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Abstract

Agricultural soils harbor rich and diverse microbial communities that have a deep 

influence on soil properties and productivity. Large scale studies have shown the impact

of environmental parameters like climate or chemical composition on the distribution of 

bacterial and fungal species.  Comparatively, little data exists documenting how soil 

microbial communities change between different years. Quantifying the temporal 

stability of soil microbial communities will allow us to better understand the relevance of 

the differences between environments and their impact on ecological processes on the 

global and local scale. 

We characterized the bacterial and fungal components of the soil microbiota in ten 

vineyards in two consecutive years. Despite differences of species richness and 

diversity between the two years, we found a general stability of the taxonomic structure 

of the soil microbiota. Temporal differences were smaller than differences due to 

geographical location, vineyard land management or differences between sampling 

sites within the same vineyard. Using machine learning, we demonstrated that each site

was characterized by a distinctive microbiota, and we identified a reduced set of 

indicator species that could classify samples according to their geographic origin across

different years with high accuracy. 

Importance

The temporal stability of the soil microbiota is important to understand the relevance of 

the differences that are found in response to a variety of environmental factors. By 

2

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.442071doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.442071
http://creativecommons.org/licenses/by-nc-nd/4.0/


comparing fungal and bacterial microbiota from samples collected in the same sites in 

two consecutive years, we found a remarkable stability of both components, with 

characteristic differences between bacteria and fungi. Our work fills an important gap 

toward the definition of a microbial cartography of agricultural soils.
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Introduction

Soils are colonized by complex and still poorly characterized microbial communities, 

that constitute a large fraction of the Earth biomass [1], [2]. Thanks to recent 

technological advancements, cultivation-free approaches have provided a first picture of

the diversity of the soil microbiota, although significant knowledge gaps still exist [3], [4]. 

These studies have shown that soil, together with the plant rhizosphere, is host to the 

most diverse amongst free living and host-associated microbial communities [5]. 

A large amount of work has been devoted to the understanding of the ecological factors 

that drive the composition of soil microbial communities and global scale studies have 

shown that a relatively small number of ubiquitous taxa dominate the bacterial 

component of the soil microbiota [6], [7]. Studies on the global distribution of fungal 

communities show significant diversity that correlate with geography, while a small 

number of generalist fungal taxa are widespread in the global soil fungal communities 

[8], [9]. Niche differentiation of soil bacterial and fungal communities is associated with a

combination of geographical and environmental variables that often influence their 

diversity in a contrasting way [3]. 

Metagenomic characterization of soil microbial communities have received special 

attention in the context of grape cultivation and wine making [10]. The distinct sensory 

characteristics that distinguish wines from different regions are the product of a large 

number of physical and biological factors; amongst these, several studies have 

documented the role of soil microbial communities [11][12] in determining the microbial 

contribution to the regional differentiation of wine, in an attempt to define a microbial 
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“Terroir” and how this is influenced by climatic and geographic factors, and 

management [13],  [14]. Despite the fact that, in order to define a microbial contribution 

to regional characteristics of cultures such as wine, the dynamics of soil microbiota over

extended periods of time must be limited compared to differences due to other 

environmental variables, like, e.g. location, climate, or soil chemical characteristics, few 

studies have addressed the stability of soil microbial communities over time [1]. Studies 

tracking the variations of soil bacterial communities in different seasons within one year 

have shown that bacterial communities vary more across land uses than time [15,16]. 

However, despite the community modifications due to the seasonal changes and / or 

due to the plant growth cycle, few data are available regarding the stability of bacterial 

and fungal communities colonizing soil over consecutive years and how variations 

between years compare to the variability induced by land management or geographic 

location [17][18][19] . 

In a previous work, we have used a metabarcoding approach to characterize the 

bacterial and fungal microbiota of vineyard soils in the Italian Trentino region, finding 

that land use and location concurrently shape the soil microbiota, with characteristic 

differences between the bacterial and fungal components [20]. Here, we examine in 

depth the stability of the soil microbiome across two consecutive years. We show that in

both bacterial and fungal communities the variability between the two years is 

significantly smaller than that related to locations and land use. The majority of bacterial

species in each site was present in both years, that differ mainly in the 

presence/absence of rare taxa. For fungi, we found that in each site a large fraction of 

taxa with high abundance were present only in one of the two sampling years. Using 
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machine learning we found that a predictor trained on the distribution of taxa in 2017 

could classify 2018 samples according to their origin both for bacteria and fungi, 

showing that both components of the microbiota are highly associated with the 

geographical origin of the soil.

