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Abstract
Split-belt treadmill training, common in stroke rehabilitation and motor learning experiments, reveals a mechanism
through which energy can be extracted from the environment. People can extract net positive work from a split-belt
treadmill by lengthening their step onto the fast belt. To understand how leg angles and belt speed differences affect
energy transfer between the treadmill and the person during split-belt walking, we simulated a split-belt rimless wheel
that alternates rotating on fast and slow treadmill belts. We found that the split-belt rimless wheel can passively walk
steadily forward under a range of conditions, extracting enough energy from the treadmill to overcome losses during
collisions. The simulated wheel can tolerate both speed disturbances and ground height variability, and it can even
capture enough energy to walk uphill. We also built a physical split-belt rimless wheel robot, demonstrating the feasibility
of energy extraction during split-belt treadmill walking. In comparing the wheel solutions to human split-belt gait, we
found that humans do not maximize positive work performed by the treadmill; costs associated with balance and free
vertical moments likely limit adaptation. This study characterizes the mechanics and energetics of split-belt walking,
demonstrating that energy capture through intermittent contacts with the two belts is possible when the belt speed
difference is paired with an asymmetry in leg angles at step-to-step transitions. This study demonstrates a novel way of
harnessing energy through individual rotations rather than continuous contact and offers a simple model framework for
understanding human choices during split-belt walking.
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1 Introduction

Split-belt treadmills are commonly used for stroke reha-
bilitation and motor learning experiments (Reisman et al.
2010; Roemmich and Bastian 2018). Individuals post-stroke
often adopt an asymmetric gait (Finley et al. 2015; Patterson
et al. 2008; Wall and Turnbull 1986), and split-belt treadmill
training has been proposed and applied to help individuals
relearn a symmetric gait (Helm and Reisman 2015; Reisman
et al. 2010; Roemmich and Bastian 2018). Although many
effects of repeated split-belt training remain unexplored, this
training has moved beyond clinical trials and is currently
being implemented in some physical therapy clinics (Beyaert
et al. 2015; Patterson et al. 2015; Marianjoy Rehabilitation
Hospital 2016). Researchers are even working to make split-
belt training portable so that people who have had a stroke
can train outside the confines of the lab (Aucie et al. 2020;
Kim et al. 2019).

Researchers also use the split-belt treadmill paradigm to
understand how people adapt to novel motor environments
(Reisman et al. 2010; Roemmich and Bastian 2018) and how
adaptation can differ between healthy individuals and those
with gait pathologies such as amputation (Kline et al. 2020;
Selgrade et al. 2017b), cerebral palsy (Levin et al. 2017;
Mawase et al. 2016), and Parkinson’s disease (Seuthe et al.
2019). The field of split-belt treadmill research continues
to grow as researchers investigate spatiotemporal adaptation
(Finley et al. 2015; Stenum and Choi 2020; Yokoyama et al.
2018) and explore how energy minimization contributes to

observed changes in gait (Finley et al. 2013; Sánchez et al.
2017, 2019, 2020; Stenum and Choi 2020). As split-belt
treadmills become more prevalent, both for rehabilitation
interventions and motor learning experiments, there is a need
to learn more about the underlying mechanics of locomotion
on split-velocity surfaces.

Recent experimental results have revealed that people
can take advantage of positive work performed by a split-
belt treadmill. As people adapt to the treadmill, they tend
to lengthen their step onto the fast belt. This longer step
allows the treadmill to do positive work on the person, which
often correlates with a decreased metabolic energy cost
(Sánchez et al. 2019; Selgrade et al. 2017a). Understanding
the mechanism through which people capture energy from
the treadmill would be useful for understanding what drives
split-belt adaptation.

The process through which people extract energy from
the split-belt treadmill during walking is different from
traditional, industrial methods of energy extraction. Humans
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have captured energy from velocity differences in the
environment for millennia (Temple and Needham 1986), but
traditional applications rely on continuous contact with two
surfaces of different velocity. For example, water wheels
rest on a stationary riverbank while a moving river turns the
wheel to generate power (Reynolds 1983). Sailboats exploit
the speed difference between the wind and water to propel
themselves through the water (Carter 2002). Land yachts use
propellers to drive downwind faster than the wind (Bauer
1969; Khan et al. 2013), and a cart with geared wheels
can move forward on a split-belt treadmill with both belts
moving backward at different speeds (Chiu et al. 2019).
People walking on a split-belt treadmill do not continuously
contact both belts, however, but instead alternate between the
fast and slow belts.

Nature does provide an example of an energy harnessing
mechanism that does not rely on continuous contact: the
albatross flying with dynamic soaring. Flying in shallow arcs
with and against the wind across the boundary layer above
the ocean (Bousquet et al. 2017), an albatross can extract
energy from the wind to balance its drag losses, enabling
steady flight without flapping. The wind speeds are low close
to the ocean’s surface and increase as the height above the
water increases. As an albatross climbs, it faces slightly into
the wind, using the increasing wind speed to gain height.
The bird then turns to fly more with the wind as it descends,
trading height for speed, before turning to again face into the
wind for the next climb (Walkden 1925). While the albatross
moves smoothly through a range of wind speeds and humans
alternate contacts with the fast and slow treadmill belts, there
could be similarities in the mechanisms of energy extraction
in these two systems.

Simulations and simple models can be extremely effective
in helping us understand complex activities such as human
walking. For example, previous walking models helped
researchers establish a framework to consider the gravity-
driven passive aspects of leg swing (Mochon and McMahon
1980), the types of losses present during walking (Kuo et al.
2005), and the possible powering strategies to overcome
these losses (Mcgeer 1990). The frameworks from these
original models enabled later experimental investigations of
the relative contributions of step-to-step transition losses
(Donelan et al. 2002) and swing costs (Doke et al. 2005), and
analysis of how ankle and hip power contribute to propulsion
(Kuo 2002; Lewis and Ferris 2008). Simulation models
allow exploration of an entire parameter space in a way not
possible in human experiments because of time constraints.
Additionally, certain outcomes can be modeled which are
difficult or even impossible to measure in experiments.

One common walking model is the rimless wheel, in
which a wheel walks forward by rotating on a single spoke
and then transitioning onto its next spoke and rotating again.
The rimless wheel is simple enough to have analytical
solutions, but complete enough to contain both the step-
to-step transition and single support phases of walking
(Coleman 2010). In normal gait, it captures the kinetic and
potential energy exchange of the center of mass motion and
reveals the cost of redirecting the center of mass during step-
to-step transitions (Coleman et al. 1997). The rimless wheel
can be modified for use on the split-belt treadmill, enabling
analytical modeling of split-belt walking.

A simple model of split-belt walking must incorporate
belt speed differences and adjustable step length asymmetry.
Step length asymmetry, known to be associated with changes
in energy cost of human gait (Finley et al. 2013), can be
achieved in a rimless wheel model with two individual sets of
spokes connected with an angular offset. The model’s mass,
rotational inertia, and spoke length, as well as the treadmill
incline, also have the potential to impact the wheel’s
behavior. A modified rimless wheel enables assessment of
speed, energy use, and stability during split-belt walking.

In this study, we used a split-belt rimless wheel to model
walking on a split-belt treadmill in order to characterize
the fundamental features of the mechanics, energetics, and
stability of locomotion on a dual-velocity surface. Steady
walking for the split-belt rimless wheel is not possible if
the belts are moving at the same speed. We hypothesized,
however, that under certain split-belt conditions, a split-belt
rimless wheel would be able to passively walk forward on
a level split-belt treadmill with both belts moving backward
by capturing energy from the treadmill to overcome collision
losses. We systematically varied the belt speed difference and
the angles between the spokes on the split-belt rimless wheel
to characterize how asymmetries enable energy capture
during split-belt walking. We investigated the impact of the
collision angles, belt speed difference, and rotational inertia
on the wheel’s average velocity and stability to learn more
about why people adopt certain gaits. We simulated uphill
slopes, anticipating that the wheel might be able to harness
even more energy from the treadmill than is required to walk
steadily on level ground. We compared the model solutions
to human data for a specific pair of belt speeds to understand
which unmodeled costs might limit people’s ability to benefit
from a belt speed difference. Finally, we built a working
physical prototype to validate the model and demonstrate that
a real system can extract energy through short, alternating
contacts with different surfaces. We expected the results
of this study to guide us toward a better understanding of
the ways in which people can extract energy from a split-
belt treadmill, giving us a framework through which to
interpret past and future experimental results. Knowledge
of the novel mechanism through which intermittent contacts
enables energy extraction also creates opportunities for
further exploration of energy-capturing devices.

This paper is organized into three main sections. In
the first section, we present the split-belt rimless wheel
simulation model and describe its dynamics. We introduce
the system of equations which must be solvable for the
wheel to walk steadily and explain the outcome measures
of slow-belt walking speed and disturbance rejection. In the
second section, we perform a series of simulations in which
we systematically investigate the impacts of the belt speed
difference, rotational inertia, treadmill incline, and angles
between the spokes at collision onto the fast and slow belts.
In the third section, we describe the design of a physical
prototype and compare experimental and simulation results
of measuring the wheel’s walking speed for a variety of belt
speed differences.
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Fast Treadmill Belt

Slow Treadmill Belt

Figure 1. The split-belt rimless wheel consists of two identical
rimless wheels that are rigidly attached. The wheel walks
forward by pivoting over one spoke until the next spoke collides
with the ground and then pivoting over the new spoke. It
alternates contacting the fast and slow treadmill belts.

2 Model Mechanics and Dynamics

2.1 Model Definitions and Parameters
The split-belt rimless wheel (Fig. 1) consists of two identical
rimless wheels that are rigidly attached. The two sets of
spokes are connected with a lateral offset, so that each set
only interacts with one belt, and with an angular offset, so
that only one spoke touches the ground at any time. The
split-belt rimless wheel walks forward by pivoting over one
spoke until the next spoke collides with the ground and then
pivoting over the new spoke, alternatingly contacting the fast
and slow belts. One gait cycle consists of the rotation on the
slow belt, the collision onto the fast belt, the rotation on the
fast belt, and the collision onto the slow belt. The simulated
wheel is constrained to the sagittal plane, with no degrees of
freedom for roll or yaw. As a result, the magnitude of the
lateral offset between the sets of spokes has no impact on the
wheel’s motion.

Five parameters define the split-belt rimless wheel: leg
length, mass, moment of inertia, and two collision angles
(Fig. 2). The leg length l is the distance from the center of
mass to the end of the spokes. The moment of inertia about
the center of mass is ICOM = mr2gyr where m is the total
model mass and rgyr is the radius of gyration ranging from
0 with all mass concentrated at the center of the wheel to
l with all mass concentrated at the ends of the spokes. The
collision angles are the angles between the spokes during the
fast and slow belt collisions, called 2α and 2β respectively.
The number of spokes on each wheel and the angular offset
between the two sets of spokes together define these collision
angles. For a physical model, the sum of 2α and 2β would
need to divide evenly into 360◦, but the collision angles can
be set arbitrarily in simulation.

Three parameters define the split-belt treadmill: belt speed
difference, slow belt speed, and treadmill incline. The belt
speed difference ∆vTM is the absolute difference between the
fast and slow belt speeds. Split-belt treadmill experiments
commonly emphasize the ratio between the belt speeds,
but the difference, not the ratio, governs performance. The
incline γ is the angle between the treadmill and level ground.

2.2 Reference Frames
There are three distinct inertial reference frames in the
system: the stationary lab frame, the slow belt frame,
and the fast belt frame. Energies and linear velocities
are reference frame-dependent, while forces and angular
velocities are frame-independent. Potential energy is only
frame-dependent when there is an incline and the wheel
moves down while rotating on the moving belts. We annotate
frame-dependent quantities with a left-superscript F or S to
indicate whether they are expressed in the fast or slow belt
reference frame. We note explicitly any time that we use the
stationary lab frame.

