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Abstract 25 

The recent emergence of divergent SARS-CoV-2 lineages has raised concerns about the role of 26 

selection within individual hosts in propagating novel variants. Of particular concern are variants 27 

associated with immune escape and/or enhanced transmissibility. Though growing evidence 28 

suggests that novel variants can arise during prolonged infections, most infections are acute. 29 

Understanding the extent to which variants emerge and transmit among acutely infected hosts 30 

is therefore critical for predicting the pace at which variants resistant to vaccines or conferring 31 

increased transmissibility might emerge in the majority of SARS-CoV-2 infections. To 32 

characterize how within-host diversity is generated and propagated, we combine extensive 33 

laboratory and bioinformatic controls with metrics of within- and between-host diversity to 133 34 

SARS-CoV-2 genomes from acutely infected individuals. We find that within-host diversity 35 

during acute infection is low and transmission bottlenecks are narrow, with very few viruses 36 

founding most infections. Within-host variants are rarely transmitted, even among individuals 37 

within the same household. Accordingly, we also find that within-host variants are rarely 38 
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detected along phylogenetically linked infections in the broader community. Together, these 39 

findings suggest that efficient selection and transmission of novel SARS-CoV-2 variants is 40 

unlikely during typical, acute infection.  41 

Introduction 42 

The recent emergence of variants of concern has spurred uncertainty about how severe acute 43 

respiratory coronavirus 2 (SARS-CoV-2) will evolve in the longer term. SARS-CoV-2 acquires a 44 

fixed consensus mutation approximately every 11 days as it replicates in a population (1). 45 

Recently, however, lineages of SARS-CoV-2 have arisen harboring more variants than 46 

expected based on this clock rate, with some variants conferring enhanced transmissibility 47 

and/or antibody escape (2, 3). The emergence of these lineages has raised concern that SARS-48 

CoV-2 may rapidly evolve to evade vaccine-induced immunity, and that vaccines may need to 49 

be frequently updated. A current leading hypothesis posits that these lineages may have 50 

emerged during prolonged infections. Under this hypothesis, longer infection times, coupled with 51 

antibody selection (4), may allow more time for novel mutations to be generated and selected 52 

before transmission. Studies of SARS-CoV-2 (4–8) and other viruses (9, 10) support this 53 

hypothesis. Longitudinal sequencing of SARS-CoV-2 from immunocompromised or persistently 54 

infected individuals accordingly reveals an accumulation of single-nucleotide variants (iSNVs) 55 

and short insertions and deletions (indels) during infection (4–6, 11). In influenza virus and 56 

norovirus infections, variants that arose in immunocompromised patients were later detected 57 

globally, suggesting that long-term infections may mirror global evolutionary dynamics (9, 12). 58 

Mutations defining novel variant lineages resulting in enhanced transmissibility and/or immune 59 

escape in SARS-CoV-2 Spike, like ∆69/70, N501Y and E484K, have already been documented 60 

arising in persistently infected and immunocompromised individuals (4, 5).  61 
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While prolonged infections occur, the vast majority of SARS-CoV-2 infections are acute (13). 62 

Viral evolutionary capacity is limited by the duration of infection (14), and it is not yet clear 63 

whether the evolutionary patterns observed during prolonged SARS-CoV-2 infections also occur 64 

in acutely infected individuals. Replication-competent virus has rarely been recovered from 65 

individuals with mild to moderate coronavirus disease 2019 (COVID-19) beyond ~10 days 66 

following symptom onset (15, 16). Multiple studies of influenza viruses show that immune 67 

escape variants are rarely detected during acute infection, even within vaccinated individuals 68 

(17–19). Detailed modeling of influenza dynamics suggests that the likelihood of within-host 69 

mutation emergence depends on the interplay of immune response timing, the de-novo 70 

mutation rate, and the number of virus particles transmitted between hosts (14). Understanding 71 

the speed with which SARS-CoV-2 viruses acquire novel mutations that may escape population 72 

immunity will be critical for formulating future vaccine updates. If novel immune-escape variants 73 

emerge primarily within long-term infections, then managing long-term infections in an effort to 74 

reduce any onward transmission may be critically important. Conversely, if novel variants are 75 

efficiently selected and transmitted during acute infections, then vaccine updates may need to 76 

occur frequently.  77 

While understanding the process of variant generation and transmission is critically important, a 78 

clear consensus on how frequently variants are shared and transmitted between individuals has 79 

been elusive. Estimates of SARS-CoV-2 diversity within hosts have been highly variable, and 80 

comparing results among labs has been complicated by sensitivity to variant-calling thresholds 81 

and inconsistent laboratory controls (20–23). Some data suggest that SARS-CoV-2 genetic 82 

diversity within individual hosts during acute infections is limited (20, 24) and shaped by genetic 83 

drift and purifying selection (21, 25–27). Estimates of the size of SARS-CoV-2 transmission 84 

bottlenecks (21, 28, 29) have ranged considerably, and recent validation work has shown that 85 

estimates of within-host diversity and transmission bottleneck sizes are highly sensitive to 86 
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sequencing protocols and data analysis parameters, like the frequency cutoff used to 87 

define/identify within-host variants (20, 30). Clarifying the extent to which within-host variants 88 

arise and transmit among acutely infected individuals, while controlling for potential error, will be 89 

critical for assessing the speed at which SARS-CoV-2 evolves and adapts. 90 

To characterize how within-host variants are generated and propagated, we employ extensive 91 

laboratory and bioinformatic controls to characterize 133 SARS-CoV-2 samples collected from 92 

acutely-infected individuals in Wisconsin, United States. By comparing patterns of intrahost 93 

single nucleotide variants (iSNVs) to densely-sampled consensus genomes from the same 94 

geographic area, we paint a clear picture of how variants emerge and transmit within 95 

communities and households. We find that overall within-host diversity is low during acute 96 

infection, and that iSNVs detected within hosts almost never become dominant in later-sampled 97 

sequences. We find that iSNVs are infrequently transmitted, even between members of the 98 

same household, and we estimate that transmission bottlenecks between putative household 99 

pairs are narrow. This suggests that most iSNVs are transient and very rarely transmit beyond 100 

the individual in which they have originated. Our results imply that during typical, acute SARS-101 

CoV-2 infections, the combination of limited intrahost genetic diversity and narrow transmission 102 

bottlenecks may slow the pace by which novel variants arise, are selected, and transmit 103 

onward. Finally, most individual infections likely play a minor role in SARS-CoV-2 evolution, 104 

consistent with the hypothesis that novel variants are more likely to arise in rare instances of 105 

prolonged infection.  106 
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Results 107 

Within-host variation is limited and sensitive to iSNV-calling 108 

parameters  109 

Viral sequence data provide rich information about how variants emerge within, and transmit 110 

beyond, individual hosts. Viral nucleotide variation generated during infection provides the raw 111 

material upon which selection can act. However, viral sequence data are sensitive to multiple 112 

sources of error (20, 22, 23), which has obscured easy comparison among existing studies of 113 

SARS-CoV-2 within-host evolution. Here, we take several steps to minimize sources of error 114 

and to assess the robustness of our results against variable within-host single nucleotide variant 115 

(iSNV)-calling parameters.   116 

 117 

First, we identified spurious iSNVs introduced by our library preparation pipeline by sequencing 118 

in duplicate a clonal, synthetic RNA transcript identical to our reference genome (MN90847.3). 119 

We considered only variants found in both technical replicates, which we refer to as 120 

“intersection iSNVs”. We detected 7 intersection iSNVs at ≥1% frequency (Supplemental Table 121 

1); 2 of these were previously identified by a similar experiment in Valesano et al. (20). We 122 

excluded all 7 of these iSNVs from downstream analyses. To exclude laboratory contamination, 123 

we sequenced a no-template control (water) with each large sequencing batch and confirmed 124 

that these negative controls contained <10x coverage across the SARS-CoV-2 genome 125 

(Supplemental Figure 1, Supplemental Figure 2). To ensure that spurious variants were not 126 

introduced by our bioinformatic pipelines, we validated our iSNV calls using a second pipeline 127 

which employs distinct trimming, mapping, and variant calling softwares. We found near-128 
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equivalence between the two pipelines’ iSNV calls (R2=0.998; Supplemental Figure 3a), 129 

providing additional independent support for our bioinformatic pipeline to accurately call iSNVs.  130 