Results

After preprocessing and filtering we obtained 10,924,706 16S V4 sequences and 

14,672,492 ITS1 sequences, respectively, that were denoised into 30,869 SVs for 

bacteria and 14,099 SVs for fungi. The samples were rarefied to 15,000 reads per 

sample, both for Bacteria and Fungi, obtaining a dataset of 5,220,000 reads and 30,815

SVs from 348 samples for 16S and 5,115,000 reads and 14,021 SVs from 341 samples 

for ITS.

We compared the relative abundances of SVs across samples collected in the same 

sampling sites in 10 vineyards from 4 different locations situated in the Adige valley in 

the northern Italian region Trentino [20]. In each vineyard, 6 soil samples were collected

between May 4th and May 18th, 2017, and between May 7th and May 24th, 2018, in 3 

sampling points, namely between the rows (V) and in the perennial crop area at a 

distance of 8 (P1) and 16 (P2) meters from the border of the vineyard in each of the two

consecutive sampling years. Comparing the meteorological data from 4 meteorological 

stations located in close proximity of the vineyards, we found that 2018 was 

characterized by a higher amount of accumulated rain than 2017 (Supplementary 
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Figure S2). 

Diversity and Richness of soil microbiota in two consecutive years

Although most taxa had significant shifts in their relative abundance, we found a general

stability of the overall structure of the bacterial microbiota at high taxonomic levels 

(Figure 1a). In both years the most abundant Phylum was Acidobacteria, followed by 

Proteobacteria in 2017 and Actinobacteria in 2018. The different proportions of 

Proteobacteria and Actinobacteria  was the only major difference between the two 

consecutive years at the Phylum level. At the Family level, the most abundant in both 

years were Gp6, followed by Nitrosospheraceae and Planctomycetaceae 

(Supplementary Figure S3a). The stability of the bacterial component of the microbiota 

between the two years was evident by comparing the relative abundance of each 

Genus separately in each site (Fig. 1b). Confirming the results at the Phylum level,  

Genuses of the Phyla Actinobacteria and Thaumarcheota clustered above the diagonal,

while Genuses of the Phylum Proteobacteria were more numerous below the diagonal. 

For fungi (Figure 1c), we found that in both years the dominant component of the 

microbiome was represented by Ascomycota, that accounted for more than 50% of the 

soil mycobiota, followed by Zygomycota and Basidiomycota. At the Family level, the 

most abundant in both years were Mortierellaceae followed by Nectriaceae and a family

of unidentified Ascomycota (Supplementary Figure S3b). However, the degree of 

correlation between 2017 and 2018 relative abundances at the Genus level was lower 

than in Bacteria, as shown by the more dispersed distribution in Fig. 1d.  

To characterize the changes in the structure of the soil microbiome between the two 
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years, we compared the diversity and richness of the microbial populations separately 

for Bacteria and Archaea and for Fungi in both years for each location and land 

management using the Chao1 estimator of the number of SVs present in the sample, 

the Shannon entropy, the Simpson index of diversity and Faith’s phylogenetic diversity 

(Figure 2 and Supplementary Figure S2). 

Bacteria and Archaea

Using a generalized linear model that accounts for differences between locations and 

land management  (see Methods and Supplementary Materials), we found that the 

Chao1 estimator and Faith’s phylogenetic diversity were significantly higher in 2018 

compared to 2017 (p-value < 2e-16 for both), while Simpson index was 

significantly lower in 2018 (p-value=9.26e-4) and there was no significant difference in 

Shannon entropy. These results were confirmed by a pair-wise comparison of  the 168 

sites for which we had samples both in 2017 and 2018 (p-value < 2.2e-16 for Chao1,  < 

2.2e-16 for Faith’s PD , and 2.47e-05 for Simpson index, respectively, one-tailed paired 

Wilcoxon rank-sum test). Again, the differences in the Shannon entropy between the 

two years were not significant. 

