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Abstract 

 

Background: Copy-number variations (CNVs) have important clinical implications for 

several diseases and cancers. The clinically relevant CNVs are hard to detect because CNVs 

are common structural variations that define large parts of the normal human genome. CNV 

calling from short-read sequencing data has the potential to leverage available cohort studies 

and allow full genomic profiling in the clinic without the need for additional data modalities. 

Questions regarding performance of CNV calling tools for clinical use and suitable sequencing 

protocols remain poorly addressed, mainly because of the lack of good reference data sets.  

Methods: We reviewed 50 popular CNV calling tools and included 11 tools for benchmarking 

in a unique reference cohort encompassing 39 whole genome sequencing (WGS) samples 

paired with analysis by the current clinical standard—SNP-array based CNV calling. 

Additionally, for nine of these samples we performed  whole exome sequencing (WES) 

performed, in order to address the effect of sequencing protocol on CNV calling. Furthermore, 

we included Gold Standard reference sample NA12878, and tested 12 samples with CNVs 

confirmed by multiplex ligation-dependent probe amplification (MLPA).  

Results: Tool performance varied greatly in the number of called CNVs and bias for CNV 

lengths. Some tools had near-perfect recall of CNVs from arrays for some samples, but poor 

precision. Filtering output by CNV ranks from tools did not salvage precision. Several tools 

had better performance patterns for NA12878, and we hypothesize that this is the result of 

overfitting during the tool development.  

Conclusions: We suggest combining tools with the best recall: GATK gCNV, Lumpy, 

DELLY, and cn.MOPS. These tools also capture different CNVs. Further improvements in 

precision requires additional development of tools, reference data sets, and annotation of 

CNVs, potentially assisted by the use of background panels for filtering of frequently called 

variants. 

 

Keywords: copy-number variation (CNV), whole genome sequencing (WGS), whole exome 

sequencing (WES), benchmark, bioinformatics, structural variant  
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Background 

Large cohort-based genome-wide association studies provided us with the tools and knowledge 

to understand numerous phenotypic traits and diseases by single nucleotide polymorphisms 

(SNPs) and short (<50 bp) insertions and deletions in the genome. It is, however, more 

challenging to assess the role of the larger structural variations which have proven to be 

important for the regulation and function of many gene products. This is particularly the case 

for  copy number variations (CNVs) [1] which were first described in healthy humans [2] but 

have since been associated with diseases, especially neurodevelopmental disorders and cancer 

[3, 4]. CNVs are estimated to contribute to 4.8–9.5% of the genome and one or multiple exon 

copy number changes can affect gene expression levels or induce chromosomal rearrangements 

causing various disorders and diseases [5, 6]. 

 

The current clinical standard method for CNV assessment remains array-based CNV 

identification, either from array-based comparative hybridization or SNP-array approaches [7, 

8]. While these arrays provide relatively accurate, cost-effective, and precise identification of 

CNVs, the use of short-read sequencing (or next generation sequencing, NGS), is not limited 

to the specific regions included on the arrays, has higher potential to identify novel CNVs, and 

has higher resolution at predicting both the breakpoints and shorter CNVs [9]. Long-read 

sequencing is still cost-preventive for routine diagnostics and uniquely suited for structural 

variants (SVs). The alternative—NGS—bears the potential of a single assay for complete 

genomic analysis that allows for automated identification of both SNPs and structural variants 

from the same data. CNV calling from NGS does, however, create new challenges; such as 

dealing with variable coverage across the genome, alignment bias for deletions, and read-length 

limit and insensitiveness towards repetitive and breakpoint regions [10]. Furthermore, short-

read sequencing increases mapping ambiguity consequently increasing the complexity of CNV 

detection [10]. This is particularly true for whole exome sequencing (WES) or targeted gene 

panels, as the sequencing coverage and read depth in different areas are highly variable.  

 

CNV calling algorithms can be based on one or more approaches: read-pair (RP), read-depth 

(RD), split read (SR), or assembly (AS) algorithms [11] (Figure 1). Most CNV calling tools 

are based on RD algorithms predicting CNVs from the changes based on read coverage in 

different areas of the genome.  
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Figure 1. Schematic visualization of different approaches for calling CNVs from NGS data. 

RD detects local difference in read-depth, SR detects unmatched read pairs, RP detects 

decreased insert size or swapped read directions between read pairs, and AS performs de novo 

assembly to best explain read distribution. 

 

With the increasing attention for the identification of SVs, including CNVs, and their clinical 

use, multiple SV databases have been established, such as CNV tracks in the UCSC database 

[12, 13] or gnomAD SV [14]. These databases help to evaluate predicted CNVs more 

accurately; however, the correct CNV identification itself remains challenging. In recent years, 

a number of tools for calling CNVs from NGS sequencing data, have been developed [11]. 

Currently, there is no clear standard tools for SV detection (including CNV)  and a lack of a 

comprehensive benchmark of the tools on known NGS datasets using more than a single sample 

[9, 11, 15] and no clear standard tools for SV (including CNV) detection. 

Here, we report an evaluation of 11 CNV detection tools for NGS and aim to identify the most 

reliable and clinically applicable software, whether based on WES or whole genome 

sequencing (WGS). We used the standard CytoScan HD SNP-array as a reference method for 

CNV detection and assessed the potential increase in sensitivity of WGS in comparison to 

WES. We selected the best performing tools and attempted to optimize the CNV calling to 
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improve precision. Finally, we suggest a combination of four tools (GATK gCNV, Lumpy, 

DELLY, and cn.MOPS) for a balanced CNV recall and precision.  

Results 

Review of 50 most popular CNV calling tools 

We reviewed 50 most popular tools for CNV calling (Figure 2, Supplementary Table 1). The 

tools were included in the benchmark if they were: (1) developed for calling CNVs from WES 

or WGS data, (2) developed for germline CNV calling, (3) recently developed or highly cited 

(>100 citations as of March, 2019, using the number of citations as the only available proxy 

for popularity of use), (4) still maintained, and (5) the latest versions of the tool was more 

recent than 5 years. However, several tools passing all these criteria were not suitable for 

inclusion in this benchmark (detailed information in Supplementary Table 1). After applying 

the selection criteria, 11 tools (in bold in Figure 2) were selected for further performance 

evaluation.  

Datasets used for the benchmark study 

The datasets used for the benchmark are listed in Table 1. Gold Standard sample NA12878 

from 1000 Genomes Project was used with the CNVs which were published by Haraksingh et 

al., 2017 [8]. For the in-house GB01–GB08 and GB09–GB38 samples the true reference was 

considered to be Nexus software-produced filtered CNV calls from CytoScan HD SNP-array, 

which have previously been shown to be among the best-performing array platforms [8, 16]. 

To account for imperfections in the SNP-array CNV calling, we compared all CNV calls made 

by different CNV calling tools (Figure 5A and Figure 5B). Furthermore, selected CNVs were 

confirmed for the GB40–GB51 samples using multiplex ligation-dependent probe 

amplification (MLPA). 