 131 

Viral iSNV calls are also sensitive to the variant-calling threshold (i.e., a minimum frequency at 132 

which iSNVs must occur to be considered non-artefactual) applied (22) and the number of viral 133 

input copies. Work by Grubaugh et al. (31) showed highly accurate iSNV calls with tiled 134 

amplicon sequencing using technical replicates and a 3% frequency threshold. Consistent with 135 

this observation, we observed a near-linear correlation between iSNVs called in each replicate 136 

at a 3% frequency threshold (R2=0.992) (Figure 1a). Unsurprisingly, we find the proportion of 137 

intersection iSNVs compared to all iSNVs within a given sample increases as the frequency 138 

threshold increases (Supplemental Figure 3b). Additionally, the majority of iSNVs detected in 139 

our clonal RNA controls occur <3% frequency (Supplemental Figure 3c).  140 

 141 

Consistent with previous studies, we observed a negative correlation between Ct and the 142 

overlap in variants between replicates such that high-Ct (i.e., low vRNA copy number) samples 143 

had fewer intersection iSNVs called in each replicate (Figure 1b) (22, 31). Although we do not 144 

have access to absolute quantification for viral input copies for our sampleset, we can use 145 

results of semi-quantitative clinical assays on the sequenced specimens as a proxy for viral 146 

RNA (vRNA) concentration. Using input data from two different clinical assay platforms, we find 147 

no correlation between viral input copies and the number of intersection iSNVs detected 148 

(Supplemental Figure 3d and Supplemental Figure 3e).  149 

 150 

Based on these observations, we chose to use a 3% iSNV frequency cutoff for all downstream 151 

analyses, and report only iSNVs that were detected in both technical replicates, at a frequency 152 

≥3%. Using these criteria, we found limited SARS-CoV-2 genetic diversity in most infected 153 

individuals: 22 out of 133 samples did not harbor even a single intersection iSNV at ≥3% 154 
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frequency. Among the 111 samples that did harbor within-host variation, the average number of 155 

iSNVs per sample was 3.5 (median=3, range=1-11) (Figure 1c). Most iSNVs were detected at 156 

<10% frequency (Figure 1d). Compared to expectations under a neutral model, every type of 157 

mutation we evaluated (synonymous, nonsynonymous, intergenic region, and stop) was present 158 

in excess at low frequencies, consistent with purifying selection or population expansion within 159 

the host (Figure 1d). Taken together, our results confirm that the number of iSNVs detected 160 

within-host are dependent on variant-calling criteria. Once rigorous laboratory and bioinformatic 161 

controls are applied, we find that most infections are characterized by very few iSNVs, and 162 

primarily low-frequency variants.  163 

164 

Figure 1: Within host variation is limited after data quality control  165 

a. iSNV frequencies in replicate 1 are shown on the x-axis and frequencies in replicate 2 are shown on y-166 

axis. The yellow box highlights low-frequency iSNVs (3-15%), which is expanded out to the right. b. The 167 

Ct value is compared to the percent of iSNVs shared between technical replicates. The blue line is a line 168 

of best fit to highlight the observed negative trend. c. Distribution of the number of total iSNVs detected 169 

per sample. Many samples harbor no iSNVs at all, and the maximum number of iSNVs in a single sample 170 
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was 11. d. The proportion of iSNVs that were detected at various within-host frequency bins is shown. 171 

Error bars represent the variance in the proportion of total within-host iSNVs within that frequency bin 172 

across samples in the dataset as calculated by bootstrapping. There was a single stop variant in the 173 

entire dataset, so no error bar is shown for the stop category. The solid grey line indicates the expected 174 

proportion of variants in each frequency bin under a neutral model. 175 

Recurrent iSNVs consist of Wuhan-1 reversions and common 176 

polymorphic sites  177 

Previous studies of SARS-CoV-2 evolution have noted the unusual observation that iSNVs are 178 

sometimes shared across multiple samples. Understanding the source and frequency of shared 179 

iSNVs is important for measuring the size of transmission bottlenecks and for identifying 180 

potential sites of selection. In our dataset, most iSNVs were unique to a single sample (Figure 181 

2a). However, 41 iSNVs were detected in at least 2 samples. These “shared iSNVs” were 182 

detected across multiple sequencing runs (Supplemental Figure 5), and were absent in our 183 

negative controls, suggesting they are unlikely to be artefacts of method error. Most of the 184 

shared iSNVs we detect fall into two categories: iSNVs that occur within or adjacent to a 185 

homopolymer region (8/41 iSNVs, Figure 2b, yellow and purple bars), or iSNVs that represent 186 

“Wuhan-1 reversions” (31/41 iSNVs, Figure 2b, blue and purple bars). iSNVs in or near 187 

homopolymer regions were defined as those that fall within or one nucleotide outside of a span 188 

of at least 3 identical nucleotide bases. Shared iSNVs were more commonly detected in A/T 189 

hompolymer regions than in G/C homopolymer regions. We classified iSNVs as “Wuhan-1 190 

reversions” when a sample’s consensus sequence had a near-fixed variant (50-97% frequency) 191 

relative to the Wuhan-1 reference, with the original Wuhan-1 nucleotide present as an iSNV. 192 

Overall, this suggests that shared variants in our dataset may be at least partially explained by 193 
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viral polymerase incorporation errors, potentially in A/T-rich regions, and at sites that are 194 

frequently polymorphic. 195 

 196 

The most commonly detected iSNVs in our dataset represent Wuhan-1 reviersion at nucleotide 197 

sites 241 (detected 18 times; within/adjacent to a homopolymer region) and 3037 (detected 21 198 

times; not in a homopolymer region). Both of these sites are polymorphic deep in the SARS-199 

CoV-2 phylogeny near the branch point for clade 20A (Nextstrain clade nomenclature). Within-200 

host polymorphisms at sites 241 and 3037 were also detected in recent studies in the United 201 

Kingdom and Austria (21, 28). T241C and T3037C are both synonymous variants, and have 202 

emerged frequently on the global SARS-CoV-2 phylogenetic tree, suggesting that these sites 203 

may be frequently polymorphic within and between hosts across multiple geographic areas 204 

(Figure 2c).  205 

 206 
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 207 

 208 

Figure 2: Shared iSNVs represent homopolymers and common polymorphic sites  209 

a. The number of iSNVs (y-axis) present within n individuals (x-axis) is shown. The vast majority of iSNVs 210 

are found in only a single sample. 6 iSNVs are shared by at least 10 samples. b. Each iSNV detected in 211 

at least 2 samples is shown. Variants that occur within, or 1 nucleotide outside of, a homopolymer region 212 

(classified as a span of the same base that is at least 3 nucleotides long) are colored in yellow. Variants 213 

that represent the minor allele for variants that were nearly fixed at consensus (annotated here as 214 

“Wuhan1 reversions”) are shown in blue, and variants that were both Wuhan1 reversions and occurred in 215 

homopolymer regions are colored in purple. c. For each unique iSNV detected within a host, the x-axis 216 

represents the number of samples in which that iSNV was detected, and the y-axis represents the 217 
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number of times it is present on the global SARS-CoV-2 phylogenetic tree. The counts on the 218 

phylogenetic tree represent the number of times the mutation arose along internal and external branches. 219 

The variants labeled with text are those that are detected at least 10 times within-host and at least 10 220 

times on the phylogeny. Two of the most commonly detected iSNVs, T3037C and T241C (shown as the 221 

furthest to the left in panel b), are also frequently detected on the phylogenetic tree. 222 

Most within-host variation does not contribute to consensus 223 

diversity 224 

The emergence of divergent SARS-CoV-2 lineages has raised concerns that new variants may 225 

be selected during infection and efficiently transmitted onward. We next sought to characterize 226 

whether iSNVs arising within hosts contribute to consensus diversity sampled later in time. 227 

Using the Wisconsin-specific phylogenetic tree (Supplemental Figure 6), we queried whether 228 

iSNVs detected within hosts are ever found at consensus in tips sampled downstream. For each 229 