Computing or comparing frame-dependent quantities
requires expressing the terms in the same reference frame.
Linear velocity is transferred from the fast belt frame to
the slow belt frame by subtracting out the vector belt speed
difference, and from the slow belt frame to the stationary lab
frame by subtracting out the slow belt velocity. We use the
slow belt reference frame whenever possible. For example,
we compute energy in the slow belt frame when tracking
wheel energy over the course of a gait cycle. For some
calculations, however, such as the energy balance for the fast
belt rotation, the fast belt frame is more convenient.

2.3 Steady Walking Conditions
We hypothesized that the split-belt rimless wheel could walk
steadily on level ground and uphill, with steady walking
being defined by the wheel having the same angular velocity
at the beginning of consecutive gait cycles. We chose the
beginning of the slow belt rotation as the beginning of the
cycle, meaning the steady walking condition is

(θ̇S0)n = (θ̇S0)n+1 = θ̇∗S0

where (θ̇S0)n is the angular velocity at the beginning of the
nth slow belt rotation and θ̇∗S0

is the fixed point angular
velocity.

One equation governs each of the four cycle components,
relating the angular velocity before and after each rotation or
collision. We label the four key angular velocities θ̇S0 , θ̇Sf ,
θ̇F0 , and θ̇Ff where the subscript S refers to the slow belt
rotation and the subscript F refers to the fast belt rotation.
The sub-subscript 0 refers to the beginning of the rotation
and the sub-subscript f refers to the end of the rotation.
The following sections provide a high-level derivation of the
equations relating each initial and final angular velocity (a
complete derivation can be found in Appendix B).

2.3.1 Rotation on the Slow Belt Given the velocity at the
beginning of the slow belt rotation, the velocity at the end can
be determined using an energy balance approach. During the
rotation, the split-belt rimless wheel behaves like an inverted
pendulum rotating over the spoke in contact with the slow
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COM velocity expressed in Slow Frame
COM velocity expressed in Fast Frame

Slow Belt CollisionSlow Belt Rotation Fast Belt Collision  Fast Belt Rotation

Spoke that contacts the Slow Belt
Spoke that contacts the Fast Belt

Figure 2. Two-dimensional representation of the split-belt rimless wheel. Collision angles 2α and 2β, spoke length l, and radius of
gyration rgyr define wheel geometry. The treadmill parameters are the belt speed difference ∆vTM and incline γ. P is the contact
point between the wheel and the treadmill, redefined at each collision. Progress through rotations is tracked with θ. The velocity of
the center of mass vCOM is always perpendicular to the contacting spoke when expressed in the frame of the contacted belt. The
subscripts S0, Sf, F0, and Ff refer to the values at the beginning and end of the slow and fast belt rotations respectively. The
left-superscripts S and F indicate whether the center of mass velocity is shown in the slow or fast belt reference frame.

treadmill belt. In the slow belt reference frame, this results
in an even exchange of potential and kinetic energy and
constant total energy. When solved for the angular velocity
at the end of the slow belt rotation θ̇Sf , the energy balance is

(θ̇Sf)
2 = (θ̇S0)2 +

2mgl(cos (β + γ)− cos (α− γ))

ICOM +ml2
. (1)

The terms l cos (β + γ) and l cos (α− γ) are the heights
of the center of mass at the beginning and end of the
rotation respectively, measured relative to the contact point
P between the spoke and the slow treadmill.

2.3.2 Collision onto the Fast Belt Conservation of angular
momentum about the new foot contact can be used to
determine the angular velocity after the fast belt collision
θ̇F0 . We approximated the collision as instantaneous and
impulsive.

The angular momentum H in general terms is

H = ICOMθ̇k̂ + rCOM/P ×mvCOM

where rCOM/P is the position vector from the point colliding
with the fast treadmill belt to the center of mass and vCOM is
the center of mass velocity.

Computed in the slow belt frame, the pre- and post-
collision angular momenta are

SHSf = ICOMθ̇Sf k̂ +ml2θ̇Sf cos (2α)k̂ (2)

and
SHF0

= ICOMθ̇F0
k̂ +ml2θ̇F0

k̂−ml∆vTM cos (α)k̂. (3)
SHF0

contains ∆vTM because the post-collision velocity
includes the belt speed difference when expressed in the slow
frame.

Setting Equations (2) and (3) equal and solving for the
angular velocity post-collision yields:

θ̇F0
= θ̇Sf

ICOM +ml2 cos (2α)

ICOM +ml2
+
ml∆vTM cos (α)

ICOM +ml2
. (4)

Note that during the fast belt collision, the belt speed
difference increases the wheel’s angular velocity.

2.3.3 Rotation on the Fast Belt The fast belt rotation is
similar to the slow belt rotation, and an energy balance in the
fast belt reference frame can be used to compute the velocity
at the end of the rotation given the velocity at the beginning.
The angular velocity after the fast belt rotation θ̇Ff is

(θ̇Ff)
2 = (θ̇F0

)2 +
2mgl(cos (α+ γ)− cos (β − γ))

ICOM +ml2
. (5)

2.3.4 Collision onto the Slow Belt The slow belt collision
is similar to the fast belt collision except that it is the velocity
before the collision, rather than after, that must be transferred
to the slow belt frame when computing the conservation of
angular momentum:

SHFf = ICOMθ̇Ff k̂ +ml2θ̇Ff cos (2β)k̂

−ml∆vTM cos (β)k̂
(6)

and
SHS0

= ICOMθ̇S0
k̂ +ml2θ̇S0

k̂. (7)

Combining Equations (6) and (7) yields the governing
equation for the slow belt collision:

θ̇S0
= θ̇Ff

ICOM +ml2 cos (2β)

ICOM +ml2
− ml∆vTM cos (β)

ICOM +ml2
. (8)

During the slow belt collision, the belt speed difference
decreases, rather than increases, the wheel’s angular velocity.

To solve for the fixed point θ̇∗S0
that enables steady

walking, Equations (1), (4), (5), and (8) can be combined
to create a single equation.

2.4 Governing Equations for Rotation
Whereas energy balance and conservation of momentum
can be used to identify fixed points and fully characterize
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collisions, numerical integration is required to calculate how
the split-belt wheel moves during the rotations. This allows
calculation of the time spent in each rotation and of the forces
acting on the wheel throughout the cycle.

For each rotation phase, we have:

θ̈ =
mgl sin (θ)

ICOM +ml2

where θ is the angle from vertical (−ĵ) to the contacting
spoke, positive in the +k̂ direction (Fig. 2). We obtain the
state trajectory by numerical integration. We then calculate
the horizontal and vertical accelerations and use them to
calculate the ground reaction forces. The forces are used to
calculate the work from the treadmill on the wheel and to
exclude cases where the wheel loses contact with the ground.

2.5 Slow-Belt Walking Speed
Comparing the wheel’s walking speed across split-belt
conditions requires a careful definition of “walking speed,”
just as human split-belt walking speed is not as simple
as averaging the two belt speeds. In this paper, “slow-belt
walking speed” refers to the amount the wheel’s center of
mass moves forward in the slow belt frame during one gait
cycle divided by the total time for that cycle.

During the slow belt rotation, the forward movement of
the center of mass is

S∆xS = l(sin (β) + sin (α)).

During the fast belt rotation, the contact point P moves
backward relative to the slow belt, and the net forward
movement is

S∆xF = l(sin (α) + sin (β))− TF∆vTM

where TF is the duration of the fast belt rotation. The wheel’s
slow-belt walking speed is therefore

Svavg =
2l(sin (α) + sin (β))− TF∆vTM

TS + TF
(9)

where TS is the duration of the slow belt rotation.
The slow-belt walking speed can be transferred to the

stationary lab frame by subtracting the slow belt velocity.
The slow-belt walking speed can be thought of as the wheel’s
forward velocity in the lab frame if the slow belt is stationary,
or as the slow belt velocity necessary for the wheel to remain
stationary in the lab frame while walking on the treadmill
(the station-keeping speed).

2.6 Energy and Work during Rotations
We calculated velocities, energy, power, and work during the
rotations to understand how energy is transferred between
the treadmill and the split-belt rimless wheel. We performed
all calculations in the slow belt reference frame.

2.6.1 Rotation on the Slow Belt During the slow belt
rotation, the wheel’s kinetic energy is

SKE S =
1

2
ICOMθ̇

2 +
1

2
m(lθ̇)2

and the potential energy is

SPE S = mgl cos (θ).

In the slow-belt frame, total energy remains constant and no
work is done during the slow belt rotation because there is
no relative movement of the contact point P .

2.6.2 Rotation on the Fast Belt Velocity, energy, power,
and work in the slow belt frame during the fast belt rotation
are affected by the belt speed difference ∆vTM. During the
fast belt rotation, the velocity of the center of mass expressed
in the slow belt frame is

SvCOM
F = lθ̇(cos (θ)̂i + sin (θ)̂j)

−∆vTM(cos (γ)̂i− sin (γ)̂j)

where γ is the treadmill incline and ∆vTM has been
subtracted out to transfer the velocity into the slow belt
frame. The wheel’s kinetic energy is then

SKE F =
1

2
ICOMθ̇

2 +
1

2
m
(
SvCOM

F · SvCOM
F

)
=

1

2
ICOMθ̇

2 +
1

2
m
(

(lθ̇)2 + (∆vTM)2
)

−mlθ̇∆vTM cos (θ + γ).

The wheel’s potential energy in the slow belt reference
frame during the fast belt rotation is

SPE F = mg(l cos (θ)+2l sin (α) sin (γ)−tF∆vTM sin (γ))

where tF is the time since the fast belt collision. The
2l sin (α) sin (γ) term accounts for the difference in height
of the contact point P before and after the fast belt collision,
and the −tF∆vTM sin (γ) term accounts for the downward
movement of the contact point during the fast belt rotation
(Appendix C).

The treadmill can perform work on the wheel during the
fast belt rotation because there is relative motion at the
contact point P and a force F acting between the treadmill
and the wheel. The velocity of P during the fast belt rotation,
viewed from the slow frame, is

SvP
F = −∆vTM(cos (γ)̂i− sin (γ)̂j).

The work SWF of the treadmill on the wheel is

SWF =

∫ tF

0

F · SvP
F dt

where tF is the time since the fast belt collision. The force F,
the ground reaction force acting on the wheel at the contact
point, depends on the wheel’s angular position, velocity, and
acceleration.

2.7 Energy and Work during Collisions
We used the pre- and post-collision velocities to compute
the wheel’s kinetic energy before and after each collision,
subtracting those to find the effect of the collision. Potential
energy does not change in the collision because the center
of mass does not move in the instant of the collision. We
completed all calculations in the slow belt reference frame.
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The energy change in the fast belt collision is the
difference between the post-collision kinetic energy and the
pre-collision kinetic energy:

S∆EF =SKE F0
− SKE Sf

=
1

2
ICOM

(
θ̇2F0
− θ̇2Sf

)
+

1

2
m
(

(lθ̇F0
)2 − (lθ̇Sf)

2
)

+
1

2
m(∆vTM)2 −mlθ̇F0

∆vTM cos (α).

For the slow belt collision, we have:

S∆ES =SKE S0
− SKE Ff

=
1

2
ICOM

(
θ̇2S0
− θ̇2Ff

)
+

1

2
m
(

(lθ̇S0
)2 − (lθ̇Ff)

2
)

− 1

2
m(∆vTM)2 +mlθ̇Ff∆vTM cos (β).

For a steady gait cycle on level ground, the total energy
change across an entire gait cycle is zero, meaning

S∆EF + SWF + S∆ES = 0.

For a steady gait cycle uphill, the total energy change equals
the change in the wheel’s overall potential energy from
moving uphill (Appendix C).