11 CNV calling tools included in the benchmark 

We selected 11 tools for the benchmark. Eight tools use a read depth approach: CNVnator [17], 

CLC Genomics Workbench [18], GATK gCNV [19], cn.MOPS [20], ExomeDepth [21], 

CNVkit [22], CoDEX2 [23] and Control-FREEC [24]. Other SV callers that include CNVs, 

such as DELLY [25], Manta [26] and LUMPY [27] use a combined approach and apply more 

than one CNV calling algorithm for more accurate predictions (Figure 2; detailed tool 

algorithms are provided in Supplementary File 1). All tools were run using the default 

parameters and following author recommendations when available. Most CNV calling tools 
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Figure 2. Overview of methods CNV calling tools applies, input NGS data, citation number 

from Google Scholar and available latest version for each tool as of March, 2019. Tools 

highlighted with bold font are included in the benchmark, the horizontal red line shows the 

cutoff for the citation number. 
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are developed for either WES or WGS. However, cn.MOPS, CLC Genomics Workbench, 

CNVkit, Manta, and GATK gCNV tools are capable of calling germline CNVs using both WES 

and WGS data. For the NA12878 Gold Standard sample we also report CNVs called by 

Haraksingh et al., 2017 [8] using the consensus of several methods, including non-NGS based 

approaches. 

Table 1. Datasets used in this benchmark study. 

Name No. of samples WES WGS Reference CNVs 

NA12878 1 Yes Yes Haraksingh et al., 2017 [8] 

GB01–GB08 8 Yes Yes CytoScan HD SNP-array 

GB09–GB38 30 No Yes CytoScan HD SNP-array 

GB40–GB45 6 No Yes MLPA 

GB46–GB51 6 Yes No MLPA 

 

CNV length and type distribution for CNV calling tools 

All tools called more deletions than duplications for NA12878 Gold Standard sample (Figure 

3A). However, the total number of called CNVs varied greatly between the tools. GATK gCNV 

called more duplications and deletions in both WES and WGS samples compared to other tools. 

CODEX2 called the lowest number of deletions and duplications in WES samples and CLC 

Genomics Workbench called the lowest number of CNVs in WGS data. None of the CNV calls 

were filtered with a cutoff on confidence metrics, except where it was recommended by the 

authors of the tool (CODEX2) or the filtered files were created automatically (CLC Genomics 

Workbench). CODEX2 called a similar number of CNVs as provided in NA12878 Gold 

Standard true CNV set, but this did not equate that all the CNV calls were true positives. Similar 

patterns were observed for GB01–GB38 samples (Supplementary Figure 1).  

CNV calls differed in lengths and frequencies among the tools in WES and WGS of NA12878 

sample (Figure 3B). CLC Genomics Workbench and cn.MOPS called a high number of CNVs 

longer than 10,000 bp while GATK gCNV called mainly CNVs shorter than 500 bp in WES 

and 500–1,000 bp in WGS. GATK gCNV called shorter CNVs than any other tool. 

Furthermore, cn.MOPS, CNVnator, and Control-FREEC predicted more >1,000 bp length 

CNVs than other tools for WGS NA12878 sample. Half of CNVs in NA12878 were shorter 
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than 500 bp as per Gold Standard truth CNV set. Similar patterns were observed for GB01–

GB08 WES and GB01–GB38 WGS samples (Supplementary Figure 2). 

Precision and recall of CNV calling tools 

Given CNVs from CytoScan HD SNP-array for GB01–GB38 samples and NA12878 Gold 

Standard truth CNV set, true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) CNV calls were identified for each of 39 samples for WGS, and 9 samples 

(GB01–GB08 and NA12878) for WES (Supplementary Table 2). The criteria of an overlap of 

1 bp between the Cytoscan HD SNP-array called CNV and the NGS-based tool CNV call was 

used for the CNV call to be classified as a TP. Recall and precision were calculated using the 

following formulas: 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
; 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
. GB01–GB38 samples had a total 

2–103 (median 7) CNVs called by CytoScan HD SNP-array, whereas 2,076 CNVs were called 

for NA12878 from the Gold Standard truth CNV set. For WES data, only CNVs covering exons 

were considered (1–63 (median 4) for GB01–GB08 and 233 for NA12878).  

GATK gCNV recall was best for both WES and WGS data (Figure 3C), followed by Lumpy, 

DELLY, cn.MOPS, and Manta. All tools performed poorly on the WES dataset. While recall 

for WGS in all tools, except CLC Genomics Benchmark, was fair, precision was lacking for 

all the tools, with a maximum precision of 66.7% (Figure 5B). Tools that called a higher total 

number of CNVs, also had higher recall, but lower precision. The only two tools which use 

CNV call filtering (CLC Genomics Workbench and CODEX2) had a low recall compared to 

the tools which did not filter CNVs as part of their default settings. Collectively, recall 

approached 1 for several tools, but came at the expense of precision, which was lower than 

31% in WGS data for the four best recalling tools (GATK gCNV, Lumpy, DELLY, and 

cn.MOPS).  

CNV call filtering possibilities for CNV calling tools  

To explore the possibility of filtering CNV calls to improve precision we analyzed recall and 

precision at sliding confidence cutoff values. Briefly, for each tool, we calculated recall and 

precision at different thresholds defined by the percentiles of the tool-defined confidence 

metric (see Methods section for details). 

The recall on WES was low, regardless of filtering, and that precision generally did not improve 

as a function of the threshold, and could not be easily interpreted as being asymptotically 

negative (Figure 4). The exception to this was CNVkit, which displayed high recall and 

precision on the WES NA12878 sample and offered the possibility of meaningful filtering. 
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Figure 3. (A) Number of duplications and deletions called by CNV calling tools in WES and 

WGS data for the NA12878 sample. (B) Number CNVs called by all tools in WES and WGS 

data for the NA12878 sample colored by length. (C) Box plots and scatter plots for recall and 

precision results for 11 CNV calling tools. 
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However, this performance of CNVkit was only seen for NA12878 sample and not for the 

remaining WES samples. 

For WGS, recall for most tools decreased linearly as a function of filtering, the utility of which 

is therefore limited. Arguably, one exception for the GB01–GB38 WGS samples was GATK 

gCNV, which had proportionally good recall when filtering out the bottom 75th percentile. 

However, such a cutoff did not improve the precision for the tool. For the WGS NA12878 

sample, DELLY and Manta had good performance when selecting only the over-represented 

top confidence values, while Lumpy also displayed diminishing returns at lower scores. In the 

case of Manta, precision decreased predictably with filtering, while Lumpy had a somewhat 

unpredictable precision fraction curve, and DELLY's precision appeared unaffected by 

filtering. CLC Genomics Workbench had repeated patterns for recall in both NA12878 and 

GB01–GB38 suggesting a relative ranking metric for each run. Collectively, sorting CNVs on 

confidence metrics from the tools did not offer any meaningful threshold for controlling 

precision, due to asymptotically positive recall curves (more liberal inclusion resulted in more 

hits). We further found several unpredictable precision curves, and overuse of the maximum 

confidence value, which gave a percentile of top-scoring CNVs without any additional metrics 

to rank. Exceptions to these conclusions were found only for the NA12878 sample. 