Wisconsin tip that lay on an internal node and for which we had within-host data, we traversed 230 

the tree from that tip to each subtending tip. We then enumerated each mutation that occurred 231 

along that path, and compared whether any mutations that arose on downstream branches 232 

matched iSNVs detected within-host (see Figure 3a for a schematic). Of the 110 Wisconsin tips 233 

harboring within-host variation, 93 occurred on internal nodes. Of those, we detect only a single 234 

instance in which an iSNV detected within a host was later detected at consensus. C1912T (a 235 

synonymous variant) was present in USA/WI-UW-214/2020 at ~4% frequency, and arose on the 236 

branch leading to USA/WI-WSLH-200068/2020 (Figure 3b). USA/WI-UW-214/2020 is part of a 237 

large polytomy, so this does not necessarily suggest that USA/WI-UW-214/2020 and USA/WI-238 

WSLH-200068/2020 fall along the same transmission chain. These results indicate that despite 239 

relatively densely sampling consensus genomes from related viruses from Wisconsin, we do not 240 

find evidence that iSNVs frequently rise to consensus along phylogenetically linked infections.  241 
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 242 

If iSNVs arising during infection are adaptive and efficiently transmitted, then they should be 243 

found frequently in consensus genomes, and may be enriched on internal nodes of the 244 

phylogenetic tree. For each within-host variant detected in our dataset, we queried the number 245 

of times it occurred on the global SARS-CoV-2 phylogeny on tips and internal nodes. We then 246 

compared the ratio of detections on tips vs. internal nodes to the overall ratio of mutations on 247 

tips vs. internal nodes on the phylogeny. 42% (77/185) of iSNVs are present at least once at 248 

consensus level on the global phylogeny (Supplemental Figure 7). When present, iSNVs from 249 

our dataset that also occur in consensus genomes on the global tree tend to be rare, and 250 

predominantly occur on terminal nodes (Figure 3c, Supplemental Figure 7). Overall, iSNVs 251 

that are also found at consensus are present on internal nodes and tips at a ratio similar to that 252 

of consensus mutations overall (ratio of mutations on phylogeny nodes:tips = 4,637:17,200; 253 

ratio of iSNVs on nodes:tips = 128:411, p=0.16, Fisher’s exact test). Although this is the 254 

predominant pattern, we detect one exception. C28887T is present in one sample in our dataset 255 

at a frequency of ~6%, but is found on 10 internal nodes and 15 tips (p = 0.028, Fisher’s exact 256 

test) (Figure 3c). C28887T encodes a threonine-to-isoleucine change at position 205 in the N 257 

protein, and is a clade-defining mutation for the B.1.351 lineage. Although the functional impact 258 

of this mutation is not completely understood, N T205I may increase stability of the N protein 259 

(32, 33). Despite the detection within-host and subsequent emergence of N205I globally, this 260 

iSNV was only detected in our dataset in one sample at low frequency. In general, across our 261 

dataset, the frequency with which iSNVs were detected within-host vs. on the phylogenetic tree 262 

is not correlated (Figure 2c). This suggests that although putative functional mutations may 263 

arise within a host, these events are rare. iSNV detection within a host, at least in typical acute 264 

infections, may therefore have limited utility for predicting future variant emergence. Together, 265 

these data suggest that with rare exception, most within-host variants are purged over time, and 266 

typically do not contribute to consensus-level diversity sampled later in time. As such, these 267 
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findings suggest that most iSNVs are not selectively beneficial and are not efficiently 268 

transmitted. 269 

 270 

Figure 3: Variants are not common in consensus sequences or in downstream branches  271 

a. We traversed the Wisconsin-focused full-genome SARS-CoV-2 phylogeny from root to tip. For each 272 

Wisconsin tip for which we had within-host data, we queried whether any of the iSNVs detected in that 273 

sample were ever detected in downstream branches at consensus. In this example, the purple tip 274 

represents a Wisconsin sample for which we have within-host data. This sample harbors 2 iSNVs, A and 275 

B. iSNV A arises on a tip that falls downstream from the starting, purple tip. iSNV B is present on a 276 

downstream branch leading to an internal node. Both A and B would be counted as instances in which an 277 

iSNV was detected at consensus in a downstream branch. b. In the Wisconsin-specific phylogenetic tree, 278 

we applied the metric described in a. Among 110 Wisconsin samples that harbored within-host variation, 279 
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93 occurred on internal nodes. Of those, we detect one instance in which a mutation detected as an iSNV 280 

in one sequence was detected in a downstream consensus sequence. (C1912T, an iSNV in USA/WI-UW-281 

214/2020, was detected downstream in USA/WI-WSLH-200068/2020.) c. For each iSNV identified in the 282 

study (in at least 1 sample), we enumerated the number of times that variant occurred on the global 283 

SARS-CoV-2 phylogeny on an internal node (yellow) or on a tip (blue). The results for every variant are 284 

shown in Supplemental Figure 6. Here, we show only the variants that were detected at least 10 times 285 

on the global phylogeny. Each such iSNV is found at internal nodes and tips at a ratio comparable to 286 

overall mutations on the tree, except for C28887T, which is enriched on internal nodes (p=0.028, Fishers’ 287 

exact test).  * indicates p-value < 0.05. 288 

Variation is shared among some household samples, but is likely 289 

insufficient for transmission resolution 290 

Household studies provide the opportunity to investigate transmission dynamics in a setting of 291 

known epidemiologic linkage. We analyzed 44 samples collected from 19 households from 292 

which multiple individuals were infected with SARS-CoV-2. To define putative transmission pairs 293 

from our household dataset, we modeled the expected number of mutations that should differ 294 

between consensus genomes given one serial interval as previously described (34)(see 295 

Methods for details and rationale). We estimate that members of a transmission pair should 296 

generally differ by 0 to 2 consensus mutations (Figure 4a), and classify all such pairs within a 297 

household as putative transmission pairs. While most samples derived from a single household 298 

had near-identical consensus genomes, we observed a few instances in which consensus 299 

genomes differed substantially. In particular, USA/WI-UW-476/2020 differed from both other 300 

genomes from the same household by 11 mutations, strongly suggesting that this individual was 301 

independently infected. 302 

 303 
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To determine whether putative household transmission pairs shared more within-host variation 304 

than randomly sampled pairs of individuals, we performed a permutation test. We randomly 305 

sampled individuals with replacement and computed the proportion of iSNVs shared among 306 

random pairs to generate a null distribution (Figure 4b, grey bars). We then computed the 307 

proportion of variants shared among each putative household transmission pair. Finally, we 308 

compared the distribution of shared variants among household pairs and random pairs (Figure 309 

4b). 90% of random pairs do not share any iSNVs. Although household pairs share more iSNVs 310 

than random pairs on average, half (14/28) of all household pairs share no iSNVs at all. Only 7 311 

out of 28 of household pairs share more iSNVs than expected by chance (p < 0.05). 312 

 313 
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Figure 4: Household pairs share a modest degree of within-host variation 314 

a. We modeled the probability that 2 consensus genomes will share x mutations as Poisson-distributed 315 

with lambda equal to the number of mutations expected to accumulate in the SARS-CoV-2 genome over 316 

5.8 days (35) given a substitution rate of 1.10 x 10-3 substitutions per site per year (1). Exploration of how 317 

these probabilities change using a range of plausible serial intervals and substitution rates is shown in 318 

Supplemental Figure 8. The vast majority of genomes that are separated by one serial interval are 319 

expected to differ by ≤2 consensus mutations. b. The proportion of random pairs (grey) and putative 320 

household transmission pairs (purple) is shown on the y-axis vs. the proportion of iSNVs shared. The 321 

dotted line indicates the 95th percentile among the random pairs. Household pairs that share a greater 322 

proportion of iSNVs than 95% of random pairs (i.e., are plotted to the right of the dotted line) are 323 

considered statistically significant at p=0.05. iSNVs had to be present at a frequency of ≥3% to be 324 

considered in this analysis. c. We assessed the impact of household membership, clade membership, 325 

phylogenetic divergence, and geographic distance on the proportion of iSNVs shared between each pair 326 

of samples in our dataset. The mean of each estimated coefficient in the combined linear regression 327 

model including all predictors is shown on the x-axis, with lines of spread indicating the range of the 328 

estimated 95% highest posterior density interval (HPDI). 329 

 330 

While we hypothesized that putative transmission linkage would be the best predictor of sharing 331 

iSNVs, other processes could also result in shared iSNVs. For example, if transmission 332 

bottlenecks are wide and iSNVs are efficiently transmitted along transmission chains, then 333 

iSNVs may be propagated during community transmission. If so, then iSNVs should be shared 334 

among samples that are phylogenetically close together. If transmission chains circulate within 335 

local geographic areas, then iSNVs may be commonly shared by samples from the same 336 

geographic location. Finally, if iSNVs are strongly constrained by genetic backbone, then 337 

variants may be more likely to be shared across samples from the same clade.  338 

