diamond knife [10] and acquiring images of the top face as each section is 

      removed. The slice-acquisition process is known as Serial blockface scanning EM (SBF SEM) [11] and the 

      output is illustrated in Figure 1(a) where selected images are positioned in three-dimensions according 

      to their location in the volumetric stack. Figure 1(b) presents a zoom in to a single cell. One image is 

      presented horizontally, and one orthogonal slice, or orthoslice, which is obtained from 300 images, is 

      displayed vertically. 

 Cells are normally kept in shape by the plasma membrane, a phospholipid bilayer membrane that 

      separates the internal aqueous environment of the cell and its organelles from the external environment 

      [12]. In addition, the nucleus and chromosomes are surrounded by another bilayer membrane, the 

      nuclear envelope [13].  The study of the cellular membranes has a long history and the study and 

      discovery of cell structures "keep biologists glued to their microscopes" [14].  Cellular membrane 

      receptors are important in conditions such as Alzheimer’s disease [15], cancer [16], Helicobacter 

      pylori infection [17]. The geometry of the membranes is also important, for instance the shape [18,19], 

      curvature [20,21] and protuberances [22] have been studied. The importance of the nuclear envelope in 

      particular is related in processes such as viral infections [23], cancer [24], cardiovascular function [25] 

      and has been an area of research for a long time [26,27]. Therefore, algorithms that provide accurate 

      segmentation of the membranes of a cell are of great importance as the visualisation and analysis of the 

      membranes and shape of cells could provide clues to understand the health or disease of cells and their 

      organs [28–33]. The reader is referred to Lombard [34] for a historical review of the cell membranes. 

 Segmentation can be understood  as  the  process  of  partitioning  images  or  volumes  into 

      homogeneous non-overlapping regions [35,36], in its simplest case, one region is the background 

      and the other region is an object or a foreground. Semantic segmentation identifies the pixels into a 

      series of classes or labels, that have a particular meaning, like a person, a car, a cell or an organ [37]. 

      Going further, instance segmentation is the process of detecting and segmenting each distinct object 

      of interest appearing in an image [38]. For instance, if two cells are present in an image, semantic 

      segmentation would identify them as cells, and instance segmentation would distinguish one cell 

      from the other. Instance segmentation is more challenging than other pixel-level learning problems 

      such as semantic segmentation, which deals with classifying each pixel of an image, given a set of 

      classes. There, each pixel can belong to a set of predefined groups (or classes), whereas in instance 

      segmentation the number of groups (instances) is unknown a priori. 
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Segmentation, identification and analysis of EM cellular images can be performed through manual 

processes [39–41], which can be distributed as citizen science where an army of non-experts [42,43] are 

recruited to provide non-expert human annotation, segmentation or classification through web-based 

interfaces (e.g. https://www.zooniverse.org/projects/h-spiers/etch-a-cell) [44]. Alternatively, 

computational approaches with traditional algorithms or deep learning approaches have been 

proposed to detect membrane neuronal and mitosis detection in breast cancer [45], mitochondria [46,47], 

synapses [48] and proteins [49]. Besides the well-known limitations of deep learning architectures, of 

significant computational power, large amount of training data and problems with unrelated datasets 

which show little value for unseen biological situations [50–55], the resolution of the EM data sets can 

enable or restrict their use for specific purposes. For instance, with voxel resolution of 10 nm and slice 

separation of 40 nm it is possible to observe well axons and dendrites [56], yet when voxel resolution is 

isotropic at 4 nm, an exquisite definition of macromolecular structures such as endoplasmic reticulum 

(ER) and microtubules are visible [57]. A notable contribution is CEM500K [58], a very large dataset of 

images, pre-trained models and curation pipeline for model building specific for Electron Microscopy. 

In addition, the specific nature of a semantic segmentation can allow traditional algorithms to provide 

satisfactory results, in some cases superior to deep learning approaches [59]. 