The consistently higher value of the Chao1 estimator of species richness and of Faith’s 

phylogenetic diversity across all sites suggests that in each site there was a higher 

number of SVs that were present only in 2018 samples than of SVs that were present 

only in 2017 samples. To test this hypothesis, we computed, for each sampling site, the 

number of SVs that were specific to one of the two years and of those that were present
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in both (Figure 3a). We found that in most cases there was a higher number of SVs that 

were present only in 2018 than of SVs that were specific to 2017 (Supplementary Table 

4). However, the year-specific SVs had a much lower relative abundance than SVs that 

were present in both years (Figure 3a), showing that the higher richness of 2018 

samples was mainly due to rare taxa, i.e. to taxa that are present with a low number of 

individuals in each sample. Concerning the taxonomic distribution of year-specific and 

shared SVs ( Figure 3b), we found that Acidobacteria and Actinobacteria, the two Phyla 

with the highest relative abundances (Figure 1a), had a higher number of taxa that were

shared between the two years than of year-specific taxa, while the number of year-

specific SVs was similar to the number of shared SVs for Proteobacteria, and higher 

than the number of shared SVs for Planctomycetales and Bacteroidetes. Proteobacteria

was the phylum with the highest number of SVs that were present only in one of the two

years in any given sampling site.

Fungi

As for Bacteria, we compared the alpha diversity of fungal communities using a 

generalized linear model that accounts for differences between locations and land 

management. We found that the Chao1 estimator of species richness was not 

statistically different  between the two years while we found a significantly higher Faith’s

phylogenetic diversity, although with high p-value (p-value=0.04924). These results 

were probably due to inconsistent variations across the different locations (Figure 2b). 

Indeed, while there were locations in which samples from 2018 had consistently higher 

Chao1 estimators for alpha diversity and Faith’s phylogenetic diversity across land 

management (e.g. PT12), in other cases the reverse was true, i.e. the Chao1 estimator 
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of alpha diversity and Faith’s phylogenetic diversity of samples form 2018 were 

consistently lower that for 2017 across land management (e.g. PT16). On the other 

hand, we found that both the Shannon entropy and Simpson diversity index were higher

in 2018 compared to 2017 (p-value <2e-16 and  2.06e-3, respectively). A pairwise 

comparison of the 161 sampling sites that, after rarefaction, had samples both in 2017 

and 2018 confirmed that the increase of both Shannon entropy and Simpson diversity 

index was significant (p-value 3.7e-15 and 2.8e-08, respectively, one-tailed paired 

Wilcoxon rank-sum test). 

Another striking difference between the fungal and bacterial component of the soil 

microbiome was evident by comparing the distribution of the abundances of the year-

specific SVs (Figure 3c). In fungi, the SVs that were present only in one of the two years

in each sampling site had a distribution of relative abundances that was similar to that of

SVs that were conserved across years, including not only rare taxa, but also taxa with 

high relative abundances (Figure 3c), while in bacteria SVs present only in one of the 

sampling years included only SVs with a low relative abundance (Figure 3a). The 

taxonomic distribution of the year-specific and shared SVs (Figure 3d) showed that the 

Phylum Ascomycota had, in both years, a number of year-specific SVs that was 

comparable to the number of SVs that were present in both years, while the Phylum 

Basidiomycota was dominated by year-specific SVs. Interestingly, we found that in 2018

there was a general increase of the number of SVs from the Phylum Glomeromycota 

(Figure 3d). Indeed, the number of SVs from this Phylum that were specific to 2018 was

higher both than the number of SVs specific to 2017 and the number of SVs that were 

present in both years.
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Soil microbiota maintain distinctive, site-specific characteristics 

across times.

In order to characterize the relative importance of sampling site, location, land 

management and year of sampling to determine the differences between the samples, 

we computed the Bray-Curtis dissimilarity amongst all samples for Bacteria and Fungi. 

A PcoA analysis  (Figure 4a) shows that while the different years induced some 

variability amongst the samples both for Bacteria and Fungi, samples still grouped 

according to location, suggesting  that the variability between two consecutive years 

was comparable to the variability between the different samples from the same location 

and land management. 