 339 
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To measure the contribution of these factors, we computed the proportion of iSNVs shared by 340 

each pair of samples in our dataset (including household and non-household samples), and 341 

model the proportion of shared iSNVs as the combined effect of phylogenetic divergence 342 

between the tips (i.e., the branch length in mutations between tips), clade membership, 343 

geographic distance between sampling locations, and household membership. Phylogenetic 344 

divergence and geographic distance between sampling locations have minimal predicted impact 345 

on iSNV sharing (Figure 4c and Supplemental Figure 9). The strongest predictor of sharing 346 

iSNVs is being sampled from the same household, which increased the predicted proportion of 347 

shared iSNVs by 0.22 (0.16 - 0.27, 95% HPDI). Belonging to the same clade increases the 348 

predicted proportion of shared iSNVs by 0.043 (0.033 - 0.053, 95% HPDI), likely because 349 

sharing a within-host variant is contingent on sharing the same consensus base. Taken 350 

together, being sampled from the same household is the strongest predictor of sharing iSNVs, 351 

and some household pairs share more variation than expected by chance. However, these 352 

effects are modest. Given the low overall diversity within hosts and presence of shared iSNVs, 353 

the degree of sharing we observe is unlikely sufficient for inferring transmission linkage 354 

independent of epidemiologic investigation. 355 

Transmission bottlenecks are likely narrow, and sensitive to 356 

variant calling threshold  357 

The number of viral particles that found infection is a crucial determinant of the pace at which 358 

novel, beneficial variants can emerge. Narrow transmission bottlenecks can induce a founder 359 

effect that purges low-frequency iSNVs, regardless of their fitness. Conversely, wide 360 

transmission bottlenecks result in many viral particles founding infection, reducing the chance 361 

that beneficial variants are lost. Understanding the size of the transmission bottleneck is 362 

therefore important for evaluating the probability that novel SARS-CoV-2 variants arising during 363 
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acute infection will be transmitted onward. To infer transmission bottleneck sizes, we applied the 364 

beta-binomial inference method (36). We inferred transmission directionality using the date of 365 

symptom onset or date of sample collection (see methods for details). If this information was not 366 

informative, we calculated a bottleneck size bi-directionally evaluating each individual as the 367 

possible donor. In total, we performed 40 transmission bottleneck size estimates in 28 putative 368 

household pairs.  369 

 370 

iSNV frequencies in donor and recipient pairs are plotted in Figure 5a. Most iSNVs detected in 371 

the donor are either lost or fixed following transmission in the recipient. However, there are a 372 

few low-frequency and near-fixed iSNVs which are shared in donor-recipient pairs. The 373 

combined maximum likelihood estimate for mean transmission bottleneck size at our defined 374 

3% frequency threshold is 15 (95% CI: 11-21), although results vary across pairs (Figure 5b). 375 

Prior transmission bottleneck estimates have changed based on the variant-calling threshold 376 

employed (28, 30). To determine whether our estimates were sensitive to our choice of a 3% 377 

variant threshold, we evaluated bottleneck sizes using variant thresholds ranging from 1% to 378 

20%. We estimate the highest mean transmission bottleneck size when we employ a 1% 379 

frequency threshold (38, 95% CI: 33-43), and lowest when we use a ≥7% frequency threshold 380 

(2, 95% CI: 1-4) (Figure 5c; Supplemental Figure 10). The finding of larger bottleneck sizes at 381 

a 1% threshold may be due to increased false-positive iSNVs at lower thresholds, in agreement 382 

with our findings that a majority of iSNVs detected in the clonal RNA control occurred at 383 

frequencies <3%. Importantly though, while variant threshold clearly impacts estimated 384 

bottleneck size, our estimates are quite consistent. Even across a wide range of thresholds, our 385 

transmission bottleneck size estimates range from 2-43, and never exceed 50. 386 

 387 

The beta-binomial inference method assumes that shared variation in donor-recipient pairs is 388 

due to transmission. However, it is possible that shared low-frequency iSNVs are recurring 389 
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mutations (i.e. homoplasies) that should be excluded from the beta-binomial analysis. One site 390 

in particular, a synonymous change at nucleotide 15,168 in ORF1ab, was commonly found at 391 

low frequencies in donor-recipient pairs. To account for the possibility that this variant is a 392 

homoplasy rather than shared via transmission, we dropped this site from our dataset and re-393 

calculated bottleneck sizes. While bottleneck size estimates decrease in individual pairs where 394 

this variant is found (Supplemental Figure 10c), the average bottleneck size across all 395 

transmission pairs remains low (mean = 9, 95% CI: 6-14).  396 

 397 

It is possible that some of the pairs evaluated were not direct transmission pairs. Instead 398 

individuals may be part of the same transmission chain or share a common source of infection. 399 

We reasoned if two individuals were infected from a common source, then they may have 400 

developed symptoms around the same time. In contrast, if one individual infected the other, 401 

then their symptom onset dates should be staggered. To assess this, we compared bottleneck 402 

sizes to the time between symptom onset in donor-recipient pairs for which symptom onset 403 

dates were available (n=17) (Supplemental Figure 11). We observed no clear trend between 404 

bottleneck size and symptom onset intervals. Finally, all bottleneck estimates are inherently 405 

limited by access to a single time point from each donor and recipient. Because it is impossible 406 

to know the exact date of infection and transmission, the donor iSNV frequencies may not 407 

reflect the true diversity present at the time of transmission. Taken together, we find that even 408 

among household pairs, the number of transmitted viruses is likely small. Although bottleneck 409 

size estimates vary by variant calling threshold, we find consistent support for fewer than 50 410 

viruses founding infection and suspect that the majority of transmission events are founded by 411 

very few viruses (<10). Our data suggest that iSNVs generated within-host are generally lost 412 

during the transmission event, and are not efficiently propagated among epidemiologically 413 

linked individuals.   414 

 415 
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416 
Figure 5: SARS-CoV-2 transmission bottlenecks in household transmission pairs 417 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.440988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.440988
http://creativecommons.org/licenses/by/4.0/


 

 22

a. “TV plots” showing intersection iSNV frequencies in all 44 donor-recipient pairs using a 3% frequency 418 

threshold. The yellow box highlights low-frequency iSNVs (3-10%) and the mauve box highlights high-419 

frequency iSNVs (90-100%). b. Maximum likelihood estimates for mean transmission bottleneck size in 420 

individual donor-recipient pairs. Bottleneck sizes could not be estimated for a few pairs (e.g. pairs 5, 10a, 421 

11a, etc) because there were no polymorphic sites detected in the donor. c. Bidirectional comparisons 422 

are denoted with an “a” and “b” following the pair number. Combined maximum likelihood estimates 423 

across all 44 donor-recipient pairs plotted against variant calling thresholds ranging from 1-20%. The 424 

purple line shows combined estimates at each variant calling threshold shown and the mauve band 425 

displays the 95% confidence interval for this estimate. The dashed grey line indicates a bottleneck size 426 

equal to 1. The vertical yellow band highlights the combined transmission bottleneck size using a 3% 427 

variant calling threshold.  428 

Discussion 429 

The emergence of divergent SARS-CoV-2 lineages has called into question the role of within-430 

host selection in propagating novel variants. Our results suggest that very limited variation is 431 

generated and transmitted during acute SARS-CoV-2 infection. Most infections in our dataset 432 

are characterized by fewer than 5 total intersection iSNVs, the majority of which are low-433 

frequency. Most iSNVs are not detected in global consensus genomes, and are rarely detected 434 

in downstream branches on the phylogenetic tree. We show that even among putative 435 

household transmission pairs, iSNVs are shared infrequently, and we estimate that a small 436 

number of viruses found infection after most transmission events. The combination of low 437 

overall within-host diversity, tight transmission bottlenecks, and infrequent propagation along 438 

transmission chains may slow the rate of novel variant emergence among acutely infected 439 

individuals. Importantly, our results imply that the accumulation of multiple iSNVs is unlikely 440 

during typical, acute infection. Together, our findings are consistent with a regime in which 441 

typical acute infections play a limited role in the generation and spread of new SARS-CoV-2 442 
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variants, and argue for the need to better understand the role of prolonged infections as a 443 

source of consequential new variants. Targeted interventions to prevent the number of long-444 

term infections and to prevent transmission from persistently infected individuals may be 445 

particularly fruitful for slowing the rate of emergence of novel variants of concern. 446 