This paper describes an extension to previous work which focused on the segmentation the NE of 

a cell from a cropped volume [59,60]. In this work individual HeLa cells and their nuclei are instance 

segmented in 3D. The cells are identified and selected from a volumetric stack of 518 slices with 8, 

192 × 8, 192 pixels each.  The number of cells to be identified and segmented can be selected as some 

cells will be close to the edges of the volume and will not appear complete. In order to segment an 

individual instance of one cell, volumes of 2, 000 × 2, 000 × 300 voxels, which contain a cell in the centre, 

are automatically cropped. Background and NE are automatically segmented and the resulting regions 

become the input to a series of steps of morphological distance, watershed, morphological operations 

that segment the cell from neighbouring cells. Thus the contributions of this work are: 

(a) the automatic identification and cropping of volumes that contain individual cells, and (b) the 

segmentation of the plasma membrane of a single cells and separating if from neighbouring cells. The 

rest of the manuscript is organised as follows: 

All the code related to this work was performed in programming environment of Matlab® (The 

MathworksTM, Natick, USA). Code, ground truth of one cell and EM images are available: 

• https://github.com/reyesaldasoro/Hela-Cell-Segmentation. 
• https://doi.org/10.5281/zenodo.4590903 

• http://dx.doi.org/10.6019/EMPIAR-10094. 

2. Materials and Methods 
 
 

 2.1. Cell preparation and Acquisition 

HeLa cells were were prepared, embedded in Durcupan and observed with SBF SEM following 

the method of the National Centre for Microscopy and Imaging Research (NCMIR) [61]. SBF SEM data 

was collected using a 3View2XP (Gatan, Pleasanton, CA) attached to a Sigma VP SEM (Zeiss, Cambridge). 

In total, 518 images of 8, 192 × 8, 192 pixels were acquired. Voxel size was 10 × 10 × 50 nm with 

intensity [0 − 255]. Figure 1(a) shows six EM images positioned within the 3D stack. Initially, the data 

was acquired at higher bit-depth (32 bit or 16 bit) and after contrast/histogram adjustment it was 

reduced to 8 bit [60]. Images are openly accessible via the EMPIAR [62] public image database 

(http://dx.doi.org/10.6019/EMPIAR-10094). 

2.2. Segmentation of background and identification of cells 

One characteristic feature of the images is that the background, that is, the resin in which cells 

have been embedded, tends to be brighter than the cells, and is fairly uniform (Figure 2(a)). This allows 

the segmentation of the background on the basis of intensity. Cells are identified by a combination 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442156doi: bioRxiv preprint 

http://www.zooniverse.org/projects/h-spiers/etch-a-cell)
http://www.zooniverse.org/projects/h-spiers/etch-a-cell)
http://dx.doi.org/10.6019/EMPIAR-10094
http://dx.doi.org/10.6019/EMPIAR-10094)
https://doi.org/10.1101/2021.04.30.442156
http://creativecommons.org/licenses/by/4.0/


  
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of intensity thresholding using Otsu’s algorithm [63], generation of super-pixels by detecting edges 

with a Canny edge detector [64] and morphological operators to clean the output (Figure 2(b)). It 

should be noted that an important limitation of the algorithm to identify cells is the presence of a 

brighter background. The background helps to identify individual cells and the proper delineation 

of the membrane, with its blebs and protrusions. When the presence of background is limited, as 

with cells that are close to each other, the segmentation will separate cells from each other, but the 

protrusions, which may belong to either cell may not be assigned as part of the cells. The presence of 

background is not a requirement for the nuclear envelope as it will be demonstrated below. 

The segmentation of the background leads to the identification of the cells through a calculation of 

a distance transform. Moreover, the distance allows to identify size of the cells as a larger cell will have 

pixels that further away from the background (Figure 2(b)). This could be understood as a topological 

analogy where the distance transform produces an altitude map and each cell corresponds to a hill. The 

ranking of the cells follows the altitude in descending order (Figure 2(c)). In some cases, it is possible 

that a single cell will provide more than a single peak, i.e., a range in the topological analogy. The process 

to identify these peaks as belonging to a single cell is to proceed iteratively from the highest peak and 

discard any other peak within a certain distance around it. 