Short CNVs can be identified by NGS-based CNV calling tools 

For the 38 WGS samples, DELLY and GATK gCNV called the most CNVs: 148,519 and 

132,265, respectively. Manta, Lumpy, CNVnator, cn.MOPS, and Control-FREEC called 

94,832, 93,166, 85,962, 36,491, and 13,160, respectively. CLC Genomics Workbench called 

632 CNVs across the 29 samples it was run for. The tool was not run on all 38 samples due to 

computation time: it re-analyzes the base-level coverages of the control samples in every run, 

resulting in very long running times for WGS samples. 

Tools with the same calling strategies had a higher overlap in called CNVs (Figure 5A). For 

example, DELLY, Lumpy, and Manta displayed a large degree of CNV overlap in WGS 

samples and they all use RP and SR information for calling CNVs. CNVnator, GATK gCNV, 

and DELLY called a high number of unique CNVs in WGS data which were not called by any 

other tool. Furthermore, a total 51.9% of all called CNVs were shorter than 1,000 bp. CNVs 

which were called by two or more tools were mostly short: less than 1,000 bp. Such CNVs are 

known to be less often called by array-based CNV calling approaches [8, 28]. Out of 407,671 

CNVs called in the WGS samples, 74.4% were called only by a single tool. The percentages 
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Figure 4. Recall and precision curves for GB01–08 and NA12878 WES samples, and GB01–

GB38 and NA12878 WGS samples.  
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of CNVs called by 2–8 tools were 11.5, 9.5, 2.6, 0.8, 0.8, 0.4, and 0.1%, respectively (Figure 

5A). 

For WES (Figure 5B), CLC Genomics Workbench called 1,268 CNVs, cn.MOPS—787, 

CNVkit—66, CODEX2—762, ExomeDepth—1,123, GATK gCNV—7,116, and Manta—

174. The observed overlap between CNVs called between tools was lower than for WGS data: 

90.3% of the total 9,944 CNVs were called by a single tool, and the percentages for 2–7 tools 

were 6.8, 2.0, 0.6, 0.2, 0.04, and 0%, respectively. GATK gCNV called the highest number of 

unique CNVs while the CNV calls by two or more tools were mostly longer than 1,000 bp. 

Despite the overlap between longer CNV calls, the majority (69.6%) of all CNV calls were 

shorter than 1,000 bp. 

Lumpy, DELLY, Manta, and partly CNVnator performed best on NA12878 WGS data while 

CNVkit recalled almost all CNVs present in NA12878 WES dataset (Figure 5C–D). It is 

important to note that Manta and CNVnator were used for the generation of the NA12878 truth 

CNV set [8] and the CNV calls might have been favored to overfitting. More accurate picture 

of the tools’ performance can be obtained by evaluation of GB01–GB38 CNV calls. 

Many CNVs confirmed by CytoScan HD SNP-array on WGS were called by multiple tools 

(Figure 5E). While 25.6% of all called CNVs overlapped in two or more tools (Figure 5A), 

more than 83.7% CNVs were overlapping with the CytoScan HD-confirmed CNV list (Figure 

5E). As for WES, in more than two thirds of the cases where CytoScan identified a CNV, none 

of the tools called it. All tools performed similarly poorly on WES data (Figure 6) with 

cn.MOPS and CNVkit missing all the CNVs identified by CytoScan HD SNP-array.  

MLPA-confirmed CNV recall for CNV calling tools 

To assess if tools accurately identify CNV breakends we used twelve MLPA-confirmed CNVs 

of varying sizes (1 exon to whole gene; deletions (N=11) or duplications (N=1), Supplementary 

Table 3) from six WES samples and six WGS samples (Figure 6B). Six out of 11 tools (CLC 

Genomics Workbench, CODEX2, DELLY, ExomeDepth, Lumpy, and Manta) did not identify 

any of the MLPA-confirmed CNVs. Conversely, GATK gCNV, CNVkit and cn.MOPS 

identified all MLPA-confirmed CNVs in WES. GATK gCNV, cn.MOPS, CNVnator, and 

Control-FREEC identified all the CNVs confirmed by MLPA in WGS samples. CNVnator 

(WGS), cn.MOPS (WES), and CNVkit (WES) predicted shorter CNVs than the MLPA-defined 
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Figure 5. Heatmap showing all called CNVs across all samples (A–B) and called CNVs 

overlap with the true CNVs (C–E). (A) WGS (n = 407,671) and (B) WES level (n = 9,944). 

Each row represents a tool and a blue field denotes a call of the given CNV. All CNVs from 

each sample were merged across tools, such that any overlapping calls of either duplications 
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or deletions were combined to one. Blue color denotes that the given CNV was called by the 

tool. The order of rows/columns for WES data and rows for WGS data was determined using 

complete-linkage hierarchical clustering with Euclidean distance, while the order of columns 

for WGS data was determined using a combination of k-means and hierarchical clustering due 

to memory restrictions. Darker grey coloring (WGS only) indicates that the tool was not run 

for the sample which contained the CNV. (C) 2,076 WGS-based and (D) 81 WES-based true 

CNVs in NA12878 sample. The order of rows/columns was determined using complete-

linkage hierarchical clustering with Euclidean distance. (E) CNV calling heatmap for 471 true 

CNVs at and WGS level in 38 samples (GB01–38). Column dendrogram shows clustering to 

the level of 20 clusters to reduce complexity. The Quality annotation represents the probe 

median score from CytoScan HD SNP-array and the Man.annot. refers to whether the CNV 

was independently manually confirmed. A positive quality score corresponds to duplications, 

and negative scores denote deletions. Darker grey coloring indicates that the tool was not run 

for the sample which contained the CNV. The order of rows/columns was determined using 

complete-linkage hierarchical clustering with Euclidean distance. 

 

Figure 6. (A) CNV calling heatmap for 7 tools and 107 true CNVs at WES level in 8 samples 

(GB01–08). The Quality annotation represents the probe median score from CytoScan HD 

SNP-array and the Man.annot. refers to whether the CNV was independently manually 

confirmed. A positive quality score corresponds to duplications, and negative scores denote 

deletions. The order of rows/columns was determined using complete-linkage hierarchical 
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clustering with Euclidean distance. (B) MLPA-confirmed CNV calling results for 11 CNV 

calling tools. GATK gCNV is labeled as GermlineCNVCaller. 

 

truth, while GATK gCNV identified the full-length of both deleted and duplicated regions. 

Control-FREEC called all 6 CNVs in WGS samples but predicted shorter CNVs spanning 

22.0–98.6% of true CNV length. 

Memory and CPU requirements for CNV calling tools 

CPU and memory requirements were measured on a 28-core server grade cluster node, for the 

tools where it was possible to obtain an estimation on the NA12878 sample. Control-FREEC 

showed the best compromise between memory and CPU, both being low in WGS and even 

lower than requirements for other tools in WES (Figure 7). Memory-wise, DELLY and Manta 

were the other two tools with the lowest needs; the latter also having short computational times, 

while the former had one of the highest, possibly due to the fact that insertions and deletions 

were called subsequently and not in parallel. Surprisingly, cn.MOPS also showed low memory 

requirements on exomes, but the highest in genomes. However, it also offered one of the lowest 

computational times both in WES and WGS. 