To quantify the relative importance of the different factors of the experimental design, 

namely sampling site, location, land management and year to determine the 

differentiation of the soil microbiota, we compared the distributions of the Bray-Curtis 

dissimilarities between pairs of samples where only one of the factors was varied, while 

all the other were held constant. The comparisons were between: i) samples from the 

same location, sampling site (and thus land management) and different year; ii) 

samples from the same location, year and different land management; iii) samples from 

the same land management, year, and different locations. These were compared with 

the dissimilarities between technical replicates. For both Bacteria and Fungi (Figure 5), 

the factors determining dissimilarity were, in growing order of importance, sampling site,

year of sampling, land management and sampling location. All differences were 

statistically significant (Supplementary Table 4).

11

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.442071doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.442071
http://creativecommons.org/licenses/by-nc-nd/4.0/


We used a Machine Learning approach to verify if the structure of the soil microbiota of 

each location maintained a set of organisms that distinguished it from the other 

locations and if these characteristic organisms were stable across different years. 

Specifically, we trained a set of classifiers based on Support Vector Machines that used 

the relative abundances of Bacteria and Fungi, respectively, to predict the location 

where a given sample had been collected. Using a cross-validation approach on 2017 

data, we estimated that the mean expected Classification Accuracy (CA) was 0.989 

(SD=0.0155; median 1.00) for Bacteria and 0.951 (SD=0.0267; median 0.948) for Fungi.

We then trained one classification model for Bacteria and one for Fungi using all 2017 

data, and used these models to predict location provenance of 2018 samples. We found

that the CA of the 2018 samples was 1.0 for Bacteria and 0.96 for Fungi, showing that 

soil microbiota is highly associated with sampling location and that this association is 

stable over time. 

In order to identify a reduced set of site-specific SVs that could be used to classify the 

samples according to their origin across different years, we used a three step 

procedure: i) first, we used the coefficients of the 2017 SVM models to rank the SVs in 

order of importance according to their contribution to the site classifier; ii) next, including

the SV starting from the most relevant, we estimated how the CA depended on the 

number of included SVs using a cross-validation approach on the 2017 samples; iii) 

third, we used the same reduced set of SVs to predict the provenance of the 2018 

samples using predictors trained on the 2017 samples. Using this procedure, we 

defined the set of SVs that characterize a given site as the minimal set for which the CA
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for the 2018 samples predicted using 2017 data exceeded the 25th percentile of the 

cross-validation expected CA. The 2017 expected CA (step ii), Figure 5) monotonically 

increased as a function of the number of included SVs to a mean value of 0.984 

(median 0.983) for Bacteria and 0.93 (median 0.931) for Fungi using 40 SVs per site. 

The CA for 2018 samples was lower than the 2017 expected CA for the lower values of 

the number of included SVs, and exceeded the 25th percentile of the expected CA 

when more than 15 SVs per site were used for Bacteria, and 10 for Fungi. These were 

the minimal set of Bacterial or Fungal SVs for which the provenance of  2018 samples 

could be predicted using 2017 samples as training with performances that were similar 

to the cross validation expected value on a single year.  Interestingly, the predictive SVs

belonged to a limited number of taxa both for Bacteria and Fungi. Indeed, while 44/150 

predictive bacterial SV could not be classified at the Genus level, the remaining 106 

spanned only 13 Genera, including Spartobacteria incertae sedis, Nitrososphaera, Gp6,

and GP16, which were represented by more than 10 SVs each. Of these, only SVs from

Spartobacteria incertae sedis were discriminant for all sites. For Fungi, 28/100 

predictive SVs belonged to the Genus Mortierella, which was also the only Genus that 

had predictive SVs for all locations. 

Discussion

In the last few years we have witnessed an increasing number of studies that use high 

throughput sequencing and culture-free approaches to study the composition of 
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microbial communities in a variety of environments on a global scale. Thanks to this 

wealth of new data, we are starting to understand the major ecological drivers of 

microbial diversity and we have been able to greatly expand the census of known 

microbial species. The vast majority of the available data are from cross-sectional study 

designs, where environments are sampled across conditions at a given time. Much less 

experimental effort has been devoted to characterizing the stability of the microbiota 

over time, and how the variability due to sampling over different years time compares to 

other factors, like, in the case of soil, geography or land use. Soil bacterial communities 

have been shown to undergo significant shifts when sampling is repeated in different 

months within a year [15][35] In another study sampling contrasting seasons on a large 

spatial scale in wheat croplands across North China Plain, it was found that spatial 

variability was larger than temporal variability both for bacteria and fungi [16]. Inter-

annual rates of community turnover have been shown to be much smaller than 

seasonal changes for fungi [36]. Here, we have sampled soil microbial communities in 

ten locations, in sites with three distinct land managements in each location, over two 

consecutive years.    