2.8 Stability and Disturbance Rejection
We used two different methods to evaluate the split-belt
rimless wheel’s stability and disturbance rejection. We used
eigenvalue analysis to understand local stability in a narrow
region around the limit cycle, and we used variable terrain
to approximate real-world conditions and understand the
wheel’s ability to reject repeated disturbances over many
steps.

2.8.1 Eigenvalue Stability Analysis We characterized the
wheel’s response to small angular velocity perturbations
using a finite differencing approach to estimate the
eigenvalue of our one-dimensional system as

λ =
(θ̇S0

)1 − (θ̇∗S0
)

δθ̇

where δθ̇ is the small offset in angular velocity added at the
beginning of the slow belt rotation, (θ̇S0

)1 is the angular
velocity after one complete gait cycle, and (θ̇∗S0

) is the fixed
point angular velocity for the beginning of the slow belt
rotation. In a small region around the fixed point, λ is the
same regardless of the size of δθ̇ or where in the cycle
δθ̇ is introduced. Eigenvalues with magnitude less than one
indicate asymptotic stability, and positive eigenvalues less
than one indicate that the wheel gradually returns to the fixed
point without overshoot.

2.8.2 Variable Terrain Disturbance Rejection Eigenvalue
analysis has limited relevance in the presence of large
disturbances. To capture the cumulative effects of repeated
disturbances and move outside the small region where

Missed Step

Figure 3. A sample variable terrain with ground heights
distributed between +GH and −GH. The wheel’s three failure
modes were missing a step, failing to reach the top during a
rotation, and entering a flight phase.

linear analysis is valid, we simulated the wheel walking
over uneven terrain (Fig. 3) where the ground height
changed before every collision between a spoke and the
ground (Kim and Collins 2017). Before each variable terrain
simulation, we generated 1000 ground height values, evenly
and randomly distributed between two limits (±GH). We
quantified stability as the maximum value of GH for which
the split-belt rimless wheel could walk 500 cycles (1000
steps) without failure.

Failure could occur in one of three ways. First, the wheel
could slow down and fall backward, failing to reach vertical
after a step up. Second, the wheel could contact the same belt
twice in a row, missing a step onto the other belt. Finally,
the wheel could lose contact with the treadmill altogether,
rotating so quickly as to enter a flight phase.

2.9 Nondimensionalization
The input parameters and outcome measures of the model
can be nondimensionalized with respect to the wheel’s
leg length l, mass m, and gravitational constant g. When
calculating the moment of inertia ICOM, we assume that
the radius of gyration rgyr scales with l. Speed terms, such
as belt speed difference and slow-belt walking speed, are
nondimensionalized through division by

√
gl. The ground

height disturbance limits ±GH are nondimensionalized
through division by l. Mass is eliminated by dividing the
energy by m.

3 Simulation Results and Discussion
In this section, we use four model variations to discuss the
impact of changing the wheel’s collision angles and moment
of inertia, as well as the belt speed difference and treadmill
incline.

3.1 Mass and Leg Length Do Not Affect
Nondimensionalized Outcomes

When results are nondimensionalized, the wheel’s mass and
leg length have no effect on outcomes. Mass simplifies out
of all equations that govern the wheel’s motion, and system
energy scales linearly with mass. Similarly, leg length does
not alter nondimensionalized speed, stability, or energy. To
facilitate quick comparisons between split-belt rimless wheel
walking and human split-belt treadmill walking, we present
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Figure 4. A. Hodographs for a sample steady gait cycle of the simplest split-belt rimless wheel with slow belt collision angle of
zero. Hodographs are drawn in the slow belt reference frame, so the contact point P is stationary during the slow belt rotation. The
center of mass velocity vCOM is transferred between the slow and fast belt frames with the addition of ∆vTM. To visualize the fast
belt collision, the pre-collision velocity is transferred to the fast frame since the collision occurs on the fast belt, but then
post-collision velocity is transferred back to enable an energy comparison in the slow belt frame. B. Plot tracking the split-belt
rimless wheel’s energy in the slow belt reference frame through a steady cycle. During the slow belt collision and the slow belt
rotation, the wheel’s total energy remains constant. The wheel loses energy in the fast belt collision but recovers that energy in the
fast belt rotation such that total energy at the end of the cycle equals the total energy at the beginning of the cycle.

the simulation results for a leg length of one meter rather than
presenting them in dimensionless form.

3.2 Model Variation 1: The Simplest Split-Belt
Rimless Wheel

3.2.1 Assumptions and Description of Motion We began
with the simplest possible version of the split-belt rimless
wheel. We set the mass moment of inertia and the treadmill
incline angle to zero. By setting the angular offset between
the two individual rimless wheels to be infinitesimally small,
we achieved a slow belt collision angle β of approximately
zero.

These parameter choices simplify the dynamics of
the split-belt rimless wheel (Fig. 4A). Because β is
infinitesimally close to zero, the wheel begins each slow
belt rotation with the spoke vertical. As it rotates down
through the angle α, the center of mass’s vertical motion is
exclusively downward. In the fast belt rotation, as the wheel
rotates up through α, the center of mass’s vertical motion
is exclusively upward. Because ICOM is zero, the ground
reaction forces and collision impulses must always act along
the contacting leg; if not, the resulting angular acceleration
would be infinitely large. In the slow belt collision, no energy

is lost because the infinitesimally small collision angle means
the center of mass velocity does not need to be redirected.

3.2.2 Passive Steady Walking When walking steadily,
the wheel starts and ends each gait cycle with the same
energy (computed in the slow frame in Fig. 4B). The wheel
begins the cycle with a slow belt rotation during which the
contact point remains stationary and the treadmill does no
work as the wheel evenly exchanges potential and kinetic
energy. During the fast belt collision, the wheel loses energy
as the center of mass velocity is redirected. The wheel
recovers that energy during the fast belt rotation because
the treadmill does net positive work on the wheel. Finally,
the energy remains constant during the vertical slow belt
collision because the center of mass velocity requires no
redirection.

The split-belt treadmill injects energy during the fast belt
rotation because the contact point P moves backwards while
there is a backwards component to the ground reaction
force F (Fig. 4A Inset). This alignment between F and the
contact point velocity SvP

F means the power F · SvP
F from

the treadmill on the wheel is positive throughout the entire
fast belt rotation, making the net work positive. The ground
reaction force has a backward horizontal component because
P is in front of the center of mass for the entire rotation, so
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the force which points along the leg from P toward the center
of mass has a backwards component.

Another way to understand the energy gain during the fast
belt rotation is that the treadmill helps lift the center of mass.
If the treadmill was not moving, the raising of the center
of mass during the rotation would be accomplished solely
through an exchange of potential and kinetic energy. When
the fast treadmill is moving, the belt pulls the bottom end
of the spoke backward, which forces the spoke underneath
the wheel center and helps lift up the center of mass. The
treadmill does some of the work to lift the center of mass
and increase the wheel’s potential energy, allowing the wheel
to keep more of its kinetic energy instead of having to trade
it for potential energy. By the end of the fast belt rotation,
because of the help of the treadmill, the wheel has more total
energy than when it started the fast belt rotation.

The net positive work during the fast belt rotation is
possible because of two important asymmetries. The belt
speed difference gives the contact point P a non-zero
velocity in the slow belt reference frame, enabling non-zero
power during the fast belt rotation. Without an asymmetry in
belt speeds, no work can be done because the contact point
would always be stationary in both belt reference frames.
The asymmetry in collision angles, and the resulting longer
step onto the fast belt and infinitesimally small step onto the
slow belt, mean the wheel only rotates up during the fast belt
rotation, instead of evenly rotating both up and down as it
would if the angles were equal. This keeps the power positive
by allowing the contact point P to remain in front of the
center of mass during the entire fast belt rotation, meaning
the horizontal component of force stays aligned with the
contact point velocity.

When all else is equal, the wheel extracts more
energy from the treadmill when it spends longer in
the fast belt rotation. A slower rotation means having
similar power applied for a longer period of time. The
force is primarily angle-dependent, but the contact point
displacement increases with the duration of fast-belt stance,
increasing the total product of force and displacement.
Rotating more slowly also means the wheel enters the fast
belt collision more slowly and loses less energy in the
collision. The rotation duration is inversely proportional to
the angular velocity because the spokes are a fixed distance
apart, so a longer rotation duration requires lower angular
velocity.

3.2.3 Feasibility Region There exists a range of belt
speed difference ∆vTM and fast belt collision angle 2α
combinations for which the simplest split-belt rimless wheel
can walk steadily on level ground, instead of slowing to a
stop like a regular rimless wheel (Fig. 5). The feasible region
is bounded at the y-axis because as α approaches zero, the
wheel becomes a regular rimmed wheel that can roll steadily
on level ground for any initial conditions. Large values of α
are infeasible because the wheel loses more energy in the fast
belt collision than it can recover during the fast belt rotation.
Large values of ∆vTM are infeasible because, in order to
balance the collision loss and rotation gain, the wheel must
rotate so quickly that it loses contact with the treadmill.

3.2.4 Effects of Belt Speeds and Collision Angles The
simplest split-belt rimless wheel’s slow-belt walking speed
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Figure 5. The simplest split-belt rimless wheel, with a slow belt
collision angle of zero, can walk steadily for a range of fast belt
collision angles and treadmill belt speed differences. For all
combinations of 2α and ∆vTM within the feasible region, the
wheel has a positive slow-belt walking speed Svavg. Increasing
∆vTM increases Svavg, while increasing α decreases Svavg.

increases both when the belt speed difference increases
and when the fast belt collision angle decreases (Fig. 5).
Increasing ∆vTM decreases energy lost in the fast belt
collision and increases energy gained in the fast belt rotation
(Appendix D). When α is held constant but ∆vTM increases,
the angular velocity must increase or the rotation gain
would be larger than the collision loss. The increase in
angular velocity results in an increased slow-belt forward
walking speed because, although the fast treadmill moves
the wheel farther back during the fast belt rotation, the
rotation durations in Equation (9) decrease enough that the
overall walking speed increases (Appendix E). Decreasing α
decreases both the energy lost in collision and the energy
gained in rotation, but the collision loss decreases more
than the rotation gain (Appendix D). When α decreases,
the angular velocity must increase to balance the energy,
resulting in an increased overall slow-belt walking speed
(Appendix E). If the slow belt is stationary, then the increased
slow-belt walking speed corresponds to the wheel moving
forward faster in the lab frame. If the wheel is to maintain
constant average position in the lab frame, then the increased
walking speed means the slow treadmill belt must be set to a
higher speed.

3.2.5 Stability The same dynamics that enable the simplest
split-belt rimless wheel to walk steadily make it asymptoti-
cally stable to speed perturbations. The eigenvalue for the
discrete, linearized stride-to-stride state transition matrix is
always positive and less than or equal to one, meaning the
wheel behaves like an overdamped system as it returns to
its steady speed following a perturbation (Appendix F). If
the wheel is perturbed to rotate more slowly than its steady
speed, it loses less energy in the fast belt collision and spends
more time on the fast treadmill belt, gaining more energy
in the rotation than it had lost in the collision. The wheel
ends the cycle with higher energy and continues speeding up
with each cycle until returning to its steady rolling speed. The
opposite effect occurs if it is perturbed to roll too quickly.

