
1 

Natural tolerance to transposition is associated with 1 

Myc-regulation and DNA repair 2 

 3 

Jyoti Lama1, Satyam Srivastav1, Sadia Tasnim1, Donald Hubbard1 & Erin S. Kelleher1*  4 
1 Department of Biology and Biochemistry, University of Houston 5 
* To whom correspondence should be addressed: eskelleher@uh.edu 6 

 7 

  8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.441852doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.441852
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Abstract 9 

 10 

Transposable elements (TE) are mobile genetic parasites whose unregulated activity in the 11 

germline causes DNA damage and sterility. In multiple species of Drosophila, P-element 12 

transposition in larval primordial germ cells (PGCs), as well as adult germline stem cells 13 

(GSCs), leads to the loss of both cell types and in extreme cases: agametic gonads. While 14 

much is known about the regulation of P-element transposition by piRNAs, less is known about 15 

tolerance factors that could allow PGCs or GSCs to persist in the face of high transposition 16 

rates. Using a panel of highly recombinant inbred lines of Drosophila melanogaster, we 17 

identified two linked quantitative trait loci (QTL) associated with natural variation in tolerance to 18 

P-element transposition. By comparing the total RNA and small RNA pools of multiple tolerant 19 

and sensitive genotypes, we found that sensitive genotypes upregulate histones and 20 

translational machinery, while tolerant genotypes upregulate chorion proteins. We further 21 

observed that sensitive genotypes exhibit increased expression of pericentromeric genes, 22 

suggesting reduced heterochromatin formation. Based on these differentially expressed genes 23 

and functional classes, location within a QTL, and in-phase single nucleotide polymorphisms 24 

(SNPs), we identified two candidate genes that we propose influence tolerance: brat and 25 

Nipped-A. Both candidates are known interactors of the tolerance factor myc, a conserved 26 

transcription factor whose activity promotes the retention of PGCs that are damaged by P-27 

element transposition. brat is a translational repressor of myc, whereas Nipped-A is a co-factor 28 

that promotes the expression of genes involved in stem cell self renewal. Nipped-A also 29 

contributes to double-strand break (DSB) repair as a member of the Tat interactive protein 60-30 

kDa (TIP60) complex, which could promote tolerance by repairing damage caused by 31 

transposition. Together our findings reveal complex underpinnings to natural variation in 32 

tolerance, including the modulated regulation of stem cell maintenance and DNA repair 33 

pathways.  34 

 35 

 36 
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3 

INTRODUCTION 40 

 41 

Transposable elements (TE) are mobile DNA sequences that spread through host 42 

genomes by replicating in germline cells. Although individual TE insertions are sometimes 43 

beneficial, genomic TEs are foremost genetic parasites (reviewed in Chuong et al., 2017). 44 

Unrestricted transposition not only produces deleterious mutations, but also double-stranded 45 

breaks (DSBs) that lead to genotoxic stress in developing gametes. Generally, hosts avoid the 46 

fitness costs of invading parasites, pathogens and herbivores by two distinct mechanisms: 47 

resistance and tolerance (Mauricio, 2000; Råberg, 2014; Roy & Kirchner, 2000). Resistance 48 

reduces parasite proliferation, whereas tolerant individuals experience reduced fitness costs 49 

from parasitism. With respect to TEs, host resistance has been the focus of extensive research, 50 

and occurs through production of regulatory small RNAs that transcriptionally and post-51 

transcriptionally silence TEs in the germline (Brennecke et al., 2007; Malone & Hannon, 2009; 52 

Nishida et al., 2007). By contrast, tolerance mechanisms that could ameliorate the fitness costs 53 

of transposition during gametogenesis remain largely unstudied.  54 

 55 

The absence of research on tolerance in part reflects the ubiquity of resistance. For 56 

example, in Drosophila melanogaster, where resistance to TEs is extensively studied, all 57 

actively-transposing TE families are silenced in developing gametes by the Piwi-interacting RNA 58 

(piRNA) pathway (Brennecke et al., 2007). In the presence of strong resistance that represses 59 

transposition, individual differences in tolerance will not be apparent. Therefore, we make use of 60 

the P-M hybrid dysgenesis system in Drosophila melanogaster, where resistance to P-element 61 

DNA transposons is short-circuited in the absence of maternally-transmitted piRNAs (reviewed 62 

in Kelleher, 2016).  When males bearing genomic P-elements (P-strain) are mated to naive 63 

females lacking P-elements and corresponding piRNAs (M-strain), they produce dysgenic 64 

offspring that do not regulate P-element transposition in germline cells (Brennecke et al., 2008). 65 

A range of fertility effects result from P-element induced DNA damage, including the complete 66 

loss of germline cells (Kidwell et al., 1977). The ability of an individual to produce gametes 67 

despite P-element transposition is therefore a measure of tolerance. 68 

 69 

Recent forward genetic studies of dysgenic germline loss have revealed potential 70 

mechanisms of P-element tolerance. Mutations in checkpoint kinase 2 (chk2), a key factor in 71 

germline response to DSBs, suppresses germline loss in dysgenic females (Moon et al., 2018; 72 