Previously we found that the variability of fungal communities patterns were qualitatively

different from what was found for bacteria. Despite the relatively limited geographical 

range sampled, these results were in striking agreement with the dominant role of a 

small number of taxa, in particular from the phylum Ascomycota [9]. Further, we found 

that geographical location, but not land use, had an impact on determining the size of 

the core soil mycobiome, indicating the importance of spatial processes in structuring 

the biogeographic pattern of soil fungal communities [17].
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In this work we explored the effect of different years and studied how the year-to-year 

variability compares with other factors. We found that both for bacteria and fungi the 

differences due to different years were smaller than the differences due to land 

management or geographical location. These results show that, while vintage can 

cause significant shifts in grape microbiota even within small geographical scales [14], 

the soil microbiota of single vineyards is stable across consecutive years, probably due 

to the weaker influence of climate on bulk soil than on the more exposed grape surface.

Comparing the species richness in the same site between two consecutive years, we 

found that there was a systematic difference in bacterial species richness and 

phylogenetic diversity that were consistently higher in 2018 samples regardless of 

location or land management, while for fungi we found that species richness and 

phylogenetic diversity changed in a site-dependent fashion. We found a general 

increase in Shannon entropy and Simpson diversity index for Fungi, indicating a 

decreasing role of the dominant species in the structure of the soil mycobiota in 2018 

compared to 2017. Comparing meteorological data for the two years, we found that 

2018 before the sampling date was characterized by a higher amount of accumulated 

rain compared to 2017. Few data exist regarding the relation between annual amount of

rain and soil microbial richness and diversity, and most existing data report the effects 

of extreme phenomena, like drought or flooding [37]. In a global survey of the topsoil 

microbiota, Bahram et al. found that bacterial taxonomic diversity was negatively 

correlated with the mean annual amount of rain, while an inverse relation was found for 

fungi [3]. However, these data were obtained comparing samples from different 

locations, opening the possibility that these relations are due to general differences 
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between wet and dry environments, and not to the effect of climatic variables alone. 

Here,  by comparing two consecutive years in the same set of locations, we highlight 

the effects of yearly climate differences on soil microbiota. Our results might thus 

indicate a possible scenario in the case of short term climate change. 

When we looked in detail at the composition of the yearly variable bacterial species, we 

found that these were mainly composed by rare taxa, i.e. taxa with low relative 

abundances, while the abundance distribution of yearly variable fungal species was 

similar to the abundance distribution of permanent species. Rare taxa are an integral 

component of microbial communities, that often display a long tail of low abundance 

species [38] , and constitute a reservoir of microbial diversity that responds to 

environmental changes, thus contributing in an essential way to the dynamics of 

microbial communities [39] . Here, we found that a higher number of rare bacterial taxa 

were detected in 2018 compared to 2017, probably due to taxa that were below 

detection limit in samples from 2017, and that, due to different environmental conditions,

grew in relative abundance in 2018. Interestingly, we found that the number of year-

specific SVs was much lower than that of SVs that were conserved across years in 

Acidobacteria and Actinobacteria, the two Phyla with highest relative abundance, while 

was comparable or higher than that of  SVs conserved across years for less abundant 

Phyla, like Proteobacteria and Planctomycetales. 

For fungi, the situation was different. The fungal component of the microbiota had a 

simpler structure, with a smaller number of SVs than bacteria (compare, e.g., the values

of the Chao1 estimator of species richness for Bacteria and Fungi, Figures 2a and 4a) 

and a higher spatial variability over short scales and temporal variability, as shown e.g. 
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by  the different scales in the distance distributions for bacteria and fungi (Figure 5), and

the higher relative abundances of year-specific SVs for fungi compared to bacteria, 

(Figure 3). Thus, the role of stochastic fluctuations appears to be higher for Fungi than 

for Bacteria, with a more prominent role of temporal and spatial fluctuations, probably 

due to the lower complexity of soil fungal communities compared to bacterial 

communities. 