Although this simple version of the split-belt rimless
wheel with an infinitesimally small slow belt collision
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Figure 6. A. Hodographs of a sample steady gait cycle for a rimless wheel with non-zero angular offset (2β > 0). The pre-collision
velocities must be transferred from the trailing leg’s reference frame to the leading leg’s reference frame to enable visualization of
the collision impulse. During the rotations, the center of mass moves both up and down, and the work from the treadmill during the
fast belt rotation is positive as the wheel rises up through α and negative as it falls down through β. B. Plot tracking the wheel’s
energy in the slow belt reference frame through the cycle. The wheel typically loses energy in the fast belt collision*, but the treadmill
does net positive work on the wheel during the fast belt rotation to recover the lost energy. The energy lost in the slow belt collision
brings the wheel’s total energy back to its value from the beginning of the cycle. The magnitude of the slow belt collision loss has
been exaggerated for clarity. *Cases exist for high ∆vTM where energy is gained, not lost, in the fast belt collision (Appendix D).

angle β tolerates perturbations in angular velocity, it
has no capacity to reject ground height disturbances. An
infinitesimal difference between the heights of the slow and
fast belts results in inappropriate foot sequencing with the
wheel contacting the same belt twice in a row. A more
complex wheel with a non-zero slow belt collision angle is
required to understand the wheel’s ground height disturbance
tolerance.

3.3 Model Variation 2: The Angular Offset
Split-Belt Rimless Wheel

3.3.1 Assumptions and Description of Motion We gener-
alized the simplest rimless wheel by removing the assump-
tion of infinitesimally small angular offset between the two
individual rimless wheels, thereby allowing the slow belt
collision angle β to be non-zero. We kept the mass moment
of inertia and the treadmill incline angle at zero.

Because of these assumptions, the ground reaction forces
and impulses still point along the contacting leg throughout
the cycle, but the center of mass’s vertical motion within each
rotation is no longer monotonic (Fig. 6A). The center of mass

rotates up through β and down through α in the slow belt
rotation, and up through α and down through β in the fast
belt rotation. Assuming α > β, the center of mass height
decreases overall in the slow belt rotation and increases in
the fast belt rotation. Additionally, the slow belt collision no
longer occurs at vertical, and the center of mass velocity must
be redirected before the wheel can begin its next slow belt
rotation.

3.3.2 Passive Steady Walking with Non-zero β The split-
belt rimless wheel with a non-zero angular offset is able to
walk steadily through the same mechanism as in the simplest
case. Viewed in the slow belt reference frame, the wheel
gains enough energy in the fast belt rotation to overcome the
energy lost in collisions, but the non-zero β does cause a
few differences (Fig. 6B). The slow belt collision results in
energy loss because of the velocity redirection of the center
of mass. The fast belt collision sometimes results in energy
gain instead of energy loss when ∆vTM is high (Appendix D).
Finally, the fast belt rotation always results in energy gain,
but the amount of energy gained decreases as β increases.
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Figure 7. The split-belt rimless wheel can walk steadily for a range of belt speed differences and fast and slow collision angles.
The largest range of slow belt collision angles is achieved when the fast belt collision angle 2α is intermediate. Increasing β
decreases the wheel’s slow-belt walking speed Svavg while increasing ∆vTM tends to increase Svavg.

Increasing β decreases the amount of net positive work
done on the wheel during the fast belt rotation because the
power is negative once the wheel passes through vertical. As
the wheel rotates down through β, the horizontal component
of the ground reaction force is opposite the direction of
the contact point velocity. Another way to understand the
adverse impact of β is that once the wheel passes vertical,
the treadmill begins pulling the center of mass down, rather
than helping lift it up. During the descent, the treadmill pulls
the spoke out from under the wheel, stealing the wheel’s
potential energy without allowing the wheel to evenly trade
that potential energy for kinetic energy. For the net work
to be positive during the fast belt rotation, step length
asymmetry is required: α must be larger than β so that the
wheel spends more time rising, with the treadmill doing
positive work, than falling, with the treadmill doing negative
work.

3.3.3 Effect of β on Walking Speed and Feasible Region
Increasing the slow belt collision angle requires the wheel
to walk more slowly (Fig. 7). The additional collision loss
from the slow belt collision coupled with the decrease in net
positive work during the fast belt rotation means the wheel
must roll more slowly to decrease its collision costs and
increase the energy absorbed during the fast belt rotation.

The maximum feasible slow belt collision angle occurs
with an intermediate fast belt collision angle (Fig. 7). If
α is small, then the margin of (α− β), the limiting factor
on how much work can be gained during the fast belt
rotation, is small and quickly disappears as β increases. At
the other extreme, when α is large, the wheel is barely able
to overcome the fast belt collision loss even when β is zero
and there is no energy lost in the slow belt collision.

3.3.4 Effect of Belt Speed for Non-zero β Increasing the
belt speed difference tends to increase the wheel’s slow-belt
walking speed even when β is non-zero (Figure 7). Despite
the fact that increasing ∆vTM increases the slow belt collision
loss (Appendix D), the benefits of higher ∆vTM outweigh the
detriment. The fast belt collision loss decreases by more than
the slow belt collision loss increases, and the higher ∆vTM
increases the energy gained during the fast belt rotation.
Together, those changes lead to faster steady-state angular
velocities, which tend to result in higher steady walking
speeds (Appendix E).

Figure 8. We varied the fast belt collision angle (A), the slow
belt collision angle (B), and the belt speed difference (C) while
holding the other parameters constant at 2α = 30◦, 2β = 8◦,
and ∆vTM = 1.0 m · s−1. Each colored mark indicates the
outcome of a variable terrain simulation for a given set of
ground height limits ±GH. The split-belt rimless wheel with
intermediate angles walking on a treadmill with high belt speed
difference had the highest disturbance tolerance.

3.3.5 Stability and Disturbance Rejection The split-belt
rimless wheel with non-zero β, like the simplest split-
belt rimless wheel, is asymptotically stable in response to
small angular velocity perturbations. The eigenvalue for the
discrete, linearized, stride-to-stride state transition matrix
remains between zero and one for the feasible region of
collision angles and belt speed differences.

The split-belt rimless wheel with non-zero β is also able to
reject disturbances in ground height and walk over variable
terrain. To understand the impact of each parameter, we
chose a set of parameters well within the feasible region
(2α = 30◦, 2β = 8◦, and ∆vTM = 1.0 m · s−1) and varied
each parameter independently while leaving the other two
parameters fixed (Fig. 8).

The wheel has maximal ground height disturbance
tolerance when its collision angles are intermediate. With
small collision angles, the wheel primarily fails due to
inappropriate foot sequencing (purple region) or an inability
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to reach the top of a rotation following a step up (blue
region). A disturbance seems larger relative to the step length
when the collision angles are small (Appendix G), so a given
disturbance size more significantly affects a wheel with small
angles. A step up onto the slow belt can mean an early
collision with the slow belt that drastically decreases the
amount of time spent on the fast belt and the energy gained
from the fast belt rotation. A wheel with large collision
angles tends to fail by falling backward following a step up.
On a uniform surface, a wheel with large collision angles
barely completes its rotations and has very little margin to
overcome disturbances that slow it down.

High belt speed difference enables the wheel to better
tolerate ground height disturbances, as long as the wheel
does not enter a flight phase (pink region). The wheel is
able to sustain higher walking speeds with higher ∆vTM,
enabling a larger margin between the wheel’s average
angular velocity and the minimum angular velocity needed
to complete a given rotation. When ∆vTM is high, the speed
reduction accompanying a step up is less likely to prevent
the wheel from completing its subsequent rotation. Belt
speed difference appears beneficial both for ground height
disturbance tolerance and for steady walking speed; holding
the slow belt speed constant and making the fast belt move
backward faster enables the wheel to walk forward more
quickly and robustly.

3.4 Model Variation 3: Uphill Walking with the
Simplest Split-Belt Rimless Wheel

3.4.1 Assumptions and Description of Motion While
walking uphill, the split-belt rimless wheel can gain net
positive energy by maintaining constant average kinetic
energy and increasing gravitational potential energy with
each cycle. For uphill walking of the simplest split-belt
rimless wheel (β = ICOM = 0), the wheel’s motion and
energy through a cycle are very similar to the previous cases
apart from a few key exceptions. First, in the slow belt frame,
the center of mass ends the cycle higher than its starting
position, meaning the energy gained during the fast belt
rotation must compensate for both the energy lost in collision
and the overall increase in wheel height. Second, during the
slow belt rotation, the contacting spoke begins normal to the
incline instead of vertical, so the slow belt rotation includes
a few degrees of upward rotation. Finally, during the fast belt
rotation, the entire wheel moves backward and down relative
to the slow belt, so the change in the wheel’s potential energy
is dependent on the duration TF of the fast belt rotation. A
slower rotation results in a lower overall potential energy
increase for the cycle because the wheel spends more time
moving down.

3.4.2 Incline Effect on Feasibility and Walking Speed
We found that the simplest split-belt rimless wheel could
successfully harness enough energy from the treadmill to
walk steadily up surfaces with a small incline angle, γ. As
γ increased, the wheel walked more slowly for a given set
of collision angles and belt speed difference, and the size of
the feasible region decreased (Fig. 9). Although not shown,
feasible solutions existed for small values of γ even when the
slow belt collision angle was non-zero.
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Figure 9. The split-belt rimless wheel can walk steadily uphill,
but the feasible region decreases as the treadmill incline γ
increases. Shown here are solution spaces for an infinitesimally
small slow belt collision angle (β = 0), but solutions do exist
when β is non-zero. The wheel walks fastest and can walk up
the highest inclines when the fast belt collision angle is
intermediate. Increasing the belt speed difference also
increases the wheel’s slow-belt walking speed.

By walking more slowly for larger inclines, the wheel
could extract enough energy during the fast belt rotation to
achieve the overall increase in potential energy at the end of
the cycle associated with moving uphill. Slower speed meant
more time in the fast belt rotation extracting work from the
treadmill and a lower total potential energy gain required
per cycle. The need for a slower speed for the same fast
belt collision angle, however, meant that larger values of α
became infeasible at higher inclines. A wheel with large α
cannot slow down enough to adequately increase its energy
capture without falling backward during rotations.

There is also a minimum α for uphill walking that
increases with γ, a contrast to level ground walking where
α can approach zero. As the incline increases, driving up
the energy that must be gained per cycle, the minimum
α increases because wheels with small angles cannot gain
enough energy from the treadmill during the fast belt rotation
to achieve the necessary net energy increase. An ideal
rimmed wheel can roll steadily on level ground, losing no
energy and gaining no energy, but it cannot increase its
energy over time by rolling steadily uphill.

The impact of increasing the belt speed difference ∆vTM is
similar for uphill walking and level ground walking. A larger
∆vTM allows the wheel to walk with higher speeds and up
larger inclines because the belt speed difference allows for
more energy capture within a cycle.

3.5 Model Variation 4: The Split-Belt Rimless
Wheel with Non-Zero Rotational Inertia

3.5.1 Assumptions and Description of Motion To verify
that these behaviors can be achieved with physically realistic
mass distributions, we conducted a final set of simulations
while varying the radius of gyration rgyr between zero
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Figure 10. When the slow belt collision angle is infinitesimally small, as the inertia increases from rgyr = 0.5 m (A) to rgyr = 1.0 m
(B), the split-belt rimless wheel walks more slowly but the feasible solution region increases. We varied the radius of gyration rgyr

while holding the fast belt collision angle 2α at 30◦, the slow belt collision angle 2β at 8◦, and the belt speed difference ∆vTM at 1.0
m · s−1 (C). Each colored mark indicates the outcome of a variable terrain simulation for a given set of ground height limits ±GH.
Green indicates successful completion of 1000 steps, blue indicates a failure from falling backward, and purple indicates a failure
from inappropriate step sequencing. Increasing the rotational inertia increased the wheel’s disturbance rejection.

and the spoke length l. We kept the slow belt collision
angle infinitesimally small and set the treadmill incline at
zero. Non-zero ICOM means the ground reaction forces and
collision impulses are no longer guaranteed to be directed
along the contacting leg, and the vertical slow belt collision
is no longer lossless. Because the wheel has both linear
and rotational kinetic energy, angular velocity changes less
during a rotation and the wheel can begin a rotation more
slowly but still reach the top. The fast belt collision is less
costly with rotational inertia, but less energy is gained in a
fast belt rotation that begins with identical angular velocity.