Tasnim & Kelleher, 2018). While the gametes produced by the dysgenic females are inviable 73 

due to unrepaired DNA damage, these observations suggest that enhanced DSB repair in 74 

germline cells could provide tolerance. Alternatively, tolerance could arise by weakening the 75 

connection between DNA damage and germline loss, allowing dysgenic individuals to maintain 76 

gametogenesis but produce gametes with more mutations. For example, overexpression of the 77 

stem cell self-renewal factor myc is associated with suppressed germline loss in dysgenic males 78 

and females, resulting in the production of additional gametes that exhibit more P-element 79 

transpositions (Ota & Kobayashi, 2020). 80 

 81 

Natural variation in hybrid dysgenesis provides another opportunity to study tolerance. In 82 

particular, the degree of dysgenic sterility differs among M-strains, with germline loss being less 83 
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prevalent in the offspring of some maternal genotypes (Anxolabéhère et al., 1988; Ignatenko et 84 

al., 2015; Kelleher et al., 2018; Kidwell, M.G., Frydryck, T., and Novy, J.B., 1983). This suggests 85 

the presence of natural tolerance alleles. Using a panel of highly recombinant inbred lines 86 

(RILs) from the Drosophila Synthetic Population Resource (DSPR, King et al., 2012), we 87 

recently uncovered a natural tolerance allele through quantitative trait locus (QTL) mapping 88 

(Kelleher et al., 2018). We further associated tolerance with reduced expression of bruno, a 89 

female germline differentiation factor whose ectopic expression in stem cells promotes their loss 90 

(Parisi et al., 2001; Wang & Lin, 2007; Xin et al., 2013). We speculated bruno tolerance 91 

potentially arises by desensitizing gametogenesis to DNA damage in a mechanism analogous 92 

to myc overexpression. 93 

 94 

Here we report results from QTL mapping of hybrid dysgenesis in a second, 95 

independent panel of DSPR RILs (Population B, King et al., 2012). We uncovered two QTL 96 

peaks close to the second chromosome centromere that determine tolerance to P-element 97 

activity in young and old females. We further interrogated the tolerance phenotype by 98 

contrasting RNA and small RNA expression between tolerant and sensitive genotypes. Finally, 99 

we combined information about expression differences, RIL genotypes, and QTL positions to 100 

identify novel candidates for natural variation in tolerance. 101 

RESULTS 102 

1. QTL mapping of 2nd chromosome centromere: 103 

 104 

The DSPR RILs are all P-element free M-strains, which were isolated from natural 105 

populations before the P-element invasion (King et al., 2012). We therefore screened for 106 

tolerant alleles among the panel B RIL genomes by crossing RIL females to males from the 107 

reference P-strain Harwich, and examining the morphology of the F1 ovaries (Figure 1a). 108 

Atrophied ovaries are indicative of germline loss resulting from P-element activity, while non-109 

atrophied ovaries are indicative of tolerance (Kelleher et al., 2018; Schaefer et al., 1979). Since 110 

some females exhibit age-dependent recovery from P-element hybrid dysgenesis (Khurana et 111 

al., 2011), we phenotyped F1 females at two developmental time points: 3 days and 21 days 112 

post-eclosion.  113 

Similar to our observations with the Population A RILs (Kelleher et al. 2018), we found 114 

continuous variation in the frequency of ovarian atrophy among dysgenic offspring of different 115 

RIL mothers, indicating genetic variation in tolerance. Based on a combined linear model of F1 116 

atrophy among 3 and 21 day old females, we estimated the broad-sense heritability of tolerance 117 

in our experiment to be ~42.5%. However, the effect of age on the proportion of F1 atrophy was 118 

significant but minimal (𝞦2= 7.03, df = 1, p-value = 0.008) with 3-day-old females showing only 119 

0.7% increase in atrophy as compared to 21-day-old females. Therefore, age-dependent 120 

recovery from dysgenic sterility is not common among the genotypes we sampled. 121 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.441852doi: bioRxiv preprint 

https://paperpile.com/c/0cnDMv/t4X4+WPDb+lsIh+Nkdf
https://paperpile.com/c/0cnDMv/t4X4+WPDb+lsIh+Nkdf
https://paperpile.com/c/0cnDMv/YkBl0/?prefix=DSPR%2C
https://paperpile.com/c/0cnDMv/Nkdf
https://paperpile.com/c/0cnDMv/TcbM+YtNs+n32Wv
https://paperpile.com/c/0cnDMv/YkBl0/?prefix=Population%20B%2C
https://paperpile.com/c/0cnDMv/YkBl0
https://paperpile.com/c/0cnDMv/rB5h+Nkdf
https://doi.org/10.1101/2021.04.30.441852
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

To identify the genomic regions associated with genetic variation in germline tolerance, 122 

we performed QTL analysis using the published RIL genotypes (King et al., 2012). We found a 123 

large QTL peak near the 2nd chromosome centromere in both 3 and 21 day-old F1 females 124 

(Figure 1b, Table 1). However, the intervals of the major QTL peaks, based on the 𝚫2LOD and 125 

Bayes Credible Interval (BCI) methods (Lander & Botstein, 1989; Manichaikul et al., 2006), are 126 

non-overlapping between the 3 and 21 day-old data sets (Figure 1c, Table 1). The major QTL 127 

in 21 day-old females (hereafter, QTL-21d) resides in the euchromatic region and is quite small 128 