 447 

Relatively few studies have reported on SARS-CoV-2 within-host diversity, and their results 448 

have varied. SARS-CoV-2 within-host sequence data appear to be particularly vulnerable to 449 

method error, including sensitivity to cycle threshold (20, 21), putative false positive iSNV calls 450 

in control runs (20), an uncertain degree of recurrent mutations shared across unrelated 451 

samples (21, 28, 29, 37), and variation between technical replicates. Complicating matters, 452 

each lab employs its own sample preparation and variant calling pipelines, making comparison 453 

across datasets challenging, and concern has been raised regarding recurrent errors that are 454 

platform- and lab-specific (38). iSNVs that recur in nature pose a challenge because they result 455 

in the same data pattern that would be expected from recurrent pipeline errors. We have 456 

attempted to employ multiple, overlapping controls to mitigate errors that could arise from 457 

sample preparation, bioinformatic processing, and improper variant thresholds. In particular, our 458 

results emphasize the importance of duplicate sequencing for any studies relying on low-459 

frequency iSNVs to infer biological processes. Like Valesano et al. (20), we observe that SARS-460 

CoV-2 variant calls are sensitive to Ct and variant-calling criteria. We echo their expressed 461 

caution in interpreting SARS-CoV-2 within-host data in the absence of pipeline-specific controls. 462 

 463 

Similar to work reported by others (20, 21, 37), we find that most samples harbor very few 464 

iSNVs, and that most variants are low-frequency. Although we employ distinct methods, we 465 

corroborate findings by Lythgoe & Hall et al. (21) that iSNVs do not cluster geographically or 466 

phylogenetically, suggesting that they are not transmitted efficiently within communities. One 467 

difference is that we detect a higher number of shared/recurrent iSNVs in our dataset than 468 
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reported by Lythgoe & Hall et al. (21), Valesano et al. (20), and Shen et al. (37), but fewer than 469 

Popa & Genger et al. (28) and James et al. (29). While some degree of shared iSNVs is 470 

reported across most SARS-CoV-2 datasets (20, 21, 28, 29, 37) the exact frequency of shared 471 

sites is highly variable. The higher number of shared iSNVs in our results may be partially 472 

accounted for by our method of variant reporting. While most studies mapped reads to the 473 

Wuhan-1 reference and report variants present at <50% frequency (20, 21, 28, 37), we 474 

converted consensus-level variants to their low-frequency counterparts, and counted the minor 475 

allele for near-fixed variants. The higher level of shared iSNVs we observe could also be 476 

explained by sampling many closely related, cohabiting individuals. Though relatively few, some 477 

household transmission pairs do share iSNVs, likely accounting for some of the shared variation 478 

we observe. Future work will be necessary to determine the precise degree to which iSNVs 479 

recur across unrelated individuals and the extent to which factors like viral copy number, time of 480 

infection, host factors including pre-existing immunity, and sequencing pipeline influence these 481 

estimates.  482 

 483 

Four other groups have previously estimated the size of the SARS-CoV-2 transmission 484 

bottleneck, although the total number of transmission events evaluated to date across studies 485 

remains small (~66). Lythgoe & Hall et al. (n=14 pairs) (39), James & Ngcapu et al. (n=11 pairs) 486 

(29), and Wang et al. (n=2 pairs) (40) report narrow bottlenecks, in which infection is founded by 487 

fewer than 10 viruses. Popa & Genger et al. (n=39 pairs) (28) report bottleneck sizes ranging 488 

from 10 to 5000, and an average size of 1000. Reanalysis of the Popa & Genger data using a 489 

more conservative variant dataset resulted in an average bottleneck size of 1-3 (30). Similarly, 490 

we find a combined average bottleneck size of 15 using a 3% frequency threshold, and 2 using 491 

a 7% frequency threshold. Thus, current evidence is converging to support narrow transmission 492 

bottlenecks for SARS-CoV-2, similar to influenza virus (18, 41, 42). Still, these estimates rely on 493 

a small number of putative transmission events, including the pairs analyzed here. Genuine 494 
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differences in the SARS-CoV-2 transmission bottleneck size, depending on route of 495 

transmission (43) and host factors may exist.  496 

 497 

When transmission bottlenecks are narrow, even beneficial variants present at low frequencies 498 

in the transmitting host are likely to be lost. However, the recent emergence of multiple 499 

divergent lineages, some of which increase infectiousness, underscore that transmission of 500 

such variants clearly can occur (44). This raises the question: how did these variants make their 501 

way out of individual hosts? Narrow transmission bottlenecks generally purge within-host 502 

diversity through a founder effect. Although rare, a low-frequency variant that successfully 503 

passes through a transmission bottleneck could quickly become the dominant variant in the next 504 

host. Such events would become increasingly common as the total number of infected 505 

individuals and transmission events occurring in the population climbs, making it possible to 506 

observe these rare events.  507 

 508 

The model outlined above aligns with the hypothesis that prolonged SARS-CoV-2 infection 509 

leads to accumulation of intrahost mutations (4–8). Prolonged infections may permit additional 510 

cycles of viral replication, allowing for more variants to be generated and more time for selection 511 

to increase the frequency of beneficial variants. Even a modest increase in frequency within a 512 

donor enhances the likelihood of a beneficial variant becoming fixed following transmission in 513 

the setting of a narrow transmission bottleneck. Alternatively, it is possible for selection to act 514 

during transmission such that some viruses harboring a particular mutation or group of 515 

mutations are preferentially transmitted (45). In a previous study evaluating SARS-CoV-2 516 

genetic diversity within and between domestic cats, we documented modest evidence 517 

supporting preferential transmission of a particular nonsynonymous variant in Spike (25). 518 

However, we saw no evidence for selective bottlenecks in this study. Additional studies 519 
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evaluating the SARS-CoV-2 transmission bottleneck are needed, in particular in the setting of 520 

long-term infections and immunocompromised hosts.   521 

 522 

Our findings that within-host variation is limited and infrequently transmitted are important. Our 523 

data, combined with findings from others, suggest that rapid accumulation of novel mutations 524 

within-host is not the norm during acute infection. Like influenza viruses, a significant portion of 525 

variation generated within one infected host is likely lost during transmission. The combination 526 

of within-host limited diversity and tight transmission bottlenecks should slow the pace at which 527 

novel, beneficial variants could emerge during transmission among acutely infected individuals. 528 

Future studies that compare within-host diversity in individuals with and without SARS-CoV-2 529 

antibodies will be necessary to evaluate whether immunity imposes signatures of within-host 530 

selection. Finally, given the increasing appreciation for the potential role of long infections to 531 

promote variant emergence, within-host data may provide its maximum benefit for dissecting the 532 

process of variant evolution during prolonged infections.  533 

Materials and Methods  534 

Study design 535 

The goal of this study was to characterize the underlying evolutionary processes acting on 536 

SARS-CoV-2 within and between hosts during acute infection, and to understand the processes 537 

that drive iSNVs to consensus level. For this purpose, isolated viral RNA from 3,351 samples 538 

(March 2020 to March 2021) was processed for broad surveillance sequencing in Wisconsin, 539 