3.5.2 Inertia Effect on Feasibility, Walking Speed,
and Disturbance Rejection The model generally behaves
similarly to the no-inertia case, but we found that as the
rotational inertia increased, the wheel walked more slowly
for a given set of collision angles and belt speed difference,
and the feasible region increased (Fig. 10A, B). Lower fast
belt rotation gains and the cost of the slow belt collision
dominated the lower fast belt collision costs, leading to a
slower steady walking speed. Higher collision angles became
feasible because the wheel could rotate more slowly while
still completing rotations, and higher belt speed differences
were feasible because the wheel could balance its cycle
energy without increasing its angular velocity so much as to
enter a flight phase.

We also found that increasing the rotational inertia
increases the wheel’s tolerance to ground height disturbance
for a representative fast belt collision angle 2α = 30◦, slow
belt collision angle 2β = 8◦, and belt speed difference
∆vTM = 1.0 m · s−1 (Fig. 10C). Having rotational kinetic
energy means the relative energy loss associated with a step
up of specific height is smaller relative to the wheel’s total
energy.

3.6 Implications for Human Split-Belt Walking
Insights from the split-belt rimless wheel can help us
understand human split-belt treadmill adaptation. During
tied-belt walking, the treadmill cannot contribute any net
work (Sánchez et al. 2019), but the treadmill can perform
work during split-belt walking that allows the rimless wheel

Family of Solutions for Station-Keeping in the Lab Reference 
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Figure 11. With treadmill speeds of 0.5 and 1.5 m · s−1, the
split-belt rimless wheel can walk steadily while maintaining
constant average position in the lab frame (see Extension 1).
There is a range of step length combinations with associated
step length asymmetry which all allow the wheel to
station-keep. Human data for final adapted step lengths and
step length asymmetry for this belt speed combination
(Sánchez et al. 2020) are included for comparison between
human and rimless wheel walking.

to walk steadily. For example, the wheel can station-keep
on a treadmill with belt speeds of 0.5 and 1.5 m · s−1

without requiring any energy, but it could not walk steadily
with both belts at 0.5 m · s−1. If human mechanics mirror
wheel mechanics, this suggests that people might require less
energy to walk on belts split at 0.5 and 1.5 than on belts tied
at 0.5. There is a whole family of wheel solutions enabling
energy-free station-keeping with these belt speeds (Fig. 11),
indicating that many possible gaits exist for humans to take
advantage of the treadmill.
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There is evidence that people adapt to the split-belt
treadmill in a method consistent with taking advantage of
treadmill work, but people do not adapt to the full extent
possible. All configurations which allow the wheel to station-
keep require positive step length asymmetry (Fig. 11), and
previous work has shown that people gradually transition
from negative to positive step length asymmetry when
adapting to the split-belt treadmill (Sánchez et al. 2020).
This evolution of step length asymmetry is associated with
a decrease in energy cost between early and late adaptation,
consistent with the theory that people are adapting to take
advantage of positive work performed by the treadmill.
People do not, however, adopt an asymmetry as extreme as
that predicted by the model for their chosen fast belt step
length, plateauing at just 0.03 after 45 minutes (Sánchez
et al. 2020) rather than continuing to the model asymmetry
of 0.35. The energy savings associated with human split-belt
walking also fall well below the model prediction. We have
not previously observed people achieving lower energy costs
for walking on split belts than for walking on tied belts at the
slow belt speed, despite the model’s indication that it might
be possible. Instead, energy costs during split-belt walking
are either even with or slightly below the cost of walking on
tied belts at the average speed (Sánchez et al. 2019, 2020;
Stenum and Choi 2020; Finley et al. 2013).

Humans adapt to a fast step length well within the family
of model solutions, but their slow step length remains far
longer than the model predicts would be optimal. To increase
their step length asymmetry and better take advantage of
the treadmill, people would need to decrease their slow belt
step length. By comparing the gait adopted by humans to
the model’s family of energy-free solutions, we can gain
insight into which other aspects of split-belt walking could
be interfering with people’s ability to take advantage of a
belt speed difference to decrease their energy costs.

A high cost of swinging the legs could negate the benefits
of certain gaits, but when we approximate swing costs as if
the rimless wheel model had to swing its legs, the model
gait does not encode significantly higher swing costs than the
gait to which humans adapt. Previous work has indicated that
swinging the legs at higher than their natural frequency can
significantly increase the metabolic cost of walking (Doke
et al. 2005), and swing costs trade off with push-off costs
to control the optimal speed-step length relationship (Kuo
2001). Some of the model gaits with short steps onto both
the fast and slow belts (left side of Fig. 12A) are unrealistic
due to swing times that are shorter than observed even when
people are instructed to walk with the highest step frequency
possible (Nilsson and Thorstensson 1987). The other gaits,
however, including the wheel solution at humans’ adapted
fast belt step length, have swing times nearly equal to or
longer than humans’ adapted step times, suggesting that
those gaits are feasible. The average swing leg velocity (Fig.
12B), estimated as the leg’s total swing angle divided by the
swing time, (α+ β)/T , is lower for all the model gaits than
for humans’ adapted gait, indicating that swing leg velocity
is probably not preventing people from shortening their slow
belt step length to adopt the model solution.

Previous work by Kuo (2001) and Doke et al. (2005)
suggests that a more accurate metric for swing cost is peak
force divided by the duration of swing; this metric does not,
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Figure 12. For the family of solutions in Fig. 11 enabling
station-keeping on belts at 0.5 and 1.5 m · s−1, we found the
swing time, average swing leg angular velocity, peak swing leg
angular acceleration, and swing cost proportional to peak force
divided by swing time. Using published human step length and
swing time data for various types of walking, we consider
whether the model gaits are feasible and whether they encode
high swing costs. Comparison data include adapted split-belt
walking at 0.5 and 1.5 m · s−1 (Sánchez et al. 2020), normal
walking at 1.0 m · s−1, and walking with maximal step frequency
at 1.0 m · s−1 (Nilsson and Thorstensson 1987).

however, indicate a high swing penalty for all of the model’s
gaits. Modelling the swing leg with pendular dynamics and
a simplified trajectory θ = A cos (ωt), we can represent the
peak force as proportional to the peak angular acceleration,
Aω2 (Fig. 12C). We define the amplitude A = 1

2 (α+ β)
and the frequency ω = 2π

2T where α and β are the collision
angles and T is the duration of swing. The force/time metric
accounts for muscle inefficiencies when producing force in
short bursts and sets swing cost proportional to the peak
acceleration divided by the swing time (Fig. 12D). Although
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the peak acceleration and force/time cost are high for gaits
with short steps onto both belts, at the fast belt step length
adopted by humans the swing cost for the model’s slow belt
step length is similar to the cost for human’s adapted slow
belt step length. The costs associated with swinging the leg
slower than its natural frequency are less well understood,
and the model’s gait does have a long swing time for the
fast belt leg. Overall, however, it seems probable that people
could adopt the model gait without incurring significantly
higher swing costs, suggesting that swing costs are not the
primary factor limiting people’s ability to take advantage of
the split-belt treadmill.

As a brief side note, it is important to consider that short
steps do not always require stepping with high frequency.
If, as in the left side of Fig. 11, both steps are short, then
step frequency must be high to achieve moderate walking
speeds. When asymmetric steps are allowed, however, a gait
may contain a long step onto one belt and a short step onto
the other while keeping the duration of both steps moderate,
regardless of whether the belts are split or tied. For example,
in the gait on the right side of Fig. 11, the slow belt step
length is zero but the swing times for both the fast and slow
legs are longer than 0.29 seconds. The extremely short step
onto the slow belt does not necessarily require the swing time
for either leg to be extremely short.

Robustness and costs associated with lateral balance could
also be preventing people from taking full advantage of the
treadmill. Although the model gait for people’s chosen fast
belt step length is one of the more robust gaits according
to our ground height disturbance metric, other aspects of
stability might make the model’s gait less desirable than
people’s adopted gait. The model’s long fast leg swing
time corresponds to a long stance period on the slow belt
(Fig. 12A), one that approaches the maximum stance time
observed (0.87 sec) when people are asked to walk with the
lowest step frequency possible (Nilsson and Thorstensson
1987). To take advantage of the belt speed difference, people
would need to significantly extend the amount of time
spent on their slow belt leg, and that long single support
could increase costs associated with active control of lateral
balance (Dean et al. 2007).

Finally, the model gaits with high step length asymmetry
would require people to produce a large average free
vertical moment during walking (Fig. 13), another possible
explanation for why people adopt only a slightly positive step
length asymmetry. During normal walking, the average free
vertical moment produced by each leg is reportedly between
0.1 (Collins et al. 2009) and 0.9 N ·m (Almosnino et al.
2009). Altering gait in such a way that the average free
vertical moment increases has been associated with increases
in energy cost. For example, swinging the arms oppositely
from normal results in a higher free vertical moment and a
26% higher metabolic cost of walking (Collins et al. 2009).
We estimated the required average free vertical moment for
the rimless wheel model by integrating the moment produced
about the center of mass by the fore-aft ground reaction
forces, adding in the change in angular momentum of the
collisions, and dividing the total by the entire cycle time:

M=

∫ TF

0
wFxFdt−

∫ TS

0
wFxSdt+mw(∆vCOM

xF
−∆vCOM

xS
)

TF + TS
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Figure 13. For the family of solutions in Fig. 11, the required
average free vertical moment is different for each of the possible
gaits. The free vertical moment is one factor which could
influence why people choose not to adopt the rimless wheel’s
step lengths, since high moments are associated with increased
energy costs during walking (Collins et al. 2009). Published
data from human experiments for average free vertical moment
during walking with normal and anti-normal arm swing are
included for comparison (Collins et al. 2009; Almosnino et al.
2009).

where TF and TS are the fast and slow leg stance times, w is
the lateral distance from the contact point to the wheel center
(estimated at 6 cm based on human step width of 12% of leg
length (Donelan et al. 2001)), FxF and FxS are the fore-aft
forces during the fast and slow belt rotations respectively, m
is the total mass, and ∆vCOM

xF
and ∆vCOM

xS
are the change in

horizontal velocity of the center of mass during the fast and
slow belt collisions respectively. This average moment M is
created by the ground reaction forces, and people would have
to compensate by producing their own free vertical moment
in order to avoid turning. Published data do not exist for
the average free vertical moment of people’s adapted split-
belt gait. However, at the fast step length that people adopt,
our model would require an average free vertical moment
higher than that of walking with anti-normal arm swing in
Collins et al. (2009) with its associated significant increase in
energy cost. Although our model calculation does not include
the transverse force contributions to the vertical moment,
the high magnitude still suggests that free vertical moment
could be an important factor to consider in understanding
human split-belt walking. We can imagine that in adapting
to the treadmill, people may cease decreasing their slow belt
step length once just past symmetry because the increased
cost of producing more free vertical moment outweighs the
energetic benefit of net work performed by the treadmill.

The comparisons between model gaits and people’s
adapted split-belt gait could inform future experiments
to further understand what limits people’s ability to take
advantage of the split-belt treadmill. While we have not
previously observed people being able to lower the cost of
split-belt walking below the cost of walking on tied belts
at the slow belt speed, it is possible that combinations of
belt speeds to facilitate this have simply not yet been tested.
We could also enforce different amounts of step length
asymmetry for different belt speed combinations to better
understand the optimal step length asymmetry and gain
insight into how people’s ability to take advantage of the
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Figure 14. (A) CAD model and (B) photograph of the split-belt rimless wheel robot (see also Extension 2, 3). (C) Results of
measuring the split-belt rimless wheel robot’s steady walking speed for a range of treadmill belt speed differences. The simulation
results better matched the experimental results when an offset was added between the fast and slow belts in simulation such that
the fast belt was 4.9 mm higher than the slow belt.

treadmill changes for different speed combinations. To better
understand the impact of balance, we could conduct split-belt
adaptation experiments in a stabilizing force field, potentially
allowing people the freedom to adopt more extreme gaits that
better take advantage of the treadmill. We can also imagine
attempting to eliminate the effort associated with producing
a free vertical moment. Perhaps using a device that allows
translation but not rotation would allow people to adopt more
asymmetric gaits without having to overcome the tendency
to turn. In addition to experiments, adding complexity to
the model could prove enlightening for understanding human
split-belt treadmill adaptation. Incorporating double support
phases, swing costs, pitch and yaw moments, physiologically
realistic muscles, and costs associated with negative work
performed by the legs could all improve our understanding
of the mechanics underlying human split-belt treadmill
walking.