(990 kb) compared to the major QTL in 3 day-old females (hereafter QTL-3d), which spans the 129 

centromere and pericentromeric regions (9.6 Mb). Therefore, there are likely at least two 130 

polymorphisms that influence tolerance near the 2nd chromosome centromere, one of which is 131 

more important in young 3-day old females, and the other of which is more important in 21 day-132 

old females.  133 

The presence of two tolerance QTL is further supported by the phenotypic classes we 134 

detected among founder alleles (B1-B8) for each of the QTL peaks (Figure 1e). For QTL-21d, 135 

both B2 and B6 founder alleles are sensitive and greatly increase dysgenic ovarian atrophy, 136 

while all other founder alleles are tolerant. By contrast for QTL-3d, only the B6 founder allele is 137 

associated with increased sensitivity.    138 

 139 

 140 

Figure 1: QTL mapping of variation in P-element tolerance. a) Crossing scheme to 141 

phenotype the variation in tolerance to P-elements among the RILs by screening for ovarian 142 

atrophy in 3 and 21 day-old dysgenic F1 females b) The log of odds (LOD) plot for QTL 143 

mapping of germline tolerance using 3 day-old (orange) and 21 day-old (blue) F1 females. The 144 

dotted line is the LOD threshold and x-axis represents the chromosomal positions. c) Zoomed-in 145 

figure of QTL mapping from 3 days (orange) and 21 days (blue). The colored boxes show the 146 
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𝚫2LOD confidence interval of each QTL, and the pairs of dotted lines indicate the LOD peak 147 

position and the 𝚫2LOD score that determines the interval. The solid horizontal line is the LOD 148 

threshold. d) Cytological map depicting the interval of the two QTL peaks (Bridges, 1935; 149 

Bridges, 1942). e) Graph showing F1 atrophy (y-axis) associated with each of the eight founder 150 

alleles (x-axis) at the QTL peaks. All the QTL peaks show 2 phenotypic classes: a sensitive 151 

(light green) and tolerant (dark green) class. The data used to generate plot in figure b, c, and e 152 

are provided in Supplemental table S3 and S4. 153 

Analysis LOD Score Peak Position 𝚫2LOD CI BCI % variation 

3-day 15.2 2R:6,192,495 

2L:20,710,000- 
2R:7,272,495 

2L:20,820,000- 
2R:6,942,495 11.13 

21-day 10.13 2L:19,420,000 

2L:19,170,000- 
20,080,000 

2L:19,010,000- 
20,000,000 9.78 

Table 1: QTL positions for tolerance in 3 and 21-day old females. The peak position, 154 

𝚫2LOD drop confidence interval (𝚫2LOD CI), and the Bayesian Credible Interval (BCI) in dm6 155 

are provided for each analysis. The data used to identify the LOD peaks and intervals for 3 and 156 

21-day old females can be found in Supplemental table S3 and S4, respectively. 157 

2. Sensitive and tolerant alleles exhibit differential expression 158 

of genes involved in chorion formation and chromatin 159 

packaging. 160 

 161 

Both the QTL regions contain large numbers of protein coding and non-coding RNA 162 

genes, piRNA clusters, and repeats, which could influence tolerance (Figure 1d). To better 163 

understand the tolerance phenotype, we examined differential gene expression between 164 

tolerant and the sensitive QTL alleles. We identified three pairs of nearly isogenic lines (NILs), 165 

which carried either a sensitive (B6) or tolerant (B4) QTL haplotype across the QTL region (dm6 166 

2L:19,010,000-2R:7,272,495) in otherwise similar genetic backgrounds. We then performed 167 

RNA-seq on ovaries of 3-5 day-old females (3 biological replicates). Principal component 168 

analysis (PCA) of read counts reveals two independent axes that resolve sensitive and tolerant 169 

genotypes, which together account for 40% and 16% of variation (Figure 2a). One biological 170 

replicate of RIL 21188 (tolerant) was an outlier, which we excluded from our downstream 171 

analysis of differentially expressed genes.  172 

We found a total of 530 genes differentially expressed between sensitive and tolerant 173 

genotypes (Benjamini-Hochberg adjusted p-value <=0.05, fold-change > 1.5). The most 174 

significantly enriched GO term among genes upregulated in tolerant genotypes is chorion 175 

assembly (Bonferroni corrected P value <0.01, Figure 2b, Supplemental table S7: full report). 176 
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Indeed, all of the major chorion genes were found to be significantly upregulated in the tolerant 177 

genotypes (Figure 2c, Tootle et al. 2011; Kim et al. 2011). It is unlikely that chorion assembly 178 

impacts dysgenic ovarian atrophy, since chorion synthesis occurs in late-stage oocytes (stages 179 

10B-14, G. L. Waring, 2000), whereas atrophy results from the loss of larval primordial germline 180 

cells and subsequent germline stem cells (GSCs) (Dorogova et al., 2017; Ota & Kobayashi, 181 

2020; Tasnim & Kelleher, 2018; Teixeira et al., 2017). However, chorion genes reside in clusters 182 

that undergo amplification (Claycomb et al., 2004; Spradling, 1981), a process that relies on the 183 

efficient repair of DSBs at the boundaries of an amplified region (Alexander et al., 2015). 184 

Therefore, upregulation of chorion genes in tolerant genotypes could indicate more efficient 185 

DSB repair, which might off-set the impact of P-element transposition.  186 

 187 

Genes upregulated in the sensitive genotypes are enriched for functions in chromatin 188 

assembly and transcription, cell division, and translation. A careful inspection of genes 189 

underlying these enriched terms reveals that with the exception of translation, they are majorly 190 

driven by the increased expression of replication-dependent (RD) histone gene copies (Figure 191 