GATK gCNV and cn.MOPS used a lot of RAM at peak memory, and it is possible that more 

RAM per node than the available 128GB per machine would have shortened the runtime by 

enabling better distribution of tasks. Computational requirements for creation of GATK’s 

model were not measured in this benchmark. Due to the batch caller nature of cn.MOPS, 

CNVkit, and CODEX2, many alignments have to be kept in memory at the same time, 

explaining the observed higher memory requirements.  

 

Discussion 

From the reviewed 50 CNV calling tools, we observed that many of the tools were either not 

maintained with the last updates applied more than 5 years ago, or not widely used. We 

included 11 widely used or newly developed CNV calling tools, which fulfilled our selection 

criteria, to benchmark their performance on CNV calling on WES and WGS samples. 

 

In order to establish a reference set of CNVs we used the best performing array-platform, in 

addition to NGS. CytoScan HD SNP-array technology was chosen as a sensitive and clinically 

adopted method to detect CNVs. It is important to note that because of the probe-dependent 

and genome-distributed nature of the array technology, not all short CNVs could be captured. 
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Figure 7. Maximum memory used by a tool measured in megabytes and total CPU time in 

hours run in 28-core machines with 128 GB RAM, while running NA12878. Some tools can 

distribute tasks over nodes, and total RAM usage is reported as total maximum. 

 

 

Therefore, the CNV calls classified as false positive (FP) in this benchmark should be 

interpreted carefully. Additionally, as CNV detection is a technically challenging task, none of 

the array-based standards in this study can ultimately be regarded as an absolute truth [8]. 

Besides the in-house GB01–GB38 samples, which were analyzed by Cytoscan HD SNP-array, 

we included the well-studied NA12878 sample, for which extensive efforts have been made to 

confirm all CNVs, based on several platforms, and NGS-based CNV callers. The latter might 

introduce a bias for these samples in this benchmark, as two of the included tools were used in 

this evaluation (Manta and CNVnator). Furthermore, the NA12878 sample and its truth CNV 

set are also popular for testing and optimising CNV tools, which could potentially explain the 

possible overfitting we observed e.g., for Manta and CNVkit, which had the highest 

discrepancy between NA12878 calls and calls on our cohort. 

 

Tools with identical CNV calling strategy had a tendency to call the same CNVs, and, in 

general, read-depth based tools, or combinations including this strategy, performed best, when 
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assessed on recall of CNVs from Cytoscan HP SNP-array, or NA12878 Gold Standard sample. 

The number of CNVs called varied more than a 100-fold; consequently, the recall rates for 

tools calling many CNVs were higher, and no systematic trade-off could be found to improve 

precision for these tools. In short, tools calling many CNVs hit the target more often, but high 

confidence CNVs were not generally showing a higher fraction of recall. For tools like DELLY 

and Lumpy, a combination of CNV metrics could be used to filter on the CNV calls as it is 

applied in SVTyper [29].  

 

CNVs selected for experimental validation with MLPA were selected based on targeted gene 

panel sequencing, and were, therefore, not biased by CNV calls from tools tested in this 

analysis. It was, however, striking that tools could be split into two groups: those that were able 

to recall all six independent CNVs and those that called none.  

 

GATK gCNV caller performed best at CNV recall and is clearly the most sensitive tool for 

CNV identification for both WES and WGS data, but comes with poor precision, like all tools 

tested (highest precision mean < 13% for WES and < 6% for WGS). GATK gCNV is also the 

best performing tool when recalling MLPA-confirmed CNVs and estimating their breakends 

correctly, even if four other tools also recalled the CNVs. The good performance of GATK 

gCNV and cn.MOPS caller comes at a high computational cost and the former was almost 

twice as computationally expensive as the third-highest consuming WGS tool considering 

CPU/h and peak RAM usage. 

 

The GnomAD database [14] shows how CNV calls can be used clinically, but more research 

and larger cohort studies are needed for better annotation and inference of causation of CNVs. 

Our study shows that more work has to be done on collecting large and well-annotated datasets 

with CNV detection on several platforms, in order to drive the development of tools with 

improved precision on CNV calling from NGS data. The current state of tools for finding CNVs 

is suited for identifying complex traits in large cohorts, for which we suggest to use the overlap 

between several tools. Using rare CNVs called from NGS as a basis for genome-wide 

association studies is not currently advisable.  

 

The future for NGS-based CNV calling tools is likely to rely on the utilization of a combination 

of long- and short-read sequencing [30]. This is particularly true considering the need for CNV 

annotation that explains causative traits and which will require sequencing of large cohorts 
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with two simultaneous protocols. Alternatively, future improvements on both price and error 

rate for long-read sequencing are needed. In terms of filtering CNV calling results, better 

annotation of CNVs is a clear optimization candidate. The ability to leverage additional genetic 

data, such as RNA-seq, or even static knowledge of genetic sites from associations to epigenetic 

mechanisms or regulation, may also guide the selection and prioritisation process in the near 

future. In a clinical setting, production of background panels or databases to filter true common 

CNVs or common FPs called by each tool can greatly reduce the number of relevant CNVs 

presented for interpretation (data not shown), just like databases like gnomAD SV [31] can be 

used to reduce the numbers of common CNVs. Lastly, transcriptional regulation of the altered 

regions requires more investigations, so that the causative effect of CNVs can be elucidated, 

and potentially be predicted in each case. 

 

Our work has several limitations. First, we benchmarked only a limited set of tools; however, 

findings are in line with larger studies [32], relying on single truth sets. Furthermore, the 

observed potential for overfitting to NA12878 Gold Standard sample by some tools 

complicated the accurate evaluation of recall and precision with a well-annotated dataset. 

Finally, the main limitation of our work is the lack of well-defined true CNV sets, therefore 

our analysis using CytoScan HD SNP-array calls vastly underestimates CNV call precision on 

the in-house data sets, but this caveat should not favor specific tools.  

 

In summary, by reviewing 50 tools for CNV calling, of which 11 were included for a 

benchmark (CLC Genomics Workbench (WGS and WES), cn.MOPS (WGS and WES), 

CNVkit (WES), CNVnator (WGS), CODEX2 (WGS), Control-FREEC (WGS), DELLY 

(WGS), ExomeDepth (WES), GATK gCNV (WES and WGS), Lumpy (WGS), and Manta 

(WES and WGS)), we conclude that CNV identification from NGS data remains challenging. 