The split-belt rimless wheel can also offer insights into
rehabilitation techniques for individuals post-stroke. The
model is consistent with the practice of using the treadmill
to augment step length asymmetry during training in order
to reduce asymmetry overground (Reisman et al. 2013).
While typically explained as people trying to return to their
baseline asymmetry, this lengthening of the fast belt step can
also be considered from the model’s energy principle that
longer steps onto the fast belt allow people to take advantage
of the treadmill. For intervention techniques focused on
increasing the stance time of the paretic limb, the model is
consistent with the practice of placing the paretic limb on
the slow treadmill belt (Malone and Bastian 2014). Rather
than considering the intervention as limiting people’s ability
to rely on their healthy limb by placing it on the fast belt, this
can be viewed as energy optimization driving people toward
solutions that rely on longer stance times on the slow belt leg.
Finally, the model offers an interesting perspective on using
the split-belt treadmill to strengthen and train the paretic
limb by forcing people to work harder during rehabilitation.
If people were able to take as much advantage of the belt
speed difference as suggested by the model, then split-belt
walking might actually be easier than tied belt walking,
defeating the purposes of the exercise. It may be beneficial

for rehabilitation that people are limited in their ability to
take advantage of the treadmill to make walking easier.

4 A Physical Split-Belt Rimless Wheel

4.1 Mechanical Design
We used the simulation results to guide the design of a robot
that passively walked forward on a split-belt treadmill (Fig.
14A, B; see also Extension 2, 3). We chose 2α = 31◦ and
2β = 9◦ because those angles demonstrated moderate speed
performance and high disturbance rejection in simulation,
and their sum divides evenly into 360◦. We cut knobs into
the edges of two acrylic nonagons to create two identical
“rimless wheels” with 9 spokes each (40◦ spacing between
the spokes) and an effective spoke length of 0.254 m. The
nonagons were then attached with a 9◦ angular offset and a
7.6 cm lateral offset, enabling the robot to transition from
belt to belt with the desired angles as it alternated steps.
We glued small strips of rubber around the ends of the
knobs to increase the wheel’s traction on the treadmill during
rotations. The mass of the two nonagons and their connecting
hardware was 3.53 kg and the radius of gyration was 0.163
m, creating a moment of inertia about the center of mass of
0.094 kg ·m2.

We added two attachments to eliminate roll and yaw.
We placed freely spinning stabilizer wheels at the front to
prevent the robot from leaning side-to-side during rotation
and prematurely contacting the opposite belt. The stabilizer
wheels were positioned such that the robot’s center of mass
always remained within the triangle of support created by
the two wheels and whichever knob was in contact with the
ground at that instant. A small rudder, placed in front of the
stabilizer wheels, rolled in bearings along the gap between
the belts to counteract the vertical moment and prevent the
robot from turning as it walked forward.

4.2 Experimental Comparisons
To test the robot’s ability to walk on a split-belt treadmill
and to validate the simulation, we measured the robot’s slow-
belt walking speed for a range of belt speed differences
(Fig. 14C). We held the slow belt stationary and set the fast
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belt to speeds ranging from 0.15 to 1.1 m · s−1. For each
belt speed difference, we allowed the wheel several steps to
stabilize and then timed it walking forward a pre-determined
distance. We estimated the speed in the slow belt reference
frame as the pre-determined distance divided by the time. We
completed at least five trials per belt speed difference and
averaged the trials to obtain a final velocity.

We compared the experimental results to results from a
simulation model adjusted for size, mass, rotational inertia,
and collision angles of the physical robot (Fig. 14C). The
results were qualitatively similar, with both the physical
robot and the simulation demonstrating a rapid increase and
then slower decrease in steady walking speed as the belt
speed difference increased. However, the physical prototype
consistently walked more slowly than the simulation model.

We considered various adjustments to the simulation
model to determine which differences between the real
world and the simulation could be responsible for the
offset in walking speed. Friction and general inefficiencies
in the system, modelled as an incline, did not explain
the difference, nor did variations in leg length, inertia, or
collision angles. Random variations in the ground height
slowed the simulated wheel but not in a way consistent with
the experimental results. The modification that best brought
the simulation results into agreement with the experimental
results was setting the fast treadmill belt 4.9 mm higher than
the slow treadmill belt (Fig. 14C).

Although the belts were not physically offset, the physical
wheel may have been interacting differently with the two
belts, and the simulated 4.9 mm offset may have captured
some of the asymmetries observed experimentally. For
example, the robot appeared to bounce upon contact with
the fast belt but not with the slow belt. The rubber at the
edges of the robot could also have interacted differently
with the two belts, taking a moment longer at fast belt
contact to grip the belt firmly and begin rotation. With
a more complex contact model, or other complicating
features, the simulation model could have been brought into
better agreement with experimental results. However, despite
the simplified physics used, the simulation model made
predictions that were qualitatively consistent with the real
system. Most importantly, the physical robot was successful
in demonstrating that a split-belt rimless wheel can harness
energy from a treadmill to roll steadily on level ground.

4.3 Comparisons to Traditional Energy
Capture from Dual-Velocity Environments

The rimless wheel takes advantage of external energy
differently than traditional machines like sailboats, water
wheels, and land yachts, demonstrating a new way that
devices can harness energy from relative motion in the
environment. Traditional mechanisms rely on continuous
contact with both substrates of different velocity, but this
wheel alternates contact between the fast and slow belts. The
wheel also requires a process of energy capture, exchange,
and storage not present in traditional systems. The wheel
harvests energy during the fast belt rotation by converting
treadmill energy into gravitational potential energy and then
turning it back into kinetic energy during the slow belt
rotation. The split-belt wheel’s angular velocity must change

throughout the gait cycle as energy is captured and converted,
unlike traditional devices that can operate at constant speeds
with no need to store or exchange energy.

The split-belt rimless wheel’s method of energy harness-
ing is mechanically much more similar to that of an albatross
during dynamic soaring. Both the wheel and the bird spend
some time in a faster reference frame where they convert
kinetic energy to potential energy at an advantageous rate,
and the longer they spend in the faster frame, the more
energy they capture. One key difference is the asymmetry
enabling that energy capture: the wheel relies on unequal
step lengths onto the fast and slow belts whereas the bird
relies on a change in its heading angle during ascent and
descent. Additionally, the wheel abruptly alternates between
the two treadmill belts, with losses due to collisions, whereas
the albatross moves smoothly between the wind layers, with
losses due to drag. It is worth noting, however, that the
albatross model of energy capture would still work for an
instant change in airspeed.

This mechanism for energy capture from dual-velocity
environments could be exploited in other contexts. Existing
dual-velocity devices could be modified to incorporate
asymmetric, intermittent contacts to allow greater energy
capture. New applications could be discovered, for example
in robots with aerospace or transportation applications. We
can imagine, for instance, employing this concept to move
materials in a factory in the direction opposite the motion of
a conveyor belt. This work also suggests a broader class of
energy harvesting mechanisms, applicable to any robot that
does not operate within a single Newtonian reference frame.

5 Conclusions
In this study, we found that a split-belt rimless wheel,
simulated or physical, can harness enough energy from
treadmill belts moving at different speeds to walk steadily
under a variety of conditions. When the collision angles are
appropriately asymmetric to take advantage of the belt speed
difference, higher fast belt speed can actually be beneficial;
making the fast belt move backwards faster increases
the wheel’s forward speed and improves its disturbance
rejection.

Our simulation work helps build a framework to better
understand the mechanics underlying human split-belt
treadmill walking. Without an impact of muscles or training,
our model demonstrates how split-belt walking may require
less mechanical work than tied-belt walking at the slow belt
speed. The asymmetry in step lengths enabling the treadmill
to perform work on the wheel offers insight into why people
adopt a positive step length asymmetry after a period of
split-belt adaptation. More complicated simulation models,
as well as future human-subject experiments, can further
reveal the opportunities and limitations for humans to take
advantage of the split-belt treadmill.

Our physical prototype demonstrates the robustness of
the split-belt rimless wheel’s energy capture mechanism,
illustrating possibilities for transfer to other devices. The
wheel can harness energy under a range of circumstances
and withstand speed and ground height disturbances, despite
imperfections in construction. Future work with a physical
split-belt rimless wheel could include improving the model
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with better contact modeling or creating a modular prototype
to enable expanded physical validation of the simulation
model, further clarifying how this mechanism might best be
implemented in other devices.
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6 Appendices

6.1 Appendix A: Index to Multimedia
Extensions

Extension Media
Type

Description

1 Video Simulated wheel walking
on split-belt treadmill

2 Video Physical split-belt rimless
wheel on tied belts and
split belts

3 CAD CAD assembly and parts
for the physical split-belt
rimless wheel robot.

6.2 Appendix B: Derivation of System of
Equations to Solve for Steady Walking

In the main text, we explain how each collision and rotation
of the gait cycle has a governing equation relating the
angular velocity before the event to the angular velocity
after it. These four governing equations become a system
of equations that can be solved for the fixed point angular
velocity at the beginning of the slow belt rotation, θ̇∗S0

. In
this section, we show the complete derivation of those four
equations. As in the rest of the text, the subscript S0 refers to
the beginning of the slow belt rotation, Sf the end of the slow
belt rotation, F0 the beginning of the fast belt rotation, and Ff
the end of the fast belt rotation. The left-superscripts S and
F indicate whether a frame-dependent term is expressed in
the fast or slow belt reference frame.

6.2.1 Rotation on the Slow Treadmill Belt Given the
velocity at the beginning of the slow belt rotation, the
velocity at the can be determined using an energy balance
approach (Eq.1).

Before the rotation, the wheel’s velocity in the slow belt
reference frame is

SvCOM
S0

= lθ̇S0(cos (β + γ)̂i− sin (β + γ)̂j)

where θ̇S0 is the angular velocity before the rotation. The
total energy is a combination of the kinetic and potential
energies,

SES0
=

1

2
ICOM(θ̇S0)2 +

1

2
m(lθ̇S0)2

+mgl cos (β + γ).
(10)

After the rotation, the wheel’s center of mass velocity in
the slow belt reference frame is

SvCOM
Sf

= lθ̇Sf(cos (α− γ)̂i + sin (α− γ)̂j)
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where θ̇Sf is the angular velocity after the rotation. The total
energy after rotation is a combination of the kinetic and
potential energies,

SESf =
1

2
ICOM(θ̇Sf)

2 +
1

2
m(lθ̇Sf)

2

+mgl cos (α− γ).
(11)

Viewed in the slow belt reference frame, the wheel
behaves like an inverted pendulum rotating over a stationary
contact point. It exchanges potential and kinetic energy
during the rotation, but the total energy remains constant. We
set the energies SES0

and SESf (Eqs. 10 and 11) equal,

SES0
=

1

2
(θ̇S0)2(ICOM +ml2) +mgl cos (β + γ)

=
1

2
(θ̇Sf)

2(ICOM +ml2) +mgl cos (α− γ) = SESf

and rearrange to solve for the angular velocity after rotation
θ̇Sf as a function of the angular velocity before rotation θ̇S0

,

(θ̇Sf)
2 = (θ̇S0

)2 +
2mgl(cos (β + γ)− cos (α− γ))

ICOM +ml2
.