2d). Overexpression of RD histones is associated with increased sensitivity to DNA damage in 192 

yeast (Gunjan & Verreault, 2003; Liang et al., 2012), mice (Murga et al., 2007) and Drosophila 193 

(Landais et al., 2014; Ozawa et al., 2016). Therefore, histone upregulation exhibited by sensitive 194 

alleles may reduce their tolerance to genotoxic stress resulting from P-element activity. Notably, 195 

the expression of both histone and chorion genes are increased in late oogenesis  (Ambrosio & 196 

Schedl, 1985; Potter-Birriel et al., 2020; Ruddell & Jacobs-Lorena, 1985; Gail L. Waring, 2000), 197 

meaning that their inverted differential expression between sensitive and tolerant genotypes 198 

cannot be explained by differential abundance of late stage oocytes.  199 

 200 

   The D. melanogaster histone gene cluster is located the pericentromeric region of QTL-201 

3d and consists of ~100 copies of a 5-kb cluster containing each of the 5 RD histones (his1, 202 

his2A, his2B, his3 and his4). However, the differential regulation of histones is unlikely to reflect 203 

the presence of a cis-regulatory variant within the QTL, since the histone gene cluster is exhibits 204 

coordinated and dosage compensated regulation in a unique nuclear body called the histone 205 

locus body (HLB; McKay et al., 2015). Rather, we postulated that sensitive and tolerant alleles 206 

may differ in heterochromatin formation, since many negative regulators of histone gene 207 

transcription are also suppressors of position effect variegation (Su(var), Ner et al., 2002) 208 

(Ozawa et al., 2016). In support of this model, sensitive (B6) genotypes exhibit increased 209 

expression of pericentromeric genes, as well as genes on the heterochromatic 4th chromosome 210 

(Figure 2e). We also discovered increased expression of pericentromeric genes associated with 211 

the B6 haplotype in a previously published microarray dataset from head tissue (King et al., 212 

2014, Supplemental figure S1), suggesting B6 is unusual among the founder alleles in 213 

exhibiting reduced heterochromatin formation. 214 

 215 
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 216 
 217 

Figure 2: Tolerance is associated with upregulated chorion proteins, whereas sensitivity 218 

is associated with upregulated replication-dependent histones. a) PCA analysis of gene 219 

expression data of S/sensitive and T/ tolerant genotypes. Members of the same NIL pair are 220 

represented by the same shape. b) GO terms enriched among genes upregulated in tolerant 221 

and sensitive genotypes. c) Log2 fold change increase in expression in tolerant genotypes for 222 

chorion genes residing in the four amplicons (Drosophila Amplicons in Follicle Cells, DAFCs) as 223 

well as outside amplicons (Kim et al., 2011; Tootle et al., 2011). d) Log2 fold change increase in 224 

RD histone expression in sensitive genotypes. e). Probability density plot of log2 fold change 225 

values for all euchromatic (blue), pericentromeric (red), telomeric (green) genes and 4th 226 

chromosome (gray) between strains carrying sensitive and tolerant alleles. The mean of each 227 

distribution is represented by a dotted line. Sensitive genotypes display significantly higher 228 

expression of pericentromeric genes (two-sample t-test, t141= -9.32, p-value = 2.335e-16) and 229 

4th chromosome genes (two-sample t-test, t53 = -4.56, p-value = 3.014e-05) when compared to 230 

euchromatic genes. For e) the x-axis boundaries were confined from (-1.5 to 2) for a better 231 

visualization. The pericentromere-euchromatin boundaries were drawn from (Hoskins et al., 232 

2015; Riddle et al., 2011) and subtelomeric-euchromatin boundary coordinates from (Karpen & 233 
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Spradling, 1992; Walter et al., 1995; Yin & Lin, 2007). The data represented in panel a is 234 

provided in Supplemental table S14 and plot in panel c, d, and e in Supplemental table S5). 235 

3. piRNA clusters in QTL-3d exhibit differential activity that 236 

does not translate to TE deregulation. 237 

The pericentromeric region is rich in piRNA clusters, and the QTL-3d region itself 238 

harbors 78 piRNA clusters. Particularly, the major piRNA cluster, 42AB, lies very close (~65kb 239 

distal) to the QTL-3d peak position. Although the RIL mothers do not produce or transmit P-240 

element-derived piRNAs, the D. melanogaster genome harbors more than 100 distinct resident 241 

TE families (Kaminker et al., 2002; Quesneville et al., 2005) that are also regulated by piRNAs 242 