The number of cells to be identified can be pre-defined, e.g. 20 cells for the example of Figure 2(c). 

The identification is repeated for a number of slices of the 3D stack and the centroids of the cells are 

located in 3D. Then, these centroids are linked vertically to identify which of them correspond to the 

same cell as it should be noted that cell 1 will always be the largest cell of the particular slice and as 

the slices move up or down from what would be the equator of a cell, their size will change. Figure 3 

illustrates the centroids located at every 20 slices (i.e., 26 slices were analysed) with the number from 

their corresponding slice and a coloured line indicating the centroids that were linked as a single cell 

and posteriorly cropped into to regions of interest of (2, 000 × 2, 000 × 300) voxels, in which one cell 

was centred. It should be noticed, that the only the largest 20 cells have been identified, with a few 

more smaller cells are still present. These cells may be small in the current slice as they are close to the 

edges, i.e. the poles, but could be larger in other slices. 

 

 
Figure 2. Automatic identification of cells from 8, 192 × 8, 192 images. (a) One representative slice with 

many HeLa cells. Scale bar corresponds to 5µm. (b) Illustration of the detected background (gray constant 

shade) and distance transform (gray to white) that corresponds to the cells, the larger the cell, the brighter 

the intensity of the transform. (c) Composite image of the slice as in (a), background as a purple shade and 

20 detected cells, ranked in order of size. It should be noted that smaller cells are not selected as there 

was a limit of 20 in the present example. 

 
2.3. Semantic Segmentation of Nuclear Envelope 

The process of segmentation continues now for each cell cropped within the 2, 000 × 2, 000 × 300 

region of interest identified in the previous steps. The methodology for the automated segmentation 
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Figure 3. Centroids of cells that were identified per slice are displayed in three dimensions. Each 

number corresponds to the centroid of one cell that has been identified in a given slice. The numbers 

decrease according to the rank of the cell in that slice with 1 being the largest cell detected in that slice. 

The colour of the font varies from blue (lower slices) to red (higher slices) for visualisation purposes. A 

coloured line with a random colour is placed next to the centroids that were associated as a single cell. 

(a,b) show the same information from different points of view. The units of the axes are in voxels. 

 

            algorithm of the Nuclear Envelope (NE) has been published before [60], but for completeness is 

          summarised in this section. 

            In order to remove high frequency noise and therefore to improve segmentation, initially, all 518 

      HeLa cell EM images were low-pass filtered with a Gaussian kernel with size h = 7 and standard 

      deviation σ = 2. Then, Canny edge detection [64] was used to determine the abrupt discontinuous in 
      brightness or intensity changes between the NE and the neighbouring cytoplasm (outside the nucleus) 

      and nucleoplasm (inside the nucleus). 

 The Canny edge detection resulted in some disjoint segments due to the NE variations in intensity 

      and these segments were connected by dilation using a distance map from the edges. All pixels within 

      an adaptive distance, i.e., 5 pixels, which grow depending on the standard deviation of the Canny edge 

     detector, were connected as a single edge. Those pixels that were not considered as edges were labelled 

      as a series of superpixels. Finally, several morphological operators were used to: remove regions in 

      contact with the borders of the image, remove small regions, fill holes inside larger regions and close 

      the jagged edges. 

 Starting from the central slice of the EM stack, e.g. the equator of the nucleus, the image-processing 

      algorithm exploited the volumetric nature of the data by propagating the segmentation of the NE 

      of one slice to the next, up and down from the centre.  The NE of a previous slice was used to 

      check the connectivity of disjoint regions or islands separate from the main nuclear region.  The 

      algorithm proceeded in both directions and propagated the region labelled as nucleus to decide if a 

      disjoint nuclear region in the neighbouring slices was connected above or below the current slice of 

      analysis. When a segmented nuclear region overlapped with the previous nuclear segmentations, it 

      was maintained, when there was no overlap, it was discarded. 