A machine learning approach showed that a classifier trained over 2017 samples were 

able to correctly classify samples from the following year both using Bacterial and 

Fungal relative abundance data, showing that the soil microbiota has characteristics  

specific of the sampling location that are stable over consecutive years. Ranking SVs by

their contribution to the classification, we found that predictive SVs belonged to a small 

number of Bacterial and Fungal genera, among which the most common were 

Spartobacteria genera incertae sedis and Nitrososphaera for Bacteria, and Mortierella 

for Fungi. Spartobacteria are a class of poorly characterized Verrucomicrobia that are 

highly abundant and ubiquitous in soil [40], particularly in grasslands where they appear

to be well adapted to limited nutrient availability [41]. Species belonging to 

Spartobacteria have been found to be indicator species in acidoneutral Antarctic soils 

[42]. Abundance of Spartobacteria has been shown to increase with elevation in pasture

soils in the  Central European Alps [43]. Relative abundance of Spartobacteria genera 

incertae sedis  in the rhizosphere has been found to positively correlate with plant 

growth in replanted apple orchards [44]. Nitrososphaera is a genus of Archaea that has 

been found at high relative abundance in vineyards soils and that contribute to nitrogen 

transformation [45]. Mortierella is a genus from Phylum Zygomycota that includes 
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species of saprotrophs that live in soil. Members of this genus have been shown to be 

ubiquitous and present at high relative abundances in surveys of vineyard soils [46,47].

There are a few technical issues that might impact the results presented here. In 

particular, the presence of relic DNA has been shown to artificially inflate the estimated 

diversity (Carini et al. 2016). Although the effect of relic DNA on richness can act in 

either way depending on the dynamics of DNA degradation and has little effect on beta 

diversity [48], it is reasonable to expect that it can  reduce the size of temporal 

fluctuations in soil microbial communities [49], thus dampening the year-to-year 

variability found in soil samples if the species abundance distribution is different 

between the two years [48]. For this reason, we expect that the systematic differences 

that we found between 2018 and 2017 samples are an underestimate of the real 

variations, and that further extension of the sampling on multiple years will help 

elucidate the impact of climate fluctuations on soil microbial communities. 

It has been suggested that soil microbial communities are a reservoir of grape 

microbiota [14] , and that vineyard soil microbiota could have an impact on wine 

fermentation [10].  It has also been shown that regional varieties of yeasts strongly 

contribute to wine regional characteristics [11], laying the base for the definition of a 

microbial terroir [50]. In order to contribute to the regional diversity of wine, the soil 

microbiota should be stable across different years, and the temporal variability should 

not be so large to wipe out the differences between different sites. We have shown that 

differences between consecutive years are smaller than those due to geographical 

factors even at short length scale, and that the structure of the soil microbiota is a 

signature of the geographical origin of the sample. Using a predictive model, we have 
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shown that these site-specific features of the soil microbiota are stable across years, 

putting the concept of microbial terroir on a firmer ground. 

Materials and Methods 

Sample collection

The sampling sites were identified in 10 vineyards from 4 different locations (Ala, 

Besagno, Mori and S. Felice) because of their contiguity, at least along 20 meters, to 

perennial crop-covered surfaces. The experimental protocol set 3 sampling points 

respectively between the rows (V) and in the perennial crop area at a distance of 8 (P1) 

and 16 (P2) meters from the border of the vineyard [20]. Sampling was conducted in 

two consecutive years (2017 and 2018) in the same season (Supplementary Table 1). 

The dominant grass species in V sites were species belonging to the Poaceae family, 

while in P1 and P2 sites the dominant species were Arrhenatherum elatius, Bromus 

erectus and Trisetum flavescens. For each position 6 equally spaced sampling 

repetitions were performed, for a total of 180 samples for each sampling year. 

Supplementary table 2 shows sites localization and technical characteristics of the 

vineyards (planting year, previous crop). All samples had a similar range of soil texture 

(loam, sandy clay loam, sandy loam and silty loam, see Supplementary Fig S1 ). 