(Brennecke et al., 2007). If sensitive alleles of piRNA clusters within QTL-3d exhibit reduced 243 

silencing of resident (non P-element) TEs, resulting transposition could enhance genomic 244 

instability triggered by P-element activity. We therefore evaluated whether tolerant and sensitive 245 

alleles differ in the activity of piRNA clusters using small RNA-seq. A PCA of piRNA cluster 246 

expression reveals that sensitive and tolerant genotypes are resolved by the second principal 247 

component, accounting for 22% variation in expression (Figure 3a).  248 

We did not find evidence that QTL-3d is explained by the differential activity of piRNA 249 

cluster 42AB, as sensitive and tolerant genotypes exhibited comparable piRNA abundances 250 

from this locus. Similarly, piRNA abundance from other major piRNA clusters outside the QTL 251 

do not differ between sensitive and tolerant alleles (Figure 3b). However, we discovered two 252 

small pericentromeric piRNA clusters located within QTL-3d that were active in tolerant 253 

genotypes but largely quiescent in sensitive genotypes (Figure 3b, c and d; Supplemental 254 

figure S2-3). While these piRNA clusters contain no annotated TE insertions in the reference 255 

genome (dm6), Repbase Censor (Kohany et al., 2006) reveals they are largely composed of TE 256 

fragments. The majority (~77%) of these TE fragments are relatively divergent from the 257 

consensus (0.65-0.95 sequence similarity; Supplemental table S9), and are often most similar 258 

to consensus TEs from other (non-melanogaster) Drosophila species. Given that 259 

transpositionally active TE families are often highly similar to the consensus sequence 260 

(Bergman & Bensasson, 2007), and piRNA silencing is disrupted by mismatches between the 261 

piRNA and its target (Post et al., 2014), this suggests that the differential activity of these two 262 

piRNA clusters is unlikely to impact the expression of transpositionally active TEs.   263 

 To further evaluate if differences in tolerance are related to resident TE regulation, we 264 

compared resident TE expression between sensitive and tolerant genotypes in our RNA-seq 265 

data. None of the TE families represented in the QTL piRNA clusters were upregulated in 266 

sensitive genotypes (Figure 3e). Furthermore, while some TE families are differentially 267 

expressed, there is no systematic increase in TE activity in the sensitive genotypes. Rather, 268 

more TE families are upregulated in tolerant genotypes (13 TEs) when compared to sensitive (4 269 

TEs) genotypes. Therefore, despite the conspicuous position of QTL-3d surrounding piRNA 270 

producing-regions, as well as evidence for differential heterochromatin formation that could 271 

impact piRNA biogenesis (Figure 2b and e), we find no evidence that tolerance is determined 272 

by resident TE silencing.  273 
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 274 

Figure 3: Tolerance is not determined by differential activity of piRNA cluster or TE 275 

deregulation. a) PCA analysis for piRNA cluster expression data of S/sensitive and T/ tolerant 276 

genotypes. The NIL pairs are represented by the same shapes. b) Heat map showing the 277 

expression of seven piRNA clusters. NIL pairs that are compared are plotted adjacent to each 278 

other. c and d represent the piRNA expression between sensitive and tolerant genotypes from 279 

one of the NIL pairs along the two QTL piRNA clusters: 2L:23,328,000-23,337,026 and 280 

2L:23,222,004-23,246,024, respectively. Only uniquely mapping piRNAs are considered. The 281 

TE families at the top of each figure are represented by different colors. TE-others represent the 282 

repeat families coming from sibling species of D. melanogaster. Positive value indicates piRNAs 283 
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mapped to the sense strand of the reference genome and negative value indicates those from 284 

the antisense strand. See Supplemental figure S2-3 for cluster expression in the remaining 285 

NIL pair. For b, c and d, piRNA cluster expression levels are estimated by log2 scale 286 

transformed of reads per million mapped reads [log2(RPM+1)]. e) Bar graph depicting 287 

differentially expressed TEs (fold change = 1.5, base mean >= 100, adjusted p-value <= 0.05) 288 

between sensitive and tolerant genotypes. The data used to plot panel a is provided in 289 

Supplemental table S15, for panel b in Supplemental table S8, for panel c and d in 290 

Supplemental table S16 and S9, and for panel e in Supplemental table S10) 291 

4. Identifying candidate genes influencing tolerance  292 

In the absence of an obvious role for piRNA clusters within the QTL in determining 293 

tolerance, we sought to identify candidate genes that explain the associated phenotypes. We 294 

first identified “in-phase” single nucleotide polymorphisms (SNPs), where the genotypic 295 

differences among the founder alleles are consistent with their tolerance phenotypes (Figure 296 

4b, Long et al., 2014). We identified 64 and 258 genes with in-phase SNPs in QTL-21d and 3d, 297 

respectively. These polymorphisms potentially impact either gene expression—by residing 298 

within the regulatory/intron region—or affect the activity of the encoded protein through non-299 

synonymous mutations (Supplemental table S11, S12, and S13).  300 

To further narrow down the candidates, we similarly identified differentially expressed 301 

genes with the QTL. Of 530 genes differentially expressed (Figure 4a), 43 are within the QTL, 302 

representing an approximately five-fold enrichment in the QTL regions compared to the rest of 303 

the genome (Pearson’s Chi-squared test, X-squared = 255.54, df = 1, p-value < 2.2e-16, Figure 304 

4a). Ultimately, we identified 5 and 14 differentially expressed genes that also carry in-phase 305 

SNPs within the QTL-21d and 3d, respectively (Figure 4c and d; Supplemental table 12). 306 

These genes, along with those carrying non-synonymous in-phase SNPs, make up the 307 

strongest candidate genes influencing tolerance (Figure 2b; Supplemental table 13). 308 

We next scoured our list of candidate genes for those with known functions in 309 

heterochromatin formation and DNA damage response, whose differential function or regulation 310 

are plausibly related to gene expression differences associated with sensitive and tolerant 311 

alleles. We similarly looked for genes with known functions in germ cell maintenance or 312 

differentiation, which is a critical determinant of the dysgenic phenotype (Ma et al., 2017; Rojas-313 