For the best reliability of CNV calling from NGS data, we observed that even if the tools were 

developed for WES data or allowed it as input, they did not perform well. We suggest WGS as 

the only NGS-based option for broad calling of CNVs. Furthermore, low precision in all tools 

leads us to recommend a hypothesis-based approach for finding causative CNVs by NGS in 

the clinic, and further validation of these candidates by manual inspection, MLPA or array-

based approaches. If multiple samples are available from the same protocol, we suggest using 

these to filter by commonly called CNVs. If only the WGS data is available for the sample, for 

a higher precision of CNV calls, multiple CNV calling tools should be used. We suggest 

combining tools which have the best recall: GATK gCNV, Lumpy, DELLY, and cn.MOPS.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442110doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=8969309&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7028151&pre=&suf=&sa=0
https://doi.org/10.1101/2021.04.30.442110
http://creativecommons.org/licenses/by/4.0/


Methods 

Sequencing and read alignments 

Genomic DNA (gDNA) was extracted from whole blood samples using a liquid handling 

automated station (Tecan). WES was performed from 200 ng of gDNA. Fragmentation was 

done on Covaris S2 (Agilent) to approximately 300 base pair fragments and adaptor ligation 

was performed using KAPA HTP Library Preparation Kit. Exomes were enriched with 

SureSelectXT Clinical Research Exome kit (Agilent). Paired-end sequencing with average read 

depth of at least 50x was performed using HiSeq2500 or NextSeq500 platforms from Illumina. 

For WGS analysis, sequencing libraries were prepared from 500 ng gDNA using Nextera DNA 

Flex library prep kit (Illumina), according to the manufacturer's instructions. WGS libraries 

were sequenced on Illumina NovaSeq6000 with sequencing depth of at least 30x. Sequenced 

reads were trimmed and aligned to the human reference genome (hg19/GRCh37) using BWA 

MEM 0.7.12 software [33].  

Selection of Normals 

CNVkit, CODEX2, ExomeDepth, and GATK gCNV require a group of samples to represent 

healthy control genomes. Normal samples should be produced with the same technical 

protocol, thus presenting a similar pattern of technical noise. Due to the nature of our 

experimental set up, no healthy control samples were available to create the Panel of Normals. 

Normal-like samples were selected instead. Seventy whole genomes were chosen as WGS 

normals. Ninety-four exome samples were chosen as WES normals. 

MLPA 

MLPA analysis was performed according to the manufacturer's instructions (MRC-Holland, 

Amsterdam, the Netherlands) using appropriate MLPA Kits for BRCA1 (NM_00007294), 

BRCA2 (NM_000059), FLCN (NM_144997), MSH2 (NM_000251), MSH6 (NM_000179), 

PALB2 (NM_024675), PMS2 (NM_000535), VHL (NM_000551). 

CytoScan HD SNP-array 

gDNA was isolated using the liquid handling automated station (Tecan). Purified DNA was 

quantified using the Qubit instrument (Life Technologies). CytoScan HD SNP-array 

(Thermofisher Scientific), which contains 2.67 million genome-wide markers, was performed 
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on extracted DNA from samples GB01–GB38, according to the manufacturer's instructions. 

Result files were analysed using Nexus Copy Number software 10.0 (BioDiscovery) using 

NCBI Build 37 as reference. The samples were pre-processed by systematic correction 

(Quadratic), probes were recentered by the median and applying the mean of Combine 

Replicates Between Arrays. Subsequently, data were processed by SNP-FASST2 

Segmentation with a significance threshold of 1.0E-8 and max contiguous probe spacing of 

1000 Kbp with a minimum of 3 probes per segment. Following thresholds were applied for 

calling CNVs: High Gain = 0.7; Gain = 0.23; Loss = -0.37; Big Loss = -1.1 and heterozygous 

imbalance threshold of 0.4. All gains or losses not covered by an allelic imbalance event were 

considered as false-positive and removed. Moreover, independently of the automatically 

generated CNV calls, each sample was visually inspected for CNVs using Nexus Copy Number 

software 10.0 (BioDiscovery).  

NA12878 Gold Standard 

Gold standard for NA12878 CNVs was produced by the 1000 Genomes Project. It contains 

only high confidence CNVs and the list of all CNVs was obtained from Haraksingh et al., 2017 

[8]. In total, 2,076 CNVs of 51–453,313 bp sizes were used for CNV calling software 

evaluation. We have performed NA12878 WGS sequencing in-house while WES data was 

obtained from: ftp-

trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/.  

CNVnator 

CNVnator [17] was run using the default parameters and recommendations from the authors 

with the bin size of 100 for all WGS samples.  

CLC Genomics Benchmark 

CLC Genomics Benchmark uses fastq files as input to the CNV calling workflow which are 

subsequently mapped to the reference genome by their internal read mapping tool [34]. The 

mapped reads of the samples under investigation and the control samples are then used for 

calling CNVs. The called CNVs can be exported as BED files. 
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GATK gCNV 

GATK gCNV [19] calling is composed of two workflows: model creation and individual 

sample calling. 

During model creation, the Panel of Normals of WGS and WES composed by 70 and 94 

samples respectively, were generated. For WGS, intervals of 1000 bp and 0 bp padding were 

produced and filtered following GATK recommendations. No intervals were generated for 

WES samples. Read counts were measured in the exome regions and whole genome intervals 

and ploidy models were generated. Finally, a model per chromosome was produced using 

GermlineVariantCall. Benchmark samples were subsequently run, following the same 

procedure as the Panel of Normals, but including the available models during ploidy 

determination and germline variant call. Chromosomal calls were finally merged using 

PostprocessGermlineCNVCalls. 

DELLY 

Duplications and deletions were called by using DELLY [25]. Only one library size was 

available and it was provided at a time. Each of the samples only contained one read-group and 

no further specifications were given. The variant call was performed searching for duplication 

events (-t DUP) and deletions (-t DEL). The resulting bcf files were merged using bcftools 

concat. 

cn.MOPS 

cn.MOPS [20] was used to call CNVs on all WES and WGS samples following the vignette 

[35]. Due to memory constraints, WGS sample bam files were grouped together in batches of 

11 to 12 samples before analysis, and each batch was run as follows. Using the provided 

getReadCountsFromBAM function, read counts were extracted from the bam files for 

chromosomes 1–22 using a window length parameter WL=500 in order to achieve roughly 50–

100 reads per window. The cn.mops function was used to call CNVs and integer copy numbers 

were extracted using calcIntegerCopyNumbers. 

For the WES samples, all bam files were run together as a single batch. A bed file with the 

targeted regions was converted into GRanges format and used to extract read counts in the 

regions with the getSegmentReadCountsFromBAM function. CNVs were then called using the 

exome cn.mops function and integer copy numbers calculated as above. 
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CNVkit 

CNVkit [22] was used to call CNVs on all WES and WGS samples, grouped together by library 

type and according to the authors guidelines [36]. Briefly, we used the default parameters, 

restricting the analyses to the WGS mappable regions and, in the case of WES, to the captured 

regions also. 

Control-FREEC 

Control-FREEC 11.5 [24, 37] was used to process the 39 WGS samples of the benchmark 

starting from BAM files. Default parameter values (forceGCcontentNormalization = 0, 

minCNAlength = 1, coefficientOfVariation = 0.05) were used, however, ploidy was set to 2, 

mateOrientation to “FR” for Illumina paired-end reads, and the sex of each sample was 

supplied (two males and seven females). In this case, the hg19 reference used for alignment 

was used and mappability of the genome was disregarded (read length = 151). Sambamba 0.6.7 

[38], BEDTools 2.27.1 [39], Samtools 1.9 [40, 41], and R 3.5.0 [42] were used as dependencies. 