USA. Additional analyses on a subset of samples (n=133) consisted of calling iSNVs across the 540 

genome, enumerating iSNVs along the phylogeny, and estimating the transmission bottleneck 541 

size in household transmission pairs. Samples were selected for geographic representation 542 
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across two Wisconsin counties (Dane or Milwaukee county) and to ensure all dominant 543 

phylogenetic clades in spring-summer of 2020 were represented (Nextstrain clades 19A, 19B, 544 

and 20A). In addition, we prioritized samples if more than one sample was available per 545 

household residence within a two week period. 546 

Sample approvals and sample selection criteria 547 

Sequences that were selected for deep sequencing and iSNV characterization were derived 548 

from 150 nasopharyngeal (NP) swab samples collected from March 2020 though July 2020. 549 

Samples originated from the University of Wisconsin Hospital and Clinics and the Milwaukee 550 

Health Department Laboratories. Submitting institutions provided a cycle threshold (Ct) or 551 

relative light unit (RLU) for all samples. Sample metadata, including GISAID and SRA accession 552 

identifiers, are available in Supplemental Table 2. 553 

 554 

We obtained a waiver of HIPAA Authorization and were approved to obtain the clinical samples 555 

along with a Limited Data Set by the Western Institutional Review Board (WIRB #1-1290953-1) 556 

and the FUE IRB 2016-0605. This limited dataset contains sample collection data and county of 557 

collection. Additional sample metadata, e.g. race/ethnicity, were not shared. 558 

 559 

Diagnostic assays for the samples included in this study were performed at the University of 560 

Wisconsin Hospital and Clinical diagnostic laboratory using CDC’s diagnostic RT-PCR (46), the 561 

Hologic Panther SARS-CoV-2 assay (47), or the Aptima SARS-CoV-2 assay (48). 562 
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Nucleic acid extraction 563 

Viral RNA (vRNA) was extracted from 100�μl of VTM using the Viral Total Nucleic Acid 564 

Purification kit (Promega, Madison, WI, USA) on a Maxwell RSC 48 instrument and eluted in 50 565 

μL of nuclease-free H2O.  566 

Complementary DNA (cDNA) generation 567 

Complementary DNA (cDNA) was synthesized according to a modified ARTIC Network 568 

approach (49, 50).  RNA was reverse transcribed with SuperScript IV VILO (Invitrogen, 569 

Carlsbad, CA, USA) according to manufacturer guidelines. Samples were incubated at room 570 

temperature (25°C) for 10 minutes, heated to 55°C for 10 minutes, heated to 85°C for 5 571 

minutes, and then cooled to 4°C for 1 minute (49, 50).  572 

Multiplex PCR for SARS-CoV-2 genomes 573 

A SARS-CoV-2-specific multiplex PCR for Nanopore sequencing was performed using the 574 

ARTIC v3 primers. Primers used in this manuscript were designed by ARTIC Network and are 575 

shown in Supplemental Table 3. Specifically, cDNA (2.5�μL) was amplified in two multiplexed 576 

PCR reactions using Q5 Hot-Start DNA High-fidelity Polymerase (New England Biolabs, 577 

Ipswich, MA, USA) using the following cycling conditions; 98ºC for 30 seconds, followed by 25 578 

cycles of 98ºC for 15 seconds and 65ºC for 5 minutes, followed by an indefinite hold at 4ºC ((49, 579 

50). Following amplification, samples were pooled prior to beginning library preparations. 580 

TruSeq Illumina library prep and sequencing for minor variants  581 

All Wisconsin surveillance samples were prepped and sequenced by Oxford Nanopore 582 

Technologies (details below) and a subset described in this paper were additionally prepped for 583 
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sequencing on an Illumina MiSeq. These SARS-CoV-2 samples (n=150) consisted of household 584 

pairs as well as a random sampling of the surveillance cohort selective for enhanced iSNV 585 

characterization. Amplified cDNA was purified using a 1:1 concentration of AMPure XP beads 586 

(Beckman Coulter, Brea, CA, USA) and eluted in 30 µL of water. PCR products were quantified 587 

using Qubit dsDNA high-sensitivity kit (Invitrogen, USA) and were diluted to a final concentration 588 

of 2.5 ng/µl (150 ng in 50 µl volume). Each sample was then made compatible for deep 589 

sequencing using the Nextera TruSeq sample preparation kit (Illumina, USA). Specifically, each 590 

sample was enzymatically end repaired. Samples were then purified using two consecutive 591 

AMPure bead cleanups (0.6x and 0.8x) and were quantified once more using Qubit dsDNA 592 

high-sensitivity kit (Invitrogen, USA). A non-templated nucleotide was attached to the 3′ ends of 593 

each sample, followed by adaptor ligation. Samples were again purified using an AMPure bead 594 

cleanup (1x) and eluted in 25 µL of resuspension buffer. Lastly, samples were indexed using 8 595 

PCR cycles, cleaned with a 1:1 bead clean-up, and eluted in 30 µL of resuspension buffer. The 596 

average sample fragment length and purity was determined using the Agilent High Sensitivity 597 

DNA kit and the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). After passing quality 598 

control measures, samples were pooled into equimolar concentrations to a final concentration of 599 

4 nM. 5 µl of each 4 nM pool was denatured in 5 µl of 0.2 N NaOH for 5 min. Sequencing pools 600 

were denatured to a final concentration of 10 pM with a PhiX-derived control library accounting 601 

for 1% of total DNA and were loaded onto a 500-cycle v2 flow cell. Average quality metrics were 602 

recorded, reads were demultiplexed, and FASTQ files were generated on Illumina’s BaseSpace 603 

platform. The samples included in this study were sequenced across seven distinct MiSeq runs. 604 

Each sample was library prepped and sequenced in technical replicate. Replicates were true 605 

replicates in that we started from two aliquots taken from the original samples.  606 

Oxford nanopore library preparation and sequencing for 607 

consensus sequences 608 
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All consensus-level surveillance sequencing of SARS-CoV-2 was performed using Oxford 609 

Nanopore sequencing (n=3,351). Amplified PCR product was purified using a 1:1 concentration 610 

of AMPure XP beads (Beckman Coulter, Brea, CA, USA) and eluted in 30 μL of water. PCR 611 

products were quantified using Qubit dsDNA high-sensitivity kit (Invitrogen, USA) and were 612 

diluted to a final concentration of 1 ng/μl.  A total of 5ng for each sample was then made 613 

compatible for deep sequencing using the one-pot native ligation protocol with Oxford Nanopore 614 

kit SQK-LSK109 and its Native Barcodes (EXP-NBD104 and EXP-NBD114) (50). Samples were 615 

then tagged with ONT sequencing adaptors according to the modified one-pot ligation protocol 616 

(50). Up to 24 samples were pooled prior to being run on the appropriate flow cell (FLO-617 

MIN106) using the 24hr run script. 618 

Processing raw ONT data  619 

Sequencing data was processed using the ARTIC bioinformatics pipeline scaled up using on 620 

campus computing cores (https://github.com/artic-network/artic-ncov2019). The entire ONT 621 

analysis pipeline is available at https://github.com/gagekmoreno/SARS-CoV-2-in-Southern-622 

Wisconsin.   623 

Processing raw Illumina data 624 

Raw FASTQ files were analyzed using a workflow called “SARSquencer”. The complete 625 

“SARSquencer” pipeline is available in the following GitHub repository – 626 

https://github.com/gagekmoreno/SARS_CoV-2_Zequencer. Reads were paired and merged 627 

using BBMerge (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmerge-guide/) 628 

and mapped to the Wuhan-Hu-1/2019 reference (Genbank accession MN908947.3) using 629 

BBMap (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/). Mapped 630 

reads were imported into Geneious (https://www.geneious.com/) for visual inspection. Variants 631 
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were called using callvariants.sh (contained within BBMap) and annotated using SnpEff 632 

(https://pcingola.github.io/SnpEff/). Variants were called at ≥0.01% in high-quality reads (phred 633 

score >30) that were ≥100 base pairs in length and supported by a minimum of 10 reads. The 634 

total minimum read support was set to 10 to generate initial VCF files with complete consensus 635 

genomes for the few samples where coverage fell below 100 reads in a few areas. Substantial 636 

downstream variant cleaning was performed as outlined below.   637 

iSNV quality control  638 

BBMap’s output VCF files were cleaned using custom Python scripts, which can be found in the 639 