      2.4. Semantic Segmentation of Cells 

 The segmentation of one cell from its neighbours is a relatively simple process when the 

      background and nuclei have been previously identified (Figures 4(a,b)). In addition, since the current 

      cell has been cropped into a region of interest where the cell nucleus is positioned near the centre of a 
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2, 000 × 2, 000 × 300 voxel volume, the segmentation becomes an instance segmentation as the cell will 

be identified as a cell and different from other cells that surround it. 

The distance transformation from the background (Figure 4(c)) grows around regions with cells and 

since there will be one larger hill at the centre, the distance transformation can be segmented with a 

watershed algorithm [65]. The watershed is useful to separate one cell from other cells within the field 

of view. Watersheds are well-known for over segmenting and other artefacts so the central and largest 

region is selected as the cell (Figure 4(d,e)). This region is morphologically opened with large structural 

elements to remove protruding artefactual regions product of the watershed (Figure 4(e)). This returns 

a fairly round cell which will not include the natural protrusions (i.e., pseudopods or cell membrane 

extensions) of the cell. Thus, regions that are contiguous to this central region and surrounded by 

background are identified and merged with the cell (Figure 4(f,g)). The final segmentation of the cell 

with the inclusion of these are natural protrusions or protuberances of the cell membrane can be 

observed in Figure 4(h). 

 

Figure 4. Illustration of the steps of the segmentation algorithm for a cell from neighbouring cells. 

(a) Region of interest (ROI) which contains one HeLa cell surrounded by background and other cells. 

(b) The algorithm starts with the nuclear region and background. (c) Distance transform from the 

background. (d) Watershed transformation on the distance transform, all regions in the background 

are removed. (e) Central region from the watershed. (f) Small regions that are contiguous to the central 

region. (g) Addition of small regions, i.e., membrane protuberances. (h) Final result of the cell with the 

background in white and neighbouring cells in black. A 5µm scale bar is shown on panel (a). 

 
2.5. Quantitative Comparison 

In order to assess the accuracy of the segmentation algorithm, two different pixel-based metrics 

were used: accuracy (AC) and Jaccard similarity index (JI) [66]. Both metrics arise from the allocation of 

classes (Nucleus, Cell, Background) to every pixel of an image and the correct or incorrect prediction of 

the class byt the segmentation algorithm. For each pixel, four cases exist: true positive (TP), which 

correspond to pixels which were correctly predicted as a certain class (e.g. nucleus), true negative (TN), 

false positive (FP), and false negative (FN). Thus, accuracy is calculated as: 

AC =
  TP + TN         

TP + FN + TN + FP 

 
(1) 
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and Jaccard index is calculated as: 
 

JI =
  TP  

TP + FP + FN 
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It should be noticed that JI is a more rigorous metric since TN, or correctly segmented background 

pixels are not taken into account. A very small region of interest surrounded by a very large background 

could produce a very large accurate result due to the presence of TN. 

The AC and JI metrics were calculated for three different scenarios: (a) the segmentation of the 

cell without the nucleus, (b) the cell including the nucleus and (c) the nucleus only. Figure 5 illustrates 

these cases for a sample slice of the data. 

 

 

Figure 5. Illustration of the pixel-based metrics. True Positives (TP, black), true negatives (TN, dark 

gray), false positives (FP, light gray) and false negatives (FN, white) are presented with increasing gray 

level intensity. (a) Cellular region excluding nucleus. (b) Entire cellular region. (c) Nucleus. FN are far 

more common than FP in (a,b) as some convoluted regions of the cell have not been segmented. 

 
3. Results and Discussion 

A volume of interest of 8, 192 × 8, 192 × 518 voxels was analysed as previously described. The cell 

identification process was run for 26 slices, i.e., every 20 slices. At each slice, the algorithm was set to 

detect 20 cells. When the results of all slices were linked, these identified 30 cells in total. The only manual 

intervention of this process is to select the number of cells per slice and the number of slices to be 

analysed. Thirty cells automatically identified is comparable than those analysed through citizen science 

approaches, i.e., 18 [44]. 