6.2.2 Collision onto the Fast Treadmill Belt Conservation
of angular momentum about the new foot contact, here
computed in the slow belt frame, can be used to determine
the angular velocity after the fast belt collision θ̇F0 (Eq. 4).

The angular momentum H in general terms is

H = ICOMθ̇k̂ + rCOM/P ×mvCOM

where rCOM/P is the position vector from the point colliding
with the fast treadmill belt to the center of mass and vCOM is
the center of mass velocity. The position vector is

rCOM/P = l(− sin (α+ γ)̂i− cos (α+ γ)̂j),

and it is the same both before and after the fast belt collision.
The angular momentum before the collision is

SHSf = ICOMθ̇Sf k̂ + rCOM/P ×mSvCOM
Sf

where the center of mass velocity expressed in the slow belt
reference frame is

SvCOM
Sf

= lθ̇Sf(cos (α− γ)̂i + sin (α− γ)̂j).

The angular momentum before the collision, SHSf , when
expressed in the slow belt reference frame, simplifies to

SHSf = ICOMθ̇Sf k̂ +ml2θ̇Sf cos (2α)k̂. (12)

The angular momentum after the collision is

SHF0
= ICOMθ̇F0

k̂ + rCOM/P ×mSvCOM
F0

where the center of mass velocity expressed in the slow belt
reference frame is

SvCOM
F0

= lθ̇F0
( cos (α+ γ)̂i− sin (α+ γ)̂j)

−∆vTM(cos (γ)̂i− sin (γ)̂j).

SvCOM
F0

includes the belt speed difference ∆vTM when
expressed in the slow belt frame because the wheel at that

point is rotating on a fast belt spoke. In the fast belt frame,
the center of mass speed would just be (lθ̇F0

). Because the
angular momentum after the collision must be computed
in the slow belt frame to be equated with the angular
momentum before the collision, vCOM

F0
must be in the slow

belt frame when used.
The angular momentum after the collision SHF0

, when
expressed in the slow belt reference frame, simplifies to
SHF0

= ICOMθ̇F0
k̂ +ml2θ̇F0

k̂−ml∆vTM cos (α)k̂. (13)

We set the angular momenta SHSf and SHF0 (Eqs. 12 and
13) equal through the conservation of angular momentum,

SHSf = θ̇Sf(ICOM +ml2 cos (2α)

= θ̇F0
(ICOM +ml2)−ml∆vTM cos (α) = SHF0

and rearrange to solve for the angular velocity after the
collision θ̇F0 as a function of the angular velocity before the
collision θ̇Sf ,

θ̇F0
= θ̇Sf

ICOM +ml2 cos (2α)

ICOM +ml2
+
ml∆vTM cos (α)

ICOM +ml2
.

6.2.3 Rotation on the Fast Treadmill Belt The fast belt
rotation is similar to the slow belt rotation, and an energy
balance is used to find the angular velocity post-rotation, but
the energy balance is computed in the fast belt reference
frame (Eq. 5). Viewed in the fast belt reference frame,
the contact point between the wheel and the treadmill
appears stationary during the rotation, making the wheel an
inverted pendulum rotating over a stationary contact point
and maintaining constant energy.

Before the rotation, the wheel’s velocity in the fast belt
reference frame is

FvCOM
F0

= lθ̇F0(cos (α+ γ)̂i− sin (α+ γ)̂j)

where θ̇F0
is the angular velocity before the rotation. The

total energy is a combination of the kinetic and potential
energies,

FEF0 =
1

2
ICOM(θ̇F0)2 +

1

2
m(lθ̇F0)2

+mgl cos (α+ γ).
(14)

After the rotation, the wheel’s velocity in the fast belt
reference frame is

FvCOM
Ff

= lθ̇Ff(cos (β − γ)̂i + sin (β − γ)̂j)

where θ̇Ff is the angular velocity after the rotation. The total
energy is a combination of the kinetic and potential energies,

FEFf =
1

2
ICOM(θ̇Ff)

2 +
1

2
m(lθ̇Ff)

2

+mgl cos (β − γ).
(15)

We set the energies FEF0
and FEFf (Eqs. 14 and 15) equal,

FEF0
=

1

2
(θ̇F0

)2(ICOM +ml2) +mgl cos (α+ γ)

=
1

2
(θ̇Ff)

2(ICOM +ml2) +mgl cos (β − γ) = FEFf

and rearrange to solve for the angular velocity after rotation
θ̇Ff as a function of the angular velocity before rotation θ̇F0

,

(θ̇Ff)
2 = (θ̇F0

)2 +
2mgl(cos (α+ γ)− cos (β − γ))

ICOM +ml2
.
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6.2.4 Collision onto the Slow Treadmill Belt The slow
belt collision is similar to the fast belt collision, with a
conservation of angular momentum computed in the slow
frame being used to relate the angular velocity before and
after the collision (Eq. 8).

The angular momentum H in general terms is still

H = ICOMθ̇k̂ + rCOM/P ×mvCOM

but the position vector rCOM/P is now

rCOM/P = l(− sin (β + γ)̂i− cos (β + γ)̂j).

The angular momentum before the collision is

SHFf = ICOMθ̇Ff k̂ + rCOM/P ×mSvCOM
Ff

where the center of mass velocity expressed in the slow belt
reference frame is

SvCOM
Ff

= lθ̇Ff(cos (β − γ)̂i + sin (β − γ)̂j)

−∆vTM(cos (γ)̂i− sin (γ)̂j).

The velocity includes the belt speed difference ∆vTM
because the wheel rotates on a fast belt spoke before the
collision, but the velocity must be expressed in the slow belt
reference frame to compute the angular momentum in the
slow belt frame.

The angular momentum before the collision, SHFf , when
expressed in the slow belt reference frame, simplifies to

SHFf = ICOMθ̇Ff k̂ +ml2θ̇Ff cos (2β)k̂

−ml∆vTM cos (β)k̂.
(16)

The angular momentum after the collision is

SHS0 = ICOMθ̇S0 k̂ + rCOM/P ×mSvCOM
S0

where the center of mass velocity expressed in the slow belt
reference frame is

SvCOM
S0

= lθ̇S0(cos (β + γ)̂i− sin (β + γ)̂j).

The angular momentum after the collision SHS0
, when

expressed in the slow belt reference frame, simplifies to

SHS0
= ICOMθ̇S0

k̂ +ml2θ̇S0
k̂ (17)

We set the angular momenta SHFf and SHS0 (Eqs. 16 and
17) equal through the conservation of angular momentum,

SHFf = θ̇Ff(ICOM +ml2 cos (2β))−ml∆vTM cos (β)

= θ̇S0(ICOM +ml2) = SHS0

and rearrange to solve for the angular velocity after the
collision θ̇S0

as a function of the angular velocity before the
collision θ̇Ff ,

θ̇S0
= θ̇Ff

ICOM +ml2 cos (2β)

ICOM +ml2
− ml∆vTM cos (β)

ICOM +ml2
.

Slow Belt Rotation

Contact Point

Fast Belt Rotation

Contact Point

Fast Belt Step Length

Slow Belt Step Length

Backward Travel

Figure 15. When the wheel walks up an incline γ, the amount
the center of mass moves up during a gait cycle ∆h is a
function of the fast belt step length 2l sin (α), the slow belt step
length 2l sin (β), and the amount the wheel moves backward
during the fast belt rotation TF∆vTM.

6.2.5 Solving the System of Equations Together, the four
governing equations for a gait cycle are

(θ̇Sf)
2 = (θ̇S0

)2 +
2mgl(cos (β + γ)− cos (α− γ))

ICOM +ml2

θ̇F0
= θ̇Sf

ICOM +ml2 cos (2α)

ICOM +ml2
+
ml∆vTM cos (α)

ICOM +ml2

(θ̇Ff)
2 = (θ̇F0

)2 +
2mgl(cos (α+ γ)− cos (β − γ))

ICOM +ml2

θ̇S0 = θ̇Ff

ICOM +ml2 cos (2β)

ICOM +ml2
− ml∆vTM cos (β)

ICOM +ml2

where the four unknowns are θ̇S0 , θ̇Sf , θ̇F0 , and θ̇Ff . These
can be combined into one equation containing any one of the
variables. We combined the equations into θ̇S0 = f(θ̇S0) and
solved to find the fixed point angular velocity θ̇∗S0

.
There are numerical solutions where the angular velocity

is negative at some point in the cycle, indicating that the
wheel is falling backward, but the equation solves because
the angular velocity is squared when appearing in the
equation. We enforced that the angular velocity be positive
in all cases.

6.3 Appendix C: Fast Belt Rotation Potential
Energy for Non-zero Treadmill Incline

When the treadmill incline γ is non-zero, the wheel’s
potential energy during the fast belt rotation changes as the
fast belt moves down relative to the slow belt during the
rotation (Fig. 15). We compute the potential energy relative
to the height of the contact point between the wheel and the
treadmill during the slow belt rotation, even though the wheel
rotates on a different, moving contact point during the fast
belt rotation.
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During the slow belt rotation, the potential energy in the
slow belt reference frame is

SPE S = mg(l cos (θ))

where θ is the angle from vertical (−ĵ) to the contacting
spoke. At the end of the slow belt rotation, the wheel collides
with the fast treadmill and the contact point is redefined
as the end of the fast belt spoke. Redefining the contact
point changes the value of θ, so the quantity (l cos (θ))
changes. However, the wheel’s center of mass does not
change position in the instant of the collision, so the potential
energy should not change.

When calculating the potential energy during the fast belt
rotation, we add a term to compensate for the difference in
height of the contact point before and after the collision. Just
after the collision onto the fast belt, the wheel’s potential
energy in the slow belt frame is

SPE F0 = mg(l cos (θ) + 2l sin (α) sin (γ))

where 2l sin (α) sin (γ) is the difference in height of the two
contact points during the collision.

As the wheel rotates on the fast treadmill belt, the fast belt
moves down relative to the slow belt. To track the potential
energy relative to the original slow belt contact point, we
must account for the downward motion of the wheel. We add
another term to the expression for the potential energy so that
potential energy during the fast belt rotation is
SPE F = mg(l cos (θ)+2l sin (α) sin (γ)− tf∆vTM sin (γ))

where tF is the time since the fast belt collision. At the
end of the fast belt rotation, the wheel collides with the
slow treadmill belt and the contact point is again redefined.
We would need to account for that redefinition to continue
tracking the wheel’s potential energy into another gait cycle,
but we complete all analysis in just one representative cycle.
Subtracting the wheel’s potential energy at the beginning of
the slow belt rotation SPE S0 from the final potential energy
at end of the fast belt rotation SPE Ff gives the change in
potential energy over one gait cycle SWu.

For uphill walking, SWu is a crucial result that defines
whether the wheel can walk steadily. Substituting in for the
angles at the beginning of the slow belt rotation and the end
of the fast belt rotation gives us a specific equation for the
energy change over a cycle. At the beginning of the slow belt
rotation, θ = −(β + γ) and

SPE S0
= mg(l cos (β + γ)).

At the end of the fast belt rotation, θ = (β − γ) and
SPE Ff = mg(l cos (β − γ))

+mg(2l sin (α)− TF∆vTM) sin (γ)

where TF is the duration of the fast belt rotation. The net
energy change during one uphill gait cycle is

SWu = SPE Ff − SPE S0

= mg(2l sin (α) + 2l sin (β)− TF∆vTM) sin (γ).

The 2l sin (α) sin (γ) and 2l sin (β) sin (γ) terms account for
how much the center of mass would rise if the belts were
stationary, and the −TF∆vTM sin (γ) term accounts for the
downward motion of the fast belt relative to the slow belt.