The script ‘assess_significance.R’ provided by the Control-FREEC developers was used to add 

p-values to the detected CNVs.  

Manta 

Manta [26] was used to infer deletions and duplications from both WES and WGS sequence 

data using default parameters. 

LUMPY 

For each of our WGS sample bam files, we used the LUMPY Express wrapper [27] to call 

CNVs as described in the official documentation on GitHub (https://github.com/arq5x/lumpy-

sv): discordants were extracted with samtools view, filtering out reads by flag 1294; split reads 

were extracted using the provided extractSplitReads_BwaMem script. Both were sorted and 

then provided as input to the lumpyexpress utility together with the original bam to output a 

vcf giving structural variants, from which we obtained CNVs as the called deletions and 

duplications. 

ExomeDepth 

ExomeDepth [21] was used to detect CNVs from WES sequence data following the authors 

recommended best practices [43]. Since ExomeDepth takes advantage of the tight correlation 
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structures between large numbers of samples when building a reference sample, we used our 

reference samples as a Panel of Normals. Even though these reference samples are not ideal 

(since they are not from the same batch), they are a good representation of the samples in our 

laboratory, as well as the experimental design most users will encounter (related samples from 

the same lab, but not the same batch).  

CODEX2 

To run CODEX2 [23], we grouped all the WES samples together with 50 extra Panel of 

Normals WES samples. This batch of samples was then analysed for each of chromosomes 1 

through 22 by following the provided documentation from GitHub 

(https://github.com/yuchaojiang/CODEX2), using default or suggested parameters and 

functions except where otherwise noted. We used CODEX2 without specifying negative 

control samples, using the normalize_null function for normalization. For chromosomes 1, 4, 

6, and 14, the glm.fit procedure in CODEX2 did not converge, despite increasing the parameter 

K = 1:10 as per the authors’ suggestion. 

Data processing and plotting 

All tools were run using Snakemake [44], post-processing of the called CNVs was carried out 

using Python 3.6 and R 3.5.0 [42]. Scripts for running the tools are available on GitHub 

(https://github.com/cphgeno/CNVbench). The rtracklayer package [45] was used for main 

processing of the files, and ggplot2 [46], ComplexHeatmap [47], and RColorBrewer [48] were 

the key resources for plotting. 

 

Fraction curve generation 

The analyzed data was split into four data sets: NA12878 WES, GB01–GB08 WES, NA12878 

WGS, and GB01–GB38 WES. For each data set, and for each tool that called CNVs for the 

dataset in question, we filtered the CNV calls according to a confidence metric provided by the 

tool itself (see below). Specifically, we subset the tool data set on every confidence metric 

percentile from 0 to 99 by taking all CNV calls with confidence scores less/greater (as 

appropriate for the metric) than or equal to a given percentile. Recall and precision were then 

calculated and plotted for the resulting, filtered CNV calls. 

    Note that some tools use only a few discrete confidence values or use a single value for a 

large proportion of the calls. Therefore, a cutoff at the 99th percentile does not necessarily 
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contain 1% of the called CNVs if, for example, 50% of the CNVs in the call set are assigned 

the best confidence score. 

    The confidence metrics used for each tool were as follows. CLC Genomics Workbench: 

Absolute fold change; CNVkit: Mean squared standard error of log2 of the copy number; 

CNVnator: t-statistic p-value; cn.MOPS: Median informative/non-informative ratio value; 

CODEX2: Likelihood ratio; ControlFREEC: Wilcoxon rank sum test p-value; DELLY: 

Genotype quality values; ExomeDepth: Observed/expected read ratio; GATK gCNV: CNQ 

scores (difference between the two best genotype Phred-scaled log posteriors); Lumpy: 

Number of pieces of evidence supporting the variant across all samples; Manta: CNV quality 

score. 

 

Performance profiling 

Snakemake's built-in capabilities for benchmarking runtime and memory usage were used to 

measure wall-clock time and peak resident set size for calling CNVs on sample NA12878. 

Tools were tested on a HP Apollo 6000 System ProLiant XL230a Gen9 Server blade, on a node 

with 28 64-bit Intel Xeon E5-2683 v3 @2.00 GHz CPUs available, and 128 GB, DDR4 @2133 

MHz RAM.  

List of abbreviations 

AS - Assembly 

CNV - Copy number variation 

gDNA - genomic DNA 

MLPA - Multiplex ligation-dependent probe amplification 

NGS - Next generation sequencing 

RD - Read-depth 

RP - Read-pair 

SR - Split-read 

SV - Structural variant 

WES - Whole exome sequencing 

WGS - Whole genome sequencing  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442110doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442110
http://creativecommons.org/licenses/by/4.0/


 

Declarations 

 

Availability of data and material 

WGS data for NA12828 and snakemake workflow to run and test all tools in this benchmark 

is deposited at: https://github.com/cphgeno/CNVbench. 

 

WES for NA12828 WES is from:  

ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome  

 

Ethics approval and consent to participate 

DNA samples originate from the in-house anonymized quality samples.  

 

Competing interests 

The authors declare no competing interest.  

 

Funding 

Not applicable. 

 

Acknowledgements 

The authors would like to thank Denise Serra for editing and typesetting of figures.  

 

Author contributions 

FOB conceived and designed the study. MG, MHT, MSR, FGV, CBP, SAS, and SK tested 

tools, processed the output, and developed the computational framework. MBM, CWY, OØ, 

and MR gathered the experimental data and performed analysis of the CytoScan HD SNP-

arrays. RLM, LRO, FCN, OW, and FOB supervised the work. All authors discussed the results. 

MG, MHT, MSR, FGV, CBP, SAS, SK, MBM, CWY, LRO, and FOB contributed to the final 

manuscript.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442110doi: bioRxiv preprint 

https://github.com/cphgeno/CNVbench
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome
https://doi.org/10.1101/2021.04.30.442110
http://creativecommons.org/licenses/by/4.0/


Bibliography 

1. Ionita-Laza I, Rogers AJ, Lange C, Raby BA, Lee C. Genetic association analysis of copy-

number variation (CNV) in human disease pathogenesis. Genomics. 2009;93:22–6. 

doi:10.1016/j.ygeno.2008.08.012. 

2. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy 

number polymorphism in the human genome. Science. 2004;305:525–8. 

doi:10.1126/science.1098918. 

3. Takumi T, Tamada K. CNV biology in neurodevelopmental disorders. Curr Opin 

Neurobiol. 2018;48:183–92. doi:10.1016/j.conb.2017.12.004. 

4. Kumaran M, Cass CE, Graham K, Mackey JR, Hubaux R, Lam W, et al. Germline copy 

number variations are associated with breast cancer risk and prognosis. Sci Rep. 

2017;7:14621. doi:10.1038/s41598-017-14799-7. 

5. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of 

large-scale variation in the human genome. Nat Genet. 2004;36:949–51. doi:10.1038/ng1416. 

6. Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the 

human genome. Nat Rev Genet. 2015;16:172–83. doi:10.1038/nrg3871. 

7. Nowakowska B. Clinical interpretation of copy number variants in the human genome. J 

Appl Genet. 2017;58:449–57. doi:10.1007/s13353-017-0407-4. 