Ríos et al., 2017; Tasnim & Kelleher, 2018). We found only candidate two genes: brat within 314 

QTL-21d and Nipped-A within QTL-3d, that have functions in determining germ cell fate (Harris 315 

et al., 2011; McCarthy et al., 2018). Interestingly, Nipped-A is a member of the Tat interacting 316 

protein 60 kD (TIP60) complex, which has additional roles in DSB repair and heterochromatin 317 

formation (Hanai et al., 2008; Qi et al., 2006; Ruhf et al., 2001; Sinclair et al., 1998). Moreover, 318 

we found four other members and interactors of TIP60 complexes that are also upregulated in 319 

tolerant genotypes (dRSF-1/CG8677, dom, E(Pc) & DMAP1) (Hanai et al., 2008; Kusch et al., 320 
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2004), and one that is upregulated in sensitive (yeti) (Messina et al., 2014). Of these, yeti and 321 

dRSF-1 are also located in QTL-3d. 322 

 323 

 324 

 325 
Figure 4: Differential expression and in-phase SNPs identify candidate genes that 326 

determine tolerance. a) Bar graph showing enrichment of differentially expressed genes in 327 

QTL. The dotted line is the genome wide average. b) Schematics representing the in-phase and 328 

out of phase SNPs, where each row represents the genotype of the eight B founder strains and 329 

the letters in bold indicates SNP alleles. The founders are colored based on their phenotypic 330 

classification, either tolerant or sensitive (Figure 1e). c and d) Venn diagram showing the 331 

overlap of differentially expressed genes (DEG) and genes carrying in-phase SNPs for QTL-21d 332 

and QTL-3d, respectively. The number within the brackets indicates the genes carrying non-333 

synonymous in-phase SNPs. The data for differential expression of genes for tolerant and 334 

sensitive genotypes is provided in Supplemental table S5. The data on in-phase 335 

polymorphisms for each QTL peak are provided in Supplemental table S11. List of candidate 336 
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genes that have both in-phase polymorphisms and are differentially expressed, and those 337 

having non-synonymous in-phase polymorphisms are provided in Supplemental table S12 and 338 

S13, respectively. 339 

 340 

 341 

 342 
 343 

Figure 5: A model of TE tolerance in Population B RILs. brat and the TIP60 complex 344 

(containing Nipped-A) are proposed to determine TE tolerance through the modulation of Myc-345 

dependent stem cell self-renewal or DSB repair (TIP60 only).  346 

 347 
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Discussion 348 

 349 

Although small RNA mediated TE regulation is widely studied, little is known about 350 

cellular and molecular mechanisms that confer tolerance to transposition. Here we uncovered 351 

natural variation in tolerance to P-element DNA transposons, which is associated with two or 352 

more loci proximal to the second chromosome centromere in D. melanogaster. We further 353 

showed that tolerant and sensitive genotypes may differ in their ability to form heterochromatin 354 

and enact DNA repair, explaining their differential responses to P-element transposition. Finally, 355 

we identified candidate genes in each QTL that potentially determine the phenotypic differences 356 

between tolerant and sensitive alleles. Nipped-A, located in QTL-3d, is a member of TIP60 357 

complex and has a non-synonymous in-phase SNP that could alter the activity of encoded 358 

protein. By contrast, brat, located in QTL-21d, has in-phase SNPs in its intronic and 359 

downstream regulatory regions, and is upregulated in the tolerant genotypes.  360 

 361 

Nipped-A (QTL-3d) could influence tolerance by promoting the maintenance of larval 362 

PGCs or early adult GSCs, which are destabilized by DNA damage (Ma et al., 2016; Ota & 363 

Kobayashi, 2020). Nipped-A is required for female germ cell maintenance (Yan et al., 2014), as 364 

well as maintenance of larval neuroblasts and adult intestinal and male germline stem cells 365 

(Prado et al., 2013; Rust et al., 2018; Tauc et al., 2017). While the functional consequences of 366 

the non-synonymous SNP that separates tolerant and sensitive Nipped-A alleles is not clear, 367 

the upregulation of four other TIP60 members (dRSF-1, dom, E(Pc) & DMAP1) suggests 368 

increased activity in the tolerant genotypes (Supplemental table S6). Reduced expression of 369 

pericentromeric genes in tolerant strains also suggests increased TIP60 activity, since TIP60 is 370 

involved in heterochromatin formation (Hanai et al., 2008; Qi et al., 2006; Ruhf et al., 2001; 371 

Sinclair et al., 1998).  372 

 373 

While the specific function of TIP60 in female germ cell maintenance is not clear, TIP60 374 

is a conserved interactor of Myc: a transcription factor with diverse and well-studied roles in 375 

tumorigenesis, cell growth and proliferation, cell competition and apoptosis (reviewed in Gallant, 376 

2013; Grifoni & Bellosta, 2015). In larval neuroblasts, TIP60 and Myc coregulate downstream 377 

targets that promote stem cell self-renewal (Rust et al., 2018). Similarly, myc overexpression 378 

confers tolerance in dysgenic larval gonads by suppressing primordial germ cell (PGC) loss 379 