6.4 Appendix D: Impact of Changing Belt
Speed Difference, Fast Belt Collision
Angle, and Slow Belt Collision Angle on
Collision Losses and Rotation Gains

The collision angles and belt speed difference affect the
energy lost in collisions and gained in the fast belt rotation.
There is nuance because the components of the cycle are
so interconnected, but we can still get a general picture of
the energy effect by looking at the collisions and rotations
individually as we change different parameters.

Increasing the belt speed difference decreases the energy
lost in the fast belt collision S∆EF (Fig. 16A) but increases
the energy lost in the slow belt collision S∆ES (Fig. 16B).
Because the angle between the spokes is larger in the fast belt
collision, the decrease in S∆EF is larger than the increase in
S∆ES so that increasing the belt speed difference is overall
beneficial from an energy standpoint.

It is possible to increase the belt speed difference so much
that energy is actually gained in the fast belt collision (Fig.
16C). This never happens in the simplest model variation
where the slow belt collision angle is zero but can happen
when β is non-zero. The energy change for the cycle must
be zero when the wheel walks on level ground, and energy
is always gained during the fast belt rotation. In the case
where β is zero, there is no energy change in the slow belt
rotation or collision, so energy must be lost in the fast belt
collision. When β is non-zero, some energy is lost in the
slow belt collision, so energy can be gained in both the fast
belt rotation and the fast belt collision with the total system
energy still equaling zero over the cycle as long as enough
energy is lost in the slow belt collision.

Increasing the belt speed difference also increases the
energy gained during the fast belt rotation SWF when the
angular velocity at the start of the fast belt rotation is the
same. This can be explained with the same work equation
used to explain how the treadmill can perform any work. The
belt speed difference increases the contact point velocity SvP,
while the force F, dependent on the wheel’s angular position
and velocity, remains unchanged. When the wheel rotates up
with the same angular velocity, the work for the rotation,
SWF =

∫ TF

0
F · SvPdt is higher because SvP increases while

F and TF remain the same.
Decreasing the collision angles decreases the energy lost

in the collisions. This is true regardless of the belt speed
difference. When the angles are larger, the center of mass
velocity must be more dramatically redirected, meaning
more energy is lost. As the angle decreases, less energy is
lost until no energy is lost at the extreme when the angle
between the spokes at the collision is infinitesimally small.

The impact of changing the collision angles on the work
gained in the fast belt rotation SWF is different for the two
angles. Increasing α at the fast belt collision increases SWF
while increasing β decreases SWF. The power is positive as
the wheel rotates up through α from the fast belt collision
to vertical. When α is larger, the wheel can extract more
energy from the treadmill. Once the wheel passes vertical,
the power is negative as the wheel rotates down through β.
The larger β is, the longer the wheel spends rotating down
with the treadmill doing negative work and removing energy.
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Figure 16. A. Increasing the belt speed difference ∆vTM

decreases the energy lost in the fast belt collision. B. Increasing
∆vTM increases the energy lost in the slow belt collision. The
wheel would be walking steadily for these angular velocities with
∆vTM1. By increasing from ∆vTM1 to ∆vTM2, the savings in the
fast belt collision (green box) are larger than the added costs in
the slow belt collision (red box), so increasing ∆vTM is overall
beneficial. C. There are cases where ∆vTM is high enough that
the wheel actually gains energy in the fast belt collision when
viewed in the slow belt reference frame.

Whether changing a parameter causes the wheel to rotate
faster or slower depends on how that parameter impacts both

collision losses and rotation gain. Increasing the belt speed
difference ∆vTM allows the wheel to rotate faster because
the wheel loses less energy in the collisions and gains more
energy in the rotation. Increasing the slow belt collision
angle 2β forces the wheel to rotate more slowly because
the wheel loses more energy in the slow belt collision and
gains less energy in the fast belt rotation. When changing
the fast belt collision angle 2α, the overall result is less
obvious. Decreasing α decreases the fast belt collision loss
but also decreases the energy gained in rotation. It turns out
that the decrease in collision loss is larger than the decrease
in rotation gain because the decrease in rotation gain is
nearly linear while the decrease in collision loss is close
to quadratic. The result is a net benefit such that the wheel
can rotate more quickly for a smaller α. As α continues to
decrease, the gap between the change in collision loss and
the change in rotation gain decreases such that decreasing α
has a smaller impact when α is already small than when it is
large.

6.5 Appendix E: Increases in Angular Velocity
Often Increase Slow-Belt Walking Speed

We showed that changing the collision angles and belt
speed difference changes the angular velocity with which the
wheel must walk. If the parameters changed but the wheel
walked with the same angular velocity, it would speed up
or slow down because the energy change over the course
of a cycle would be non-zero. The wheel’s angular velocity
and its slow-belt walking speed Svavg are closely related
but changing a parameter in a way that causes an increase
in angular velocity does not always increase the wheel’s
walking speed.

Recall that the equation for the wheel’s steady walking
speed Svavg is

Svavg =
2l(sin (α) + sin (β))− TF∆vTM

TS + TF

where 2l sin (α) is the fast belt step length, 2l sin (β) is the
slow belt step length, TS and TF are the durations of the slow
and fast belt rotations, and TF∆vTM is the backward distance
the wheel travels while riding on the fast belt.

Increasing the belt speed difference ∆vTM always
increases the wheel’s angular velocity because the wheel
loses less energy in collisions and gains more energy in the
fast belt rotation. That increase in angular velocity decreases
both TS and TF, which should increase Svavg. However,
the belt speed difference increase also means the wheel
travels backward faster during the fast belt rotation. Even
though TF decreases when ∆vTM increases, the backward
distance TF∆vTM tends to increase as ∆vTM increases.
Since both the numerator and denominator decrease, the
wheel’s slow-belt walking speed can increase or decrease
depending on which aspect dominates. Most of the time,
the decrease in rotation durations outweighs the increased
backward distance so that increasing ∆vTM increases Svavg.
However, this is not guaranteed, and sometimes the increase
in ∆vTM actually decreases Svavg despite increasing the
wheel’s angular velocity.

Except when the wheel walks uphill, decreasing the fast
belt collision angle always increases the wheel’s angular
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velocity. The wheel rotates faster and rotates through a
smaller angle, decreasing both TS and TF, and decreasing
TF∆vTM. However, the fast belt step length 2l sin (α) is
also smaller when α decreases. The lower rotation durations
and smaller backward distance during the fast belt rotation
outweigh the shorter step length, and the angular velocity
increase associated with decreasing α always increases Svavg.

Decreasing the slow belt collision angle 2β also increases
the wheel’s angular velocity and increases Svavg. Like with
the fast belt collision angle, decreasing β allows the wheel to
walk with higher angular velocity, decreasing both rotation
durations TS and TF and decreasing the backward distance
TF∆vTM. The slow belt step length 2l sin (β) decreases,
but the other terms dominate and Svavg increases when β
decreases.

6.6 Appendix F: Eigenvalue Stability Analysis
The eigenvalue for the discrete, linearized stride-to-stride
state transition matrix is always positive and less than or
equal to one. An eigenvalue of one indicates that all of the
angular velocity perturbation is still present after one gait
cycle, and the wheel rolls steadily with the new angular
velocity. This only occurs when both collision angles are
infinitesimally small and the rimless wheel is essentially a
rimmed wheel (Fig. 17). A theoretical rimmed wheel can roll
steadily with any angular velocity, so this is a logical result.

At the other extreme, an eigenvalue of zero indicates that
the entire perturbation disappears and the wheel returns to
the fixed point angular velocity by the end of one gait cycle.
The wheel approaches this result in the extreme case where
the slow belt collision angle 2β is infinitesimally small, and
the fast belt collision angle 2α is at its maximum feasible
value for a given belt speed difference. In this case, the
wheel’s angular velocity after the collision onto the slow belt
is approximately zero, indicating that the wheel must roll as
slowly as possible to gain enough energy from the fast belt
during rotation. A perturbation which increases the wheel’s
angular velocity cannot be sustained and the wheel returns to
the fixed point very quickly. For these extremely wide angles,
the angular velocity perturbation must be positive because a
negative perturbation can cause the wheel to fall backward,
failing to complete the cycle.

According to this metric, the split-belt rimless wheel
is generally more stable with larger angles. An angular
velocity perturbation is more quickly dissipated and the
wheel approaches its steady-state walking velocity in a
smaller number of steps when it has larger collision angles.
The notable exception to this behavior is when there is an
uphill slope. When walking uphill, a wheel with the smallest
possible feasible collision angles seems more stable than one
with slightly larger collision angles. As the collision angles
continue to increase, however, the normal pattern returns and
increasing the angles increases the stability (Fig. 17).

6.7 Appendix G: Ground Height Disturbances
with Small Collision Angles

During the variable terrain simulations, we found that a
wheel with small collision angles often failed to complete
rotations and fell backward. This is because a step of the
same height has a larger impact on a wheel with small
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Figure 17. Eigenvalue stability analysis for a few
representative cases. The results shown here are for a slow belt
collision angle and moment of inertia about the center of mass
of zero. The treadmill belt speed difference was 2.0 m · s−1 for
the level ground case shown and 1.0 m · s−1 for the uphill case.
According to this metric, the wheel is more stable when the
eigenvalue is smaller and the wheel more quickly rejects
disturbances. An eigenvalue of one indicates that the wheel
does not dissipate any of the perturbation, while an eigenvalue
of zero indicates that the wheel returns to its steady walking
speed within just one gait cycle.
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Figure 18. Small collision angles make the wheel less tolerant
to ground height disturbances because a step of the same size
has a larger impact on a wheel with small angles. When the
wheel steps down onto the fast treadmill belt, the amount of
energy captured from the treadmill decreases because the
wheel rotates up through a smaller angle (α− ∆) and ∆ is
larger when the angle is smaller. When the wheel steps up onto
the slow treadmill belt, it must rotate up through (β + ∆) to
reach vertical. For small collision angles, the added amount of
rotation is large and can cause the wheel to fall backward.
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collision angles (Fig. 18). The fast belt collision angle 2α
defines how much the wheel rotates up during the fast belt
rotation and how much energy is gained in the rotation.
When the wheel takes a step down onto the fast belt, it
rotates less on the fast treadmill belt and gains less energy.
When α is the larger α1, the lost upward rotation ∆1 is
smaller than the lost rotation ∆2 with α2. With α2, the
wheel barely rotates up at all during the fast belt rotation
and ends up losing energy during the rotation because the
negative work from rotating down through β is larger than
the positive work from rotating up. This phenomenon helps
illustrate why a wheel with small fast belt collision angles
is not as tolerant to ground height disturbances as one with
intermediate collision angles.

Steps up onto the slow treadmill belt demonstrate the large
impact of a step when the slow belt collision angle 2β is
small. In order to continue walking after a step up, the wheel
must be able to reach the top of every rotation. When the
wheel takes a step up onto the slow belt, the amount it must
rotate up to reach vertical increases. When β is smaller, the
extra rotation due to a step up is larger (∆2 > ∆1). Even if
the wheel had a sizeable margin between its typical angular
velocity after a step onto the slow belt and the minimum
angular velocity required to reach the top, a step up causing
a large ∆ could cause the wheel to fall backward.

The step up onto the slow belt also affects the amount
of time the wheel spends on the fast belt. When the wheel
takes a step up that is small compared to the step length
(β1), the wheel actually gets more work from the treadmill
during the fast belt rotation because it does not rotate as far
past vertical before the slow belt collision. On the other hand,
when the step up is large compared to the step length (β2),
the wheel’s angle at the collision changes more dramatically.
The wheel no longer rotates all the way up to vertical during
the fast belt rotation, instead colliding with the slow belt
very early into the fast belt rotation, limiting the amount of
work the wheel can capture from the treadmill. Small slow
belt collision angles make the wheel less tolerant to ground
height disturbances because the wheel is highly susceptible
to falling backward.
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