Quantity of soil organic matter (SOM), total nitrogen, total carbonate, and heavy metals 

(Cu and Zn) are reported in Supplementary Table 3. Samplings were executed 
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collecting 20 cm of soil by means of a manual, one-piece, 7 cm diameter drill for loamy 

soils (Eijkelkamp, Edelman model). For chemical analysis and for taxonomic purposes 

of bulk soil the first 5 cm of soil were removed. Each sample consisted of 4 drillings that 

were homogenized in a signed plastic bag. From every one of them, a small volume of 

soil was collected in a 50 ml tube and chilled to 6/8°C during the sampling time after 

which they were frozen at -18°C.

DNA extraction, library preparation and sequencing

The soil samples were freezed, dried and sieved with a 0.2 mm mesh size and stored at

-80 °C until DNA extraction. Total DNA was extracted from 0.25 g of each composite 

soil sample using the PowerSoil DNA isolation kit (MO BIO Laboratories Inc., CA, USA) 

according to the manufacturer’s instructions. Total genomic DNA was amplified using 

primers specific to either the bacterial and archaeal 16S rRNA gene or the fungal ITS1 

region. The specific bacterial primer set 515F (5’-GTGYCAGCMGCCGCGGTAA-3’) and

the 806R (5’-GGACTACNVGGGTWTCTAAT-3’) was used [21] with degenerate bases 

suggested by [22] and [23]. Although no approach based on PCR amplification is free 

from bias, this primer pair has been shown to guarantee good coverage of known 

bacterial and archaeal taxa [24]. For the identification of fungi, the internal transcribed 

spacer 1 (ITS1) was amplified using the primer ITS1F (5’- 

CTTGGTCATTTAGAGGAAGTAA-3’) [19] and ITS2 (5’-GCTGCGTTCTTCATCGATGC-

3’) [25]. All the  primers included the specific overhang Illumina adapters for the 

amplicon library construction.

For the 16S V4 region each sample was amplified by PCR using 25 µl reaction with 1 
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µM of each primer. More in detail, 12.5 µl of 2x KAPA HiFi HotStart ReadyMix and 10 ul

forward and reverse primers, were used in combination with 2,5 µl of template DNA (5-

20 ng/µl). PCR reactions were executed by GeneAmp PCR System 9700 (Thermo 

Fisher Scientific) and the following cycling conditions: initial denaturation step at 95 °C 

for 5 minutes (one cycle); 28 cycles at 95 °C for 30 seconds, 55 °C for 30 seconds, 72 

°C for 30 seconds; final extension step at 72 °C for 5 minutes (1 cycle).

For the ITS1 region each sample was amplified by PCR using 25ul reaction with 10 µM 

of each primer.  More in detail 22 µl of premix FastStart High Fidelity PCR System 

(Roche) and 2µl forward and reverse primers, were used in combination with 1 µl of 

template DNA (5-20 ng/µl). PCR reactions were executed by GeneAmp PCR System 

9700 (Thermo Fisher Scientific) and the following cycling conditions: initial denaturation 

step at 95 °C for 3 minutes (one cycle); 30 cycles at 95 °C for 20 seconds, 50 °C for 45 

seconds, 72 °C for 90 seconds; final extension step at 72 °C for 10 minutes (1 cycle).

The amplification products were checked on 1.5 % agarose gel and purified using the 

Agencourt AMPure XP system (Beckman Coulter, Brea, CA, USA), following the 

manufacturer’s instructions. Afterward, a second PCR was used to apply dual indices 

and Illumina sequencing adapters Nextera XT Index Primer (Illumina), by 7 cycles PCR 

(16S Metagenomic Sequencing Library Preparation, Illumina). The amplicon libraries 

were purified using Agencourtusing the Agencourt AMPure XP system (Beckman), and 

the quality control was performed on a Tapestation 2200 platform (Agilent 

Technologies, Santa Clara, CA, USA). Finally, all barcoded libraries were pooled in an 

equimolar way and sequenced on an Illumina® MiSeq (PE300) platform (MiSeq Control 

Software 2.5.0.5 and Real-Time Analysis software 1.18.54.0).

21

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.442071doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.442071
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bioinformatic processing of the sequences.

The sequences were assigned to samples using sample-specific barcodes and saved in

FASTQ-formatted files. Sequences were deposited to the European Nucleotide Archive

(ENA) with study accession PRJEB31356. Raw data FASTQ files were analyzed using

the software pipeline MICCA [26] v. 1.7.2.