These cells were automatically cropped into invididual ROIs and saved in separate folders as 300 

2, 000 × 2, 000 Tiff images. The ROIs are illustrated in Figure 6. It was observed that some of the ROIs 

were close to the top or bottom (e.g. ROIs 1, 2, 29, 30) and thus would contain only part of a cell and 

the rest would be outside the field of view in the vertical direction. Similarly, the centroids of other 

ROIs were close to the edges of the volume and thus are not centred but rather positioned towards a 

side of the ROI (e.g. 6, 14). Since the actual centroid is recorded, it is possible to determine how far away 

(i.e., absolute distance) are the centroids from the edges of the initial 8, 192 × 8, 192 × 518 volume. The 

centroid of ROIs 6, 14, 15, 27 and 28 were less than 500 pixels from the edge. Considering that these 

ROIs are 2,000 pixels wide, this indicates that the centroid is considerably distant from the centre, closer 

to the edges than to the centre of the 2, 000 × 2, 000 × 300 volume. It should be noted that one 

assumption of the nuclei segmentation is that the nuclei are centred in the ROI. In addition, by being 

located away centre allows the possibility of two partial cells occurring in the same ROI.Thus these 

six ROIs were discarded and not further processed. This decision was taken manually but it could be 

automated by determining a certain margin from the edges. Alternatively, it could be possible that instead 

of fixing the size of the ROI to be 2, 000 × 2, 000 × 300, a different size could be allocated so that the 

centroid of the cell is always at the centre of the volume. 
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Figure 6. Regions of interest (ROI) cropped from the volume. Thirty regions of interest were detected 

and cropped. For each region of interest a corner is removed to show the cell, which should be centred. 

It should be noted that some cells are not in the centre but rather positioned towards the bottom of the 

volume (e.g. 1), the top (e.g. 30) or the sides (e.g. 6, 14, 15, 27, 28). 

 
 

The situation of cells that are close to the top (29, 30) and bottom (1, 2) is slightly different. Whilst 

the cell is not centred vertically it is still centred horizontally within the plane of the images and it can be 

segmented successfully if the central slice to be processed is adjusted with the centroid location. The 

segmentation will not be of a complete cell but only part of it, so the segmentation may appear as a 

hat when it is in the lower section of the volume or a bowl if it is in the upper section. If metrics like 

volume are to be obtained, then these cases are not to be used. In this manuscript we are interested in 

the observation, rather than a quantification. These cells were thus not discarded from the analysis. 

The cells and nuclei in the remaining 25 ROIS were segmented and are displayed separately in Figure 

7 and together in Figure 8 with transparent membranes and solid NEs. Colours have been assigned 

randomly in Figure 8 for visualisation purposes together with one slice of 8, 192 × 8, 192 pixels to give 

reference. The positions of Figure 6 are maintained in Figure 7 to facilitate the comparison between the 

ROIs and the segmentations. Whilst at this resolution it is not easy to observe details, it can be seen 

that the 25 cells and nuclei were successfully segmented. Geometric features from these surfaces could 

be extracted if different populations of cells, for instance treated/untreated, wild type/mutant, 

healthy/infected were to be compared statistically. We do not conduct this analysis as all these cells 

correspond to a single experimental condition. 

To better observe the details, the rendering of four cells is shown in Figure 9. Left and central 

columns show the cell membrane rendered with high transparency and the NE rendered as a solid surface 

from two different points of view. Right column shows the cell membrane without transparency from the 

same point of view as the central column. The first interesting observation is that the nuclei seems to be 

far more different than the cells themselves in terms of the smoothness or ruggedness of the surface 

and the distribution of the nucleus within the cell. The first cell (a,b), rendered in red is relatively smooth 

whist the other cells have far more grooves on the surface. It is also interesting to observe that the nucleus 

does not appear to be in the same position for these cells, leaving space in the top (b), bottom (h,k) and 

roughly even (e). These characteristics, the uneven distribution of the nuclei and their variability as 

compared with the cells, are also visible in Figure 11, and its magnified version 
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Figure 7. Rendering of the cell and nuclear envelope (NE) of 25 cells. For each case, the NE is 

rendered in red without transparency and the cell membrane is rendered in blue with transparency. 