GitHub accompanying this manuscript (https://github.com/lmoncla/ncov-WI-within-host). First, 640 

any samples without technical replicates were excluded. This occurred due to limited sample 641 

volume, degraded RNA, or limited deep sequence reads in one or both replicates (n=5; 642 

tube/filename identifiers = 19, 188, 1049, 1064, and 1144). Next, we discarded all iSNVs which 643 

occurred at primer-binding sites (Supplemental Table 3). These “recoded” VCFs can be found 644 

in the GitHub repository  in “data/vcfs-recode”. We then filtered these recoded VCF files and for 645 

variants with (1) 100x coverage; (2) found at ≥3% frequency (more in “Within-host variation is 646 

limited once sources of sequencing error are properly accounted for”); (3) and found between 647 

nucleotides 54 and 29,837 (based on the first and last ARTIC v3 amplicon). We excluded all 648 

indels from our analysis, including those that occur in intergenic regions.  649 

We next inspected our filtered iSNV datasets across replicate pairs. We visually inspected each 650 

replicate pair VCF and plotted replicate frequencies against each other (available in the GitHub 651 

repository). This identified a few samples which were outliers for having very limited overlap in 652 

their iSNV populations. This could be traced to low coverage or amplicon drop-out in each 653 

sample. FASTQs for these samples are available in GenBank, but we have excluded them from 654 

downstream analyses presented here (n=11; tube/filename identifier 65, 124, 125, 303, 316, 655 
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1061, 1388, 1103, 1104, 1147, and 1282) (iSNVs in technical replicates are shown for sample 656 

1104 in Supplemental Figure 4b).  657 

We generated one cleaned VCF file by averaging the frequencies found for overlapping iSNVs 658 

and discarding all iSNVs which were only found in one replicate. In addition to the SARS-CoV-2 659 

diagnostic swabs, we sequenced a SARS-CoV-2 synthetic RNA control (Twist Bioscience, San 660 

Francisco, CA) representing the Wuhan-Hu-1 sequence (Genbank: MN908947.3) in order to 661 

identify variants which are likely to arise during library prep and sequencing. We amplified and 662 

sequenced technical replicates of this vRNA synthetic control as described above, using 1x106 663 

template copies per reaction. We then excluded variants detected in the synthetic RNA control 664 

(Supplemental Table 4) from all downstream analyses. Notably, this filter removed a single 665 

variant at nucleotide position 6,669 from our analysis (20). Finally, within-host variants called at 666 

≥50% and <97% frequency comprise consensus-level mutations relative to the Wuhan-Hu-667 

1/2019 reference sequence. To ensure that the corresponding minor variant was reported we 668 

report the opposite minor allele at a frequency of 1 - the consensus variant frequency. For 669 

example, a C to T variant detected at 75% frequency relative to the Wuhan-1 reference was 670 

converted to a T to C variant at 25% frequency. 671 

Processing of the raw sequence data, mapping, and variant 672 

calling with the Washington pipeline 673 

To assess the sensitivity of our iSNV calls to bioinformatic pipelines, we generated VCF files 674 

using an independent bioinformatic pipeline. Raw reads were assembled against the SARS-675 

CoV-2 reference genome Wuhan-Hu-1/2019 (Genbank accession MN908947.3; the same 676 

reference used for the alternative basecalling method) to generate pileup files using the 677 

bioinformatics pipeline available at https://github.com/seattleflu/assembly. Briefly, reads were 678 

trimmed with Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic) (51) in paired 679 
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end mode, in sliding window of 5 base pairs, discarding all reads that were trimmed to <50 base 680 

pairs. Trimmed reads were mapped using Bowtie 2 (http://bowtie-681 

bio.sourceforge.net/bowtie2/index.shtml) (52), and pileups were generated using samtools 682 

mpileup (http://www.htslib.org/doc/samtools-mpileup.html). Variants were then called from 683 

pileups using varscan mpileup2cns v2.4.4 (http://varscan.sourceforge.net/using-684 

varscan.html#v2.3_mpileup2cns). Variants were called at ≥1% frequency, with a minimum 685 

coverage of 100, and were supported by a minimum of 2 reads.  686 

Phylogenetic analysis 687 

All available full-length sequences from Wisconsin through February 16, 2021 were used for 688 

phylogenetic analysis using the tools implemented in Nextstrain custom builds 689 

(https://github.com/nextstrain/ncov) (53, 54). Time-resolved and divergence phylogenetic trees 690 

were built using the standard Nextstrain tools and scripts (53, 54). We used custom python 691 

scripts to filter and clean metadata. A custom “Wisconsin” profile was made to create a 692 

Wisconsin-centric subsampled build to include representative sequences. The scripts and 693 

output are available at https://github.com/gagekmoreno/Wisconsin-SARS-CoV-2. 694 

Household pairs permutation test 695 

For household groups, we performed all pairwise comparisons between members of the 696 

household, excluding pairs for which the consensus genomes differed by >2 nucleotide 697 

changes. We determined this cutoff by modeling the probability that 2 consensus genomes 698 

separated by one serial interval differ by n mutations. We model this process as Poisson-699 

distributed with lambda equal to the expected number of substitutions per serial interval, as 700 

described previously (34). We chose to model this expectation using the serial interval rather 701 

than the generation interval for the following reason. The sequence data we have represent 702 
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cases that were sampled via passive surveillance, usually from individuals seeking testing after 703 

developing symptoms. Differences in the genome sequences from two individuals therefore 704 

represent the evolution that occurred between the sampling times of those two cases. Although 705 

neither the serial interval nor the generation interval perfectly matches this sampling process, 706 

we reasoned that the serial interval, or the time between the symptom onsets of successive 707 

cases, may more accurately capture how the data were sampled. We evaluated probabilities 708 

across a range of serial interval and clock rates. For serial interval, we use the values inferred 709 

by He et al, of a mean of 5.8 days with a 95% confidence interval of  4.8-6.8 days (35). For 710 

substitution rate, we employ estimates from Duchene et al, who estimate a mean substitution 711 

rate of 1.10 x 10-3 substitutions per site per year, with a 95% credible interval of 7.03 x 10-4 and 712 

1.15 x 10-3 (1). To model the expectation across this range of values, we evaluate the 713 

probabilities for serial intervals at the mean (5.8), as well as for 4, 5, 6, 7, and 8 days, and 714 

substitution rates at the mean (1.10 x 10-3) and at the bounds of the 95% credible interval. For 715 

each combination of serial interval and substitution rate, we calculate the expected substitutions 716 

in one serial interval as: (substitution rate per site per year * genome length/365 days) *serial 717 

interval. The results using the mean serial interval (5.8 days) and substitution rate (1.10 x 10-3) 718 

are shown in the main text, while the full set of combinations is shown in the supplement. Under 719 

this model, the vast majority of consensus genomes derived from cases separated by a single 720 

serial interval are expected to differ by ≤2 mutations. The probability that two genomes that are 721 

separated by one serial interval differ by 3 mutations ranges from 0.0016-0.059. Only in the 722 

case of an 8 day serial interval with the highest bound of the substitution rate do we infer a 723 

probability of 3 mutations that is greater than 0.05. We therefore classified all pairs of individuals 724 

from each household that differed by ≤2 consensus mutations and who were tested within 14 725 

days of each other as putative transmission pairs.  726 

 727 
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To determine whether putative household transmission pairs shared more variants than 728 

individuals without an epidemiologic link, we performed a permutation test. At each iteration, we 729 

randomly selected a pair of samples (with replacement) and computed the proportion of variants 730 

they share as: (2 x total number of shared variants) / (the total number of variants detected 731 

among the two samples). For example, if sample A contained 5 iSNVs relative to the reference 732 

(Wuhan-1, Genbank accession MN908947.3), sample B harbored 4 iSNVs, and 1 iSNV was 733 

shared, then the proportion of sample A and B’s variants that are shared would be 2/9 = 0.22. 734 

We performed 10,000 iterations in which pairs were sampled randomly to generate a null 735 

distribution. We then compared the proportion of variants shared by each putative household 736 

transmission pair to this null distribution. The proportion of variants shared by a household pair 737 

was determined to be statistically significant if it was greater than 95% of random pairs.  738 