8. Haraksingh RR, Abyzov A, Urban AE. Comprehensive performance comparison of high-

resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in 

humans. BMC Genomics. 2017;18:321. doi:10.1186/s12864-017-3658-x. 

9. Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation 

(CNV) detection using next-generation sequencing data: features and perspectives. BMC 

Bioinformatics. 2013;14 Suppl 11:S1. doi:10.1186/1471-2105-14-S11-S1. 

10. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat 

Rev Genet. 2011;12:363–76. doi:10.1038/nrg2958. 

11. Pirooznia M, Goes FS, Zandi PP. Whole-genome CNV analysis: advances in 

computational approaches. Front Genet. 2015;6:138. doi:10.3389/fgene.2015.00138. 

12. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human 

genome browser at UCSC. Genome Res. 2002;12:996–1006. doi:10.1101/gr.229102. 

13. Kaminsky EB, Kaul V, Paschall J, Church DM, Bunke B, Kunig D, et al. An evidence-

based approach to establish the functional and clinical significance of copy number variants 

in intellectual and developmental disabilities. Genet Med. 2011;13:777–84. 

doi:10.1097/GIM.0b013e31822c79f9. 

14. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Variation 

across 141,456 human exomes and genomes reveals the spectrum of loss-of-function 

intolerance across human protein-coding genes. BioRxiv. 2019. doi:10.1101/531210. 

15. Yao R, Zhang C, Yu T, Li N, Hu X, Wang X, et al. Evaluation of three read-depth based 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442110doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography
https://sciwheel.com/work/bibliography/2671524
https://sciwheel.com/work/bibliography/2671524
https://sciwheel.com/work/bibliography/2671524
https://sciwheel.com/work/bibliography/704357
https://sciwheel.com/work/bibliography/704357
https://sciwheel.com/work/bibliography/704357
https://sciwheel.com/work/bibliography/6769932
https://sciwheel.com/work/bibliography/6769932
https://sciwheel.com/work/bibliography/5098715
https://sciwheel.com/work/bibliography/5098715
https://sciwheel.com/work/bibliography/5098715
https://sciwheel.com/work/bibliography/704351
https://sciwheel.com/work/bibliography/704351
https://sciwheel.com/work/bibliography/1196349
https://sciwheel.com/work/bibliography/1196349
https://sciwheel.com/work/bibliography/5965685
https://sciwheel.com/work/bibliography/5965685
https://sciwheel.com/work/bibliography/3711353
https://sciwheel.com/work/bibliography/3711353
https://sciwheel.com/work/bibliography/3711353
https://sciwheel.com/work/bibliography/791368
https://sciwheel.com/work/bibliography/791368
https://sciwheel.com/work/bibliography/791368
https://sciwheel.com/work/bibliography/148383
https://sciwheel.com/work/bibliography/148383
https://sciwheel.com/work/bibliography/476136
https://sciwheel.com/work/bibliography/476136
https://sciwheel.com/work/bibliography/69929
https://sciwheel.com/work/bibliography/69929
https://sciwheel.com/work/bibliography/3225850
https://sciwheel.com/work/bibliography/3225850
https://sciwheel.com/work/bibliography/3225850
https://sciwheel.com/work/bibliography/3225850
https://sciwheel.com/work/bibliography/6334937
https://sciwheel.com/work/bibliography/6334937
https://sciwheel.com/work/bibliography/6334937
https://sciwheel.com/work/bibliography/6740678
https://doi.org/10.1101/2021.04.30.442110
http://creativecommons.org/licenses/by/4.0/


CNV detection tools using whole-exome sequencing data. Mol Cytogenet. 2017;10:30. 

doi:10.1186/s13039-017-0333-5. 

16. Scionti F, Di Martino MT, Pensabene L, Bruni V, Concolino D. The cytoscan HD array 

in the diagnosis of neurodevelopmental disorders. High-Throughput. 2018;7. 

doi:10.3390/ht7030028. 

17. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, 

genotype, and characterize typical and atypical CNVs from family and population genome 

sequencing. Genome Res. 2011;21:974–84. doi:10.1101/gr.114876.110. 

18. Zhao Q, Caballero OL, Levy S, Stevenson BJ, Iseli C, de Souza SJ, et al. Transcriptome-

guided characterization of genomic rearrangements in a breast cancer cell line. Proc Natl 

Acad Sci USA. 2009;106:1886–91. doi:10.1073/pnas.0812945106. 

19. Babadi M, Lee SK, Smirnov A, Lichtenstein L, Gauthier LD, Howrigan DP, et al. 

Abstract 2287: Precise common and rare germline CNV calling with GATK. Cancer Res. 

2018;78 13 Supplement:2287–2287. doi:10.1158/1538-7445.AM2018-2287. 

20. Klambauer G, Schwarzbauer K, Mayr A, Clevert D-A, Mitterecker A, Bodenhofer U, et 

al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation 

sequencing data with a low false discovery rate. Nucleic Acids Res. 2012;40:e69. 

doi:10.1093/nar/gks003. 

21. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, et al. A robust 

model for read count data in exome sequencing experiments and implications for copy 

number variant calling. Bioinformatics. 2012;28:2747–54. 

doi:10.1093/bioinformatics/bts526. 

22. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number 

Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol. 

2016;12:e1004873. doi:10.1371/journal.pcbi.1004873. 

23. Jiang Y, Wang R, Urrutia E, Anastopoulos IN, Nathanson KL, Zhang NR. CODEX2: 

full-spectrum copy number variation detection by high-throughput DNA sequencing. 

Genome Biol. 2018;19:202. doi:10.1186/s13059-018-1578-y. 

24. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-

FREEC: a tool for assessing copy number and allelic content using next-generation 

sequencing data. Bioinformatics. 2012;28:423–5. doi:10.1093/bioinformatics/btr670. 

25. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural 

variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 

2012;28:i333–9. doi:10.1093/bioinformatics/bts378. 

26. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: 

rapid detection of structural variants and indels for germline and cancer sequencing 

applications. Bioinformatics. 2016;32:1220–2. doi:10.1093/bioinformatics/btv710. 

27. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for 

structural variant discovery. Genome Biol. 2014;15:R84. doi:10.1186/gb-2014-15-6-r84. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442110doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/6740678
https://sciwheel.com/work/bibliography/6740678
https://sciwheel.com/work/bibliography/6823597
https://sciwheel.com/work/bibliography/6823597
https://sciwheel.com/work/bibliography/6823597
https://sciwheel.com/work/bibliography/396561
https://sciwheel.com/work/bibliography/396561
https://sciwheel.com/work/bibliography/396561
https://sciwheel.com/work/bibliography/1587154
https://sciwheel.com/work/bibliography/1587154
https://sciwheel.com/work/bibliography/1587154
https://sciwheel.com/work/bibliography/6884891
https://sciwheel.com/work/bibliography/6884891
https://sciwheel.com/work/bibliography/6884891
https://sciwheel.com/work/bibliography/760896
https://sciwheel.com/work/bibliography/760896
https://sciwheel.com/work/bibliography/760896
https://sciwheel.com/work/bibliography/760896
https://sciwheel.com/work/bibliography/791369
https://sciwheel.com/work/bibliography/791369
https://sciwheel.com/work/bibliography/791369
https://sciwheel.com/work/bibliography/791369
https://sciwheel.com/work/bibliography/2016124
https://sciwheel.com/work/bibliography/2016124
https://sciwheel.com/work/bibliography/2016124
https://sciwheel.com/work/bibliography/6710622
https://sciwheel.com/work/bibliography/6710622
https://sciwheel.com/work/bibliography/6710622
https://sciwheel.com/work/bibliography/4771711
https://sciwheel.com/work/bibliography/4771711
https://sciwheel.com/work/bibliography/4771711
https://sciwheel.com/work/bibliography/790833
https://sciwheel.com/work/bibliography/790833
https://sciwheel.com/work/bibliography/790833
https://sciwheel.com/work/bibliography/2045167
https://sciwheel.com/work/bibliography/2045167
https://sciwheel.com/work/bibliography/2045167
https://sciwheel.com/work/bibliography/26815
https://sciwheel.com/work/bibliography/26815
https://doi.org/10.1101/2021.04.30.442110
http://creativecommons.org/licenses/by/4.0/


28. Carter NP. Methods and strategies for analyzing copy number variation using DNA 

microarrays. Nat Genet. 2007;39 7 Suppl:S16-21. doi:10.1038/ng2028. 

29. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. SpeedSeq: 

ultra-fast personal genome analysis and interpretation. Nat Methods. 2015;12:966–8. 

doi:10.1038/nmeth.3505. 

30. Sanchis-Juan A, Stephens J, French CE, Gleadall N, Mégy K, Penkett C, et al. Complex 

structural variants in Mendelian disorders: identification and breakpoint resolution using 

short- and long-read genome sequencing. Genome Med. 2018;10:95. doi:10.1186/s13073-

018-0606-6. 

31. Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, et al. A structural 

variation reference for medical and population genetics. Nature. 2020;581:444–51. 

doi:10.1038/s41586-020-2287-8. 

32. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive 

evaluation of structural variation detection algorithms for whole genome sequencing. 

Genome Biol. 2019;20:117. doi:10.1186/s13059-019-1720-5. 

33. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 

arXiv preprint arXiv:13033997. 2013. 

34. QIAGEN. White paper on CLC read mapper [White paper]. 2012. 

http://resources.qiagenbioinformatics.com/white-

papers/White_paper_on_CLC_read_mapper.pdf. Accessed 24 Apr 2019. 

35. Klambauer G. cn.mops - Mixture of Poissons for CNV detection in NGS data. Software 

Manual. 2019;1.30.0. 

36. Talevich E. Copy number calling pipeline. CNVkit. 

https://cnvkit.readthedocs.io/en/stable/pipeline.html. Accessed 14 May 2019. 

37. Boeva V, Zinovyev A, Bleakley K, Vert J-P, Janoueix-Lerosey I, Delattre O, et al. 

Control-free calling of copy number alterations in deep-sequencing data using GC-content 

normalization. Bioinformatics. 2011;27:268–9. doi:10.1093/bioinformatics/btq635. 

38. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS 

alignment formats. Bioinformatics. 2015;31:2032–4. doi:10.1093/bioinformatics/btv098. 

39. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics. 2010;26:841–2. doi:10.1093/bioinformatics/btq033. 

40. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 

Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. 

doi:10.1093/bioinformatics/btp352. 

41. Li H. A statistical framework for SNP calling, mutation discovery, association mapping 

and population genetical parameter estimation from sequencing data. Bioinformatics. 

2011;27:2987–93. doi:10.1093/bioinformatics/btr509. 

42. R Core Team. R: A Language and Environment for Statistical Computing. 2020. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442110doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/452692
https://sciwheel.com/work/bibliography/452692
https://sciwheel.com/work/bibliography/629786
https://sciwheel.com/work/bibliography/629786
https://sciwheel.com/work/bibliography/629786
https://sciwheel.com/work/bibliography/6593649
https://sciwheel.com/work/bibliography/6593649
https://sciwheel.com/work/bibliography/6593649
https://sciwheel.com/work/bibliography/6593649
https://sciwheel.com/work/bibliography/8969309
https://sciwheel.com/work/bibliography/8969309
https://sciwheel.com/work/bibliography/8969309
https://sciwheel.com/work/bibliography/7028151
https://sciwheel.com/work/bibliography/7028151
https://sciwheel.com/work/bibliography/7028151
https://sciwheel.com/work/bibliography/6773757
https://sciwheel.com/work/bibliography/6773757
https://sciwheel.com/work/bibliography/6951271
https://sciwheel.com/work/bibliography/6951271
https://sciwheel.com/work/bibliography/6951271
https://sciwheel.com/work/bibliography/6952188
https://sciwheel.com/work/bibliography/6952188
https://sciwheel.com/work/bibliography/6947139
https://sciwheel.com/work/bibliography/6947139
https://sciwheel.com/work/bibliography/396549
https://sciwheel.com/work/bibliography/396549
https://sciwheel.com/work/bibliography/396549
https://sciwheel.com/work/bibliography/791612
https://sciwheel.com/work/bibliography/791612
https://sciwheel.com/work/bibliography/48789
https://sciwheel.com/work/bibliography/48789
https://sciwheel.com/work/bibliography/48787
https://sciwheel.com/work/bibliography/48787
https://sciwheel.com/work/bibliography/48787
https://sciwheel.com/work/bibliography/396559
https://sciwheel.com/work/bibliography/396559
https://sciwheel.com/work/bibliography/396559
https://sciwheel.com/work/bibliography/5637446
https://doi.org/10.1101/2021.04.30.442110
http://creativecommons.org/licenses/by/4.0/


43. Plagnol V. ExomeDepth Vignette. 2016;1.1.10. 

44. Köster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine. 

Bioinformatics. 2012;28:2520–2. doi:10.1093/bioinformatics/bts480. 

45. Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with 

genome browsers. Bioinformatics. 2009;25:1841–2. doi:10.1093/bioinformatics/btp328. 

46. Wickham H. ggplot2: Elegant Graphics For Data Analysis. Springer-Verlag New York; 

2016. 

47. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in 

multidimensional genomic data. Bioinformatics. 2016;32:2847–9. 

doi:10.1093/bioinformatics/btw313. 

48. Neuwirth E. RColorBrewer: ColorBrewer Palettes. 2014. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442110doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/6947126
https://sciwheel.com/work/bibliography/580863
https://sciwheel.com/work/bibliography/580863
https://sciwheel.com/work/bibliography/835609
https://sciwheel.com/work/bibliography/835609
https://sciwheel.com/work/bibliography/6964439
https://sciwheel.com/work/bibliography/6964439
https://sciwheel.com/work/bibliography/1478237
https://sciwheel.com/work/bibliography/1478237
https://sciwheel.com/work/bibliography/1478237
https://sciwheel.com/work/bibliography/6964441
https://doi.org/10.1101/2021.04.30.442110
http://creativecommons.org/licenses/by/4.0/