The cells in ROIs 6, 14, 15, 27, 28 were located on the edges of the volume and the centroids were too close 

to the edges and thus discarded. For comparison purposes the cells are placed in the same locations 

as in Figure 6, and the region of interests (ROIs) that were discarded are blank. 
 

Figure 8. Illustration of segmentation of 25 cells and nuclear envelopes (NE). The cells were 

segmented from a 8, 192 × 8, 192 × 518 voxel region. Slice number 100 out of 518 is displayed for 

context. All nuclei are shown solid and all cell membranes are shown in transparency, colours have 

been assigned randomly for visualisation purposes. The units of the axes are in voxels. 

 

      in Figure 10, which show the results overlaid on four slices of the data with nuclei with a green shade 

      and cells with a red shade. Numbers to identify the ROIs have been added, but it should be noted that 
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      some cells are not visible within certain slices and may be positioned over other cells not included in 

      the analysis. Some cells (e.g., 3, 8, 12, 19) appear to be polarised to a side with the perinuclear region 

      with numerous organelles visible. The results shown in Figure 10 illustrate well boundaries between 

      several cells and the complexity of the plasma membrane can be appreciated.. 

 One final observation of Figure 11 is that there is one cell that was not identified by the algorithm; 

      the cell in the centre of slice 240 in between cells 13, 21, 16, 19 and 21. This may be due to two factors, 

      first, the algorithm was selected to identify only 20 cells per slice. Slice 240 shows 19 cells, and it should 

      be remembered that cells 6, 14, 15, 27 and 28 were discarded. Thus it may be that by using a larger 

      number per slice, e.g., 30 this cell would be selected. Second, that cell in particular is rather flat in the 

      vertical dimension if compared with cells 13 and 16 that are visible in slices 150, 240 and 330. Since 

      the algorithm ranks cells by their size, the cell may have been smaller in size and thus not considered. 

      Again, by extending the number of cells per slice this could include this cell and others in the analysis. 

 The results for the cell for which ground truth for the nuclear envelope and cell membrane was 

      available were the following. For the cell not including the nucleus AC = 0.9629, J I = 0.8094, for the 

      cell and the nucleus AC = 0.9655, J I = 0.8711 and for the nucleus alone AC = 0.9975, J I = 0.9665. The 
      algorithm to segment the nucleus provided excellent results, and it had previously been reported that 

      it outperformed several deep learning architectures [59]. The small differences between the segmented 

      nucleus and that of a manual expert segmentation are due mainly to the calculations of the thickness 

      of the NE and small invaginations (Figures 12, 13 right column). As it would be expected due to the 

      complexity of the cell membrane, the values for the cell are relatively lower than those of the NE. 

      Figures 12, 13 show that there are relatively few FP in comparison to the FN. This is a characteristic 

      of the segmentation algorithm, i.e., it is cautious to include the protuberances that surround the cell. 

      These regions are better observed in Figure 13, which zooms in and illustrate regions where these FN 

      appear. It can be perceived that in some cases, it is difficult to decide if a small region belongs to the 

      cell of interest or to the neighbouring cells. It is well known that it is difficult to establish the truth and 

      there could be significant inter- and intra-observer variability [44]. 

 This situation is further illustrated in Figure 14, which shows several slices of the volumetric 

      stack. Asterisks have been placed next to regions which could belong to either the cell of interest or 

      neighbouring cells. In all the cases illustrated, the algorithm did not include these as part of the cell. 

      The risk of modifying the algorithm to include the protuberances that were not included would be 

      that the cell could grow into neighbouring cells. Protuberances surrounded mostly by background 

      and not so close to other cells are better segmented as indicated by black diamonds. If the cell surfaces 

      were to be analysed for counting filipodia or to distinguish filipodia from lamellipodia, the algorithm 

      would have to be refined. 