(Ota & Kobayashi, 2020). Thus, increased TIP60 function in tolerant genotypes may activate 380 

myc-dependent tolerance in larvae. 381 

 382 

Interestingly, brat (QTL 21d) is a translational repressor of myc that is upregulated in 383 

tolerant ovaries (Supplemental figure S5 and S12). Conversely, increased expression of 384 

translational machinery suggests increased Myc activity in sensitive ovaries as ribosomal 385 

proteins are conserved downstream targets of Myc (Figure 2B; Orian et al., 2003). Our data 386 

therefore, point to an association between reduced Myc activity and tolerance in adult stages. 387 

While puzzling, the impact of Myc activity on cellular persistence is context and cell type 388 

specific. For example, reduced Myc activity confers robustness to X-ray induced apoptosis in 389 

larval eye imaginal discs, while Myc overexpression in the same tissue induces apoptosis 390 
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(Montero et al., 2008). Therefore, the modulation of Myc function over the course of 391 

development may be a critical determinant of tolerance, with TIP60-dependent regulation of 392 

self-renewal factors increasing tolerance in PGCs, while other Myc targets may decrease 393 

tolerance in adults (Figure 5). Exploring potential interactions between TIP60, Myc and Brat in 394 

determining tolerance presents an enticing avenue for future work. 395 

 396 

In addition to promoting germ cell maintenance, Nipped-A might also influence tolerance 397 

by facilitating repair of DSBs in PGCs or GSCs. The TIP60 complex has a conserved function in 398 

DSB repair (Kusch et al., 2004; Sun et al., 2009), and Nipped-A in particular promotes the 399 

proliferation of intestinal stem cells after DNA damage (Tauc et al., 2017). By contrast, histone 400 

upregulation in the sensitive genotypes—which potentially results from reduced TIP60-401 

dependent heterochromatin formation—could inhibit DNA repair. Surplus RD histones are 402 

proposed to interfere with DNA-repair machinery, and are considered genotoxic outside of S-403 

phase (Kumar et al., 2020; Landais et al., 2014; Liang et al., 2012). Enhanced repair in tolerant 404 

genotypes is further supported by the increased expression of chorion genes, since chorion 405 

gene amplification during oogenesis is dependent upon DSB repair (Alexander, Barrasa & Orr-406 

Weaver 2015).  407 

 408 

In summary, our work suggests that tolerance to transposition may have a complex 409 

architecture, including both the concurrent modulation of Myc-dependent stem cell self renewal 410 

and stem cell loss, and the enhanced repair of DSBs. This complexity contrasts our previous 411 

study of natural variation in the population A RILs of the DSPR, which uncovered a major effect 412 

of the expression of a single differentiation factor, bruno, on tolerance (Kelleher et al., 2018). 413 

Furthermore, while DNA damage signaling is a clear determinant of dysgenic germ cell loss 414 

(Dorogova et al., 2017; Moon et al., 2018; Tasnim & Kelleher, 2018), the potential for natural 415 

variation DNA repair to offset the mutagenic effects of transposition has never been evaluated. 416 

Our observations therefore point to multiple new mechanisms through which cells could 417 

withstand the genotoxic effects of unregulated transposition.  418 

Methods 419 

 420 

Drosophila Strains and Husbandry. The recombinant inbred lines (RILs) were generously 421 

provided by Stuart Macdonald. Harwich (#4264) was obtained from the Bloomington Drosophila 422 

stock center.  All flies were maintained in standard cornmeal media.  423 

  424 

Phenotyping. Phenotyping was performed as described previously in Kelleher et al (2018). 425 

Briefly, crosses between virgin RIL females and Harwich males were transferred to fresh food 426 

every 3-5 days. Since crosses reared at a restrictive temperature (29 oC) result in complete 427 

gonadal atrophy in F1 offspring, we reared our crosses at a lower permissive temperature (25 428 
oC), which produces an intermediate phenotype that better reveals the variation in severity of 429 

dysgenesis (Dorogova et al., 2017; Kelleher et al., 2018; Kidwell et al., 1977; Srivastav & 430 

Kelleher, 2017). F1 offspring were maintained for 3 days or 21 days, at which point their ovaries 431 

were examined using a squash prep (Srivastav & Kelleher, 2017). 21 day- old females were 432 
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transferred onto new food every 5 days as they aged to avoid bacterial growth. Females who 433 

produced 1 or more chorionated egg chambers were scored as having non-atrophied ovaries, 434 

and females producing 0 egg chambers were scored as having atrophied ovaries. 435 

Crosses and phenotyping were performed for 673 RILs across 22 experimental blocks 436 

for 3 day-old F1 females, and 552 RILs across 18 experimental blocks for 21 day-old F1 437 

females. If fewer than 21 F1 offspring were phenotyped for the same cross, it was discarded 438 

and repeated if possible. In total, we phenotyped >20 3-day old and 21 day-old F1 female 439 

offspring for 595 RILs and 456 RILs, respectively. 440 

  441 

QTL mapping. QTL mapping was performed as described in Kelleher et al. (2018). Briefly, for 442 

each developmental time point, we modeled the arcsine transformed proportion of F1 ovarian 443 

atrophy as a function of two random effects: experimental block and undergraduate 444 

experimenter. Regression models were fit using the lmer function from the lme4 package (Bates 445 

et al., 2015). We then used the residuals as a response for QTL mapping using the DSPRqtl 446 

package (King et al., 2012) in R 3.02 (Team & TRDC, 2008). The LOD significance threshold 447 

was determined from 1,000 permutations of the observed data, and the confidence interval 448 

around each LOD peak was identified by a difference of  -2 from the LOD peak position (𝚫2-449 