Transmission bottleneck calculation 739 

The beta-binomial method, explained in detail in (36), was used to infer the transmission 740 

bottleneck size Nb. Nb quantifies the number of virions donated from the index individual to the 741 

contact (recipient) individual that successfully establish lineages in the recipient that are present 742 

at the sampling time point. The method statistically incorporates sampling noise arising from a 743 

finite number of reads and accounts for the possibility of false-negative variants that are not 744 

called in the recipient host due to conservative variant calling thresholds (≥3% in both technical 745 

replicates). The beta-binomial method adopts several important assumptions. It assumes viral 746 

genetic diversity is neutral and variant frequencies are not impacted by selection; it also 747 

assumes variant sites are independent, which may not be true given that SARS-CoV-2 contains 748 

a continuous genome thought to undergo limited recombination (55). In addition, the beta-749 

binomial method assumes that identical variants found in the index and contact are shared as a 750 

result of transmission, though it is possible that identical variants occurring in a donor and a 751 
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recipient individual occurred independently of one another and are not linked through 752 

transmission. We consider this possibility at one site in particular which commonly appears at 753 

low frequencies in donor-recipient pairs. Code for estimating transmission bottleneck sizes 754 

using the beta-binomial approach has been adapted from the original scripts 755 

(https://github.com/koellelab/betabinomial_bottleneck) and is included in the GitHub 756 

accompanying this manuscript (https://github.com/lmoncla/ncov-WI-within-host). 757 

 758 

We calculated individual transmission bottleneck size estimates for each household 759 

transmission pair as were identified in the household permutation test (n=28). We used the date 760 

of symptom onset and/or date of sample collection to assign donor and recipient within each 761 

pair. Within each pair, if the date of symptom onset differed by ≥3 days, we assigned the 762 

individual with the earlier date as the donor. If this information was unavailable or uninformative 763 

(<3 days) for both individuals in a pair, we looked at the date of sample collection and if these 764 

dates differed by ≥3 days, we assigned the individual with the earlier date as the donor. If this 765 

information was also not available or was not informative (<3 days), we calculated the 766 

bottleneck size with each individual as a donor. These bidirectional comparisons are denoted 767 

with an “a” or “b” appended to the filename (n=16 pairs were analyzed bidirectionally). In total, 768 

we analyzed 44 pairs (including bidirectional comparisons). Metadata and GISAID accession 769 

numbers for each pair are described in Supplemental Table 4.  770 

 771 

Combined transmission bottleneck size estimates (as seen in Figure 6c) were estimated as 772 

described in the supplemental methods in Martin & Koelle (30). Briefly, overall transmission 773 

bottleneck sizes were estimated based on the assumption that transmission bottleneck sizes 774 

are distributed according to a zero-truncated Poisson-distribution and bidirectional bottleneck 775 

estimates were each assigned 50% of the weight in this calculation compared to the 776 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.440988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.440988
http://creativecommons.org/licenses/by/4.0/


 

 37

unidirectional pairs. Matlab code to replicate the combined bottleneck estimates can be found in 777 

the GitHub accompanying this paper (https://github.com/lmoncla/ncov-WI-within-host).  778 

Enumerating mutations along the phylogeny  779 

We used the global Nextstrain (53) phylogenetic tree (nextstrain.org/ncov/global) accessed on 780 

February 24, 2021 to query whether mutations detected within-host are detected on the global 781 

tree. We accessed the tree in JSON format and traverse the tree using baltic (56). To determine 782 

the fraction of within-host variants detected on the phylogenetic tree, we traversed the tree from 783 

root to tip, gathering each mutation that arose on the tree in the process. For each mutation, we 784 

counted the number of times it arose on an internal and a terminal node. We then compared the 785 

fraction of times each iSNV identified within-host was detected on an internal node vs. a 786 

terminal node. To determine whether particular iSNVs were enriched at internal nodes, we 787 

compared the frequency of that iSNV’s detection against the overall ratio of mutations arising on 788 

internal vs. terminal nodes in the phylogeny with a Fisher’s exact test.  789 

To query whether iSNVs ever became dominant in tips sampled downstream, we used a 790 

transmission metric developed previously (57). Using the tree JSON output from the Nextstrain 791 

pipeline (53), we traversed the tree from root to tip. We collapsed very small branches (those 792 

with branch lengths less than 1 x 10-16) to obtain polytomies. For each tip for which we had 793 

within-host data that lay on an internal node, i.e., had a branch length of nearly 0 (< 1 x 10-16), 794 

we then determined whether any subsequent tips occurred in the downstream portion of the 795 

tree, i.e., tips that fall along the same lineage but to the right of the parent tip. We then traversed 796 

the tree and enumerated every mutation that arose from the parent tip to each downstream tip. 797 

If any mutations along the path from the parent to downstream tip matched a mutation found 798 

within-host in the parent, this was classified as a potential instance of variant transmission. A 799 

diagram of how “downstream tips” and mutations were classified is shown in Figure 4a.  800 
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Linear regression model  801 

To determine the relative contributions of phylogenetic divergence, geographic distance, clade 802 

membership, and household membership to the probability of sharing within-host variants, we fit 803 

linear regression models to the data in R. As our outcome variable, we performed pairwise 804 

comparisons for each pair of samples in the dataset (including household and non-household 805 

pairs) and compute the proportion of variants shared for each pair. We then model the 806 

proportion of shared variants as the combined function of 4 predictor variables as follows: 807 

Proportion of variants shared ~ β0 + β1x1 + β2x2 + β3x3 + β4x4, where x1 represents a 0 or 1 value 808 

for household, where a 1 indicates the same household and a 0 indicates no household 809 

relationship. X2 denotes the divergence, i.e., the branch length in mutations between tip A and 810 

tip B as a continuous variable, x3 indicates the great circle distance in kilometers between the 811 

location of sample collection as a continuous variable, and x4 denotes a 0 or 1 for whether the 812 

two tips belong to the same clade (same clade coded as a 1, different clade coded as a 0). We 813 

fit a univariate model for each variable independently, a model with an intercept alone, and a 814 

combined model using the Rethinking package in R 815 

(https://www.rdocumentation.org/packages/rethinking/versions/1.59). We perform model 816 

comparison with the WAIC metric and select the combined model as the one with the best fit. 817 

We compute mean coefficient estimates and 95% highest posterior density intervals (HPDI) by 818 

sampling and summarizing 10,000 values from the posterior distribution.  819 

Data and code availability 820 

Consensus genomes have been deposited in GISAID with accession numbers available in 821 

Supplemental Table 1. Raw Illumina reads are available in the Short Read Archive under 822 

bioproject PRJNA718341. All raw Nanopore reads are available in the Short Read Archive 823 
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under bioproject PRJNA614504. All code used to analyze the data and generate the figures 824 

shown in this manuscript are available at https://github.com/lmoncla/ncov-WI-within-host.  825 

Statistical analysis 826 

Throughout the manuscript, we have opted to show individual data points rather than summary 827 

statistics whenever possible, and to include measures of spread for estimated variables. For the 828 

test comparing the frequency of iSNVs on internal nodes and tips on the phylogeny, we 829 

evaluate these ratios with Fisher’s exact tests. To test whether putative household transmission 830 

pairs share more variants than expected by chance, we devise our own permutation test. We 831 

construct a null distribution by computing the proportion of shared iSNVs between randomly 832 

selected pairs of individuals 10,000 times, and report true pairs as sharing a statistically 833 

significant proportion of variants at an alpha of 0.05 if they fall in the upper 5% of random pairs 834 

in the null distribution. We present both the null distribution and distribution to true values, along 835 

with a line indicating the 95th percentile for completeness. For the regression analysis, we use a 836 

Bayesian implementation of multiple linear regression in R. Each predictor variable was 837 

evaluated in a univariate model as well as in the combined, multivariate mode, and models were 838 

compared using an information criterion (WAIC) that penalizes additional parameters. Estimated 839 

coefficient values, along with the estimated variance and intercept, for the multivariate model 840 

are shown as the computed mean with the 95% highest posterior density interval (HPDI) to 841 

express the spread of the results.  842 

 843 

 844 
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