 The segmentation of one cell from other neighbouring cells requires the presence of a certain 

      amount of background surrounding the cell, as this is used to form the distance map, which will later 

      be segmented with the watershed. When two cells are very close together and there is no background, 

      or very little of it, in that region the segmentation tends to be a straight line that bisects the cell with its 

      neighbouring cells. This is illustrated in Figure 14 with cyan triangles next to those boundaries. As 

      mentioned earlier, false negatives, i.e., the convoluted regions not included, outnumber false positives; 

      false negatives constituted 3.46% of voxels whilst false positives were only 0.25% for the cell without 

      nucleus and 3.31% and 0.14% for the cell including the nucleus. For reference the true positives were 

      15.7/23.33% and the true negatives 80.5/73.2%. Thus, the algorithm is a lower-bound estimation of 

      the cell and is not including as part of the cell regions that could belong to either of two neigbouring 

      cells, around 3% for the one cell for with GT was available. Again, if a very precise cell-cell interaction 

      based on the surfaces were of interest, the algorithm would have to be refined. Still for many other 

      applications such as measurements of volumes, position, polarisation, this algorithm provides a very 

      good approximation of the cell membrane and an excellent segmentation of the nuclear envelope. 

      Another application where this algorithm can be used is for counting mitochondria or other structures 

      on a per cell basis, so that each instance of a mitochondria can be allocated to the correct cell. 
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Figure 9. Four examples of volumetric reconstruction of the nuclear envelope (NE) and the cell 

membrane of HeLa cells. In all cases, each row corresponds to a single cell observed from different view 

points. Left and centre columns show the cell membrane with transparency. Right column the cell 

membrane without transparency from the same view point as centre column. The volume of interest is 2, 

000 × 2, 000 × 300 voxels and the units of the axes are in voxels. (a,b,c) Region of Interest (ROI) 23, NE 

is shown in red and cell in blue. Notice the relative smoothness except for one groove along the cell 

and the concentration on the lower part of the cell. (d,e,f) ROI 3, NE is shown in green, notice the 

ruggedness of the NE with numerous grooves and the concentration of the nucleus towards one side of 

the cell. (g,h,i) ROI 12, NE is shown in yellow. Notice the distribution of the nucleus concentrated on 

the upper part of the cell. (j,k,l) ROI 19, NE is shown in cyan. The surface of the NEs appears more 

distinctive than those of the cells. 

 

 As an indication of the computational complexity, the times to run the following processes were 

      recorded in an Alienware m15 R3 Laptop with an Intel®Core™i9-10980HK CPU, 2.40 GHz with 32 

      GB RAM and running MATLAB®(Mathworks™, Natick, USA) Version: 9.8.0.1417392 (R2020a). (1) 
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Figure 10. Final illustration of the results: three slices with the segmentations overlaid. In each slice, 

the cells are highlighted with a red shade and the nuclei are highlighted with a green shade. Numbers are 

added to aid the localisation of the particular cell. Notice that some of the numbers correspond to cells 

that are not visible in that particular slice. The units of the axes are in pixels and a scale bar indicating 

5µm is shown in slice 330. 

 

 
 

 

Detection of 20 cells in 26 slices and joining to identify 30 cells, 48 s, (2) Cropping 30 ROIs and saving 

300 Tiff images in 30 folders 9.1 min (18.2 sec/ROI), (3) Segmentation of one nuclei 14.9 min (2.98 

sec/slice, (4) Segmentation of one cell 13.2 min (2.64 sec/slice). These times are significantly faster 

than the manual segmentation that can take around 30 hours to segment one nuclear envelope alone 
[60]. 

So far, one of the strongest limitations of the algorithm is the presence of a bright background. To 

further test the segmentation algorithms, we identified cells with different settings that the 8, 192 × 

8, 192 × 518 volume previously described. Two publicly available EM datasets from the Cell Image 

Library - (CIL) (http://cellimagelibrary.org/images/50051 and http://cellimagelibrary.org/images/50061) were 

analysed. These sets consisted of Chlamydia trachomatis-infected HeLa Cells also embeded in Durcupan 

and acquired with SBF SEM using a Gatan automated 3View system (Gatan Inc.) [67]. The intensities 

were remarkably different from the previous data set as illustrated in Figures 15(a,d). 