LOD), or from the Bayes Confidence Interval (Manichaikul et al., 2006). For 𝚫2-LOD intervals, 450 

we took the conservative approach of determining the longest contiguous interval where the 451 

LOD score was within 2 of the peak value. We further calculated the broad sense heritability of 452 

ovarian atrophy as in Kelleher et al. (2018). 453 

  454 

Estimation of Founder Phenotypes and QTL phasing. To estimate the phenotypic effect 455 

associated with each founder allele at the QTL peak, we considered the distribution of 456 

phenotypes from all RILs carrying the founder haplotype at the LOD peak position (genotype 457 

probability >0.95%) (King et al., 2012). QTL were then phased into allelic classes by identifying 458 

the minimal number of partitions of founder haplotypes that describes phenotypic variation 459 

associated with the QTL peak, as described previously (Kelleher et al., 2018; King et al., 2012).  460 

 461 

Identification of in-phase polymorphisms. The SNP data of B founders that used to infer in-462 

phase SNPs is based on dm3 (King et al., 2012). To identify in-phase SNPs we looked for 463 

alternate SNP alleles that match the predicted phenotypic class for each of the QTL peaks. For 464 

QTL-21d we used the criteria: sensitive class (B2, B6) and the tolerant class (B1, B3, B4, B7, 465 

B8), whereas for QTL-3d: sensitive class (B6) and the tolerant class (B1, B2, B3, B4, B7, B8). 466 

 467 

Selection of paired RILs with alternate QTL alleles. We identified background matched RILs 468 

containing either the B6 (“sensitive”) or B4 (“tolerant”) haplotypes from the start position of the 469 

QTL-21d confidence interval (2L: 19,010,000) to the end position of QTL-3d confidence interval 470 

(2R: 6,942,495) (P > 0.9), based on their published HMM genotypes (King et al., 2012). For all 471 

possible RIL pairs (B6 and B4), we then calculated the number of 10 Kb genomic windows in 472 

which they carried the same RIL haplotype (P < 0.9). We selected three pairs of RILs, which 473 

carry the same founder genotype for 47% (21213 & 21183), 46% (21147 & 21346) and 44% 474 

(21291 & 21188) of genomic windows outside of the QTL. 475 

  476 
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Small RNA-seq and total RNA-seq. RILs were maintained at 25°C, and three biological 477 

replicates of 20 ovaries were dissected from 3-5 day old females.  Ovaries were homogenized 478 

in TRIzol and stored at -80°C until RNA extraction. 50 μg of total RNA from each of 18 biological 479 

samples (3 biological replicates x 3 pairs) was size fractionated in a 15% denaturing 480 

polyacrylamide gel and the 18-30 nt band was excised. 2S-depleted small RNA libraries for 481 

Illumina sequencing were then constructed according to the method of Wickersheim and 482 

Blumenstiel (2013). Ovarian small RNA libraries were published previously (SRP160954, Zhang 483 

& Kelleher, 2019). Ribodepleted and stranded total RNA libraries were generated from the same 484 

ovarian samples using NuGen total RNA kit (TECAN). All 18 small RNA and total RNA libraries 485 

were sequenced on an Illumina Nextseq 500 at the University of Houston Seq-N-Edit Core. 486 

  487 

Small-RNA analysis. Sequenced small RNAs were separated based on size into 488 

miRNAs/siRNAs (18-22nt) and piRNAS (23-30nt) (Brennecke et al., 2008). Reads 489 

corresponding to contaminating rRNAs, including 2S-rRNA, were removed from each library by 490 

aligning to annotated transcripts from flybase (Gramates et al., 2017). To determine the piRNA 491 

cluster activity we first uniquely aligned the piRNAs to reference genome (dm6) using Bowtie2 (-492 

v 1 -m 1) (Langmead & Salzberg, 2012). We then used a customized perl script to count reads 493 

that mapped to a set of previously annotated piRNA clusters from the same genotypes (497 494 

piRNA clusters, Zhang et al., 2020) Read counts normalized to total mapped microRNAs for 495 

each library were used to infer differential expression using DESeq2 (Love et al., 2014) Sliding 496 

window estimates of piRNA abundance (Figure 2C,D) were calculated using bedtools 497 

genomecov (Quinlan, 2014), normalizing the read counts to total mapped miRNA reads.  498 

 499 

Total RNA analysis. Residual ribosomal RNAs (rRNAs) were identified in ribodepleted libraries 500 

based on alignment to annotated rRNAs from flybase (Gramates et al., 2017), and excluded 501 

from further analysis. Retained reads aligned to the library of consensus satellite and TE 502 

sequences from repbase (Bao et al., 2015), plus additional satellite consensus sequences from 503 

Larracuente (2014).  For TE expression, the total reads mapped to TE sequences were counted 504 

using awk commands.  Remaining reads that failed to map were aligned to D. melanogaster 505 

transcriptome (dm6/BDGP6) using Kallisto with default parameters (Bray et al., 2016). 506 

Differentially expressed TEs and genes were identified from a combined analysis in DESeq2 507 

(Love et al., 2014). Genes and TEs with base mean >= 100, Adjusted P-value <= 0.05 and 508 

whose expression pattern differed (fold change >= 1.5) were considered differentially expressed 509 

between the B6 and B4 QTL haplotype.  510 
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