Notice especially the low contrast of (d). It was observed that the closeness between cells resulted in a 

very limited background and thus the analysis was restricted to the NE from manually cropped ROIs 

(Figures 15(b,e)). The nuclei were segmented and results were considered very good through a visual 

inspection (Figures 15(c,f)). 
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Figure 11. Final illustration of the results: three slices with the segmentations overlaid. The units 

of the axes are in pixels (a). 

 

 One further observation was relevant.  The surface on Figure 15(f) showed a hole so it was 

      interesting to display the surface of the NE in a different way with the NE rendered as a mesh with no 

      face colour, edges in black and with transparency (Figure16). Axis are added for reference. Besides the 

      evident hole, the NE has other deep crevices that nearly connect two opposite sides of the NE as can 

      be observed in the lower part of (b). 

 In this paper,  an algorithm to segment instances of HeLa cells as observed with electron 

      microscopy was described. The algorithm can be run automatically and only requires some parameters 

      (number of cell per slice, number of slices, cells to be discarded) were set manually. The results of 

      the algorithm were very accurate for the segmentation of the nuclear envelope and lower for the cell 

      membrane, as it would be expected due to the significantly more complex geometry of the latter. The 

      algorithm has some limitations that have been discussed above, most important the presence of a bright 

      background and the cautious delineation of the membrane where some regions that could belong to 

      either a cell or its neighbour were not included in either. For a general analysis of the cell surface, the 

      algorithm provides good results, and if details of the protrusions of the cell were required, further 

      work could consider a post-analysis of all regions not included once all cells have been segmented. 

      Future work will be dedicated to the segmentation of other organelles such as mitochondria and Golgi 

      apparatus. 
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Figure 12. Comparison between ground truth (GT) and segmentation result obtained from the 

segmentation algorithm shown in three slices of the stack. Left column illustrates the GT with 

shades of green for the nucleus and shade of red for the cell. Centre column shows the result of the 

segmentation algorithm. Right column show the comparison between GT and the results with FN in 

white, FP in black and both TP and TN in gray. Large white regions correspond to distinction between 

neighbouring cells. A 5µm scale bar is shown in the GTs. 
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Figure 13. Magnified version of Figure 12. The white regions of the comparison correspond to the 

FN, i.e., regions that were not selected by the algorithm. It can be observed that some of these regions, 

which could belong to either of the neighbouring cells, would be difficult to identify to a human expert. 
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Figure 14. Illustration of segmentation at several slices of one cell. The segmentation is indicated with 

a red shade over the cell. Red asterisks indicate regions where the segmentation did not include 

protuberances that could belong either to the cell or to neighbouring cells. Blue triangles indicate 

regions where two cells are close together and the segmentation tends to a straight line between the 

cells. Black diamonds indicate convoluted protuberances that have been correctly segmented. The slice 

number relative to the stack of 300 is indicated above each slice. 

(a) (b) (c) 

   
(d) (e) (f) 

   

Figure 15. Illustration of the Serial Block Face Scanning Electron Microscope (SBF SEM) images 

containing monolayers of Chlamydia trachomatis-infected HeLa cells. (a) A representative image 

from the Cell Image Library CIL50051 data set. The volume has 3200 × 3200 × 413 voxels and voxel 

size is 3.6 × 3.6 × 60 nm. (b) A region of interest (ROI) with one nucleus, which corresponds to the red 

box in (a). (c) Rendering of the nuclear envelope (NE) of this cell. (d) One representative image from the 

Cell Image Library CIL50061 data set. The set has 2435 × 2489 × 406 voxels and voxel size 

8.6 × 8.6 × 60 nm. (e) ROI with one nucleus corresponding to the black box in (d). (f) Rendering of the 

NE of this cell. 
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(a) (b) 

  

Figure 16. Illustration of the nuclear envelope from the data set CIL50051. The surface is displayed 

as a mesh with transparency to show the hole of the nuclear envelope (a) and the crevices that go deep 

inside the nucleus. Notice in (b) how these invaginations nearly connect separate sides of the NE. 
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