Raw overlapping 16S paired-end reads were assembled (merged) using the procedure

described in [27]. Paired-end reads with an overlap length smaller than 200 bp and with

more than 50 mismatches were discarded. After trimming forward and reverse primers,

merged reads shorter than 250 bp and with an expected error rate higher than 0.5%

were removed. 

Filtered sequences were clustered into sequence variants (SVs) using the UNOISE3

denoising algorithm available in MICCA. OTUs were taxonomically classified using the

Ribosomal Database Project (RDP) Classifier [28]  v2.11. Multiple sequence alignment

(MSA) was performed on the denoised reads applying the Nearest Alignment Space

Termination (NAST)  [26,29] algorithm and the phylogenetic tree was inferred  using

FastTree [30] (v2.1.8).

Raw overlapping ITS paired-end reads were merged and merged sequences with an

overlap length smaller than 100 bp and with more than 32 mismatches were discarded.

After primers trimming, merged reads shorter than 150 bp and with an expected error

rate higher than 0.5% were removed. Filtered sequences were clustered into SVs using

the UNOISE3 denoising algorithm  and SVs were taxonomically classified using the

RDP  Classifier  v2.11  and  the  UNITE  [31] database.  To  compensate  for  different

sequencing depths, samples were rarefied to an even depth of 15,000 reads for both
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16S and ITS sequences. Samples with less than the minimum number of reads were

discarded.  Prior  to  rarefaction,  sequencing reads from control  runs (see section  on

Technical  replicates)  were  merged  with  actual  runs  for  those  samples  that  were

sequenced multiple times. Since P2 sampling sites of neighbouring PT05 and PT15

sites  coincide,  a  single sequencing run was used for  both PT05 and PT15 sites in

diversity and distance calculations. These samples were not considered in the training

and validation of the SVM classifiers.

Technical replicates 

Soil samples from 2017 and 2018 were sequenced in different times in several 

sequencing runs. To exclude that batch effects could affect our estimates of the 

differences between the richness and composition of the soil microbiota in the two 

different years, and of the relative importance of time, sampling site, and land use,  we 

resequenced 10 samples from 2017 and 10 from 2018, one for each location, in a single

sequencing run (hereinafter, for brevity, “control run”), and compared alpha and beta 

diversity indexes between these control samples and the corresponding actual samples.

We found (see Supplementary Material) that there was a good degree of correlation 

between observed number of SVs, Chao1 estimator of species richness, Shannon 

entropy and Simpson diversity index in control and actual samples for Bacteria, and, to 

a lower degree due to higher sensitivity to rarefaction, for fungi. For beta diversity, the 

Bray Curtis dissimilarities between pairs of actual samples were always highly 

correlated with the dissimilarities between corresponding pairs of control samples, with 

minimal variance introduced by rarefaction.
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Statistical analysis of the data.

Biom files and rooted phylogenetic trees (used in the calculation of beta diversity) were

imported  into  R  v4.0.0  using  the  phyloseq package  [32] v1.32.0  for  downstream

statistical analysis. Alpha diversity was calculated using the Chao1 estimator  [33] and

the  Shannon  entropy  [34].   Generalized  linear  models  for  alpha  diversity  were

determined using the  glm function in R. Contrasts were calculated using the package

emmeans v1.5.3. Beta-diversity was calculated using  the Bray Curtis distance. 

Linear  kernel  Support  Vector  Machines  encoded  the  LiblineaR  v2.10-8  software

package were trained using the R package mlr3 v0.8.0 through the mlr3extralearners

v0.1.0 interface. Classification Accuracy was estimated by 50 folds cross validation by

random splitting the dataset in 2/3 training and 1/3 test set. Tuning of the C parameter

of the SVM was accomplished in each iteration using an inner 3-fold cross validation

loop. Parameter search space was C=0.01,0.1,1,10,100,1000.

Meteorological data

Meteorological  data  from  the  sampling  areas  were  recorded  daily  in  four  stations

located in close proximity of the vineyards ( see Supplementary Informations). Based on

location, the association between meteorological stations and sampling locations was

as follows: Station 1 - Part05, Part09, Part12, Part15; Station2 - Part03, Part11, Part16,

Part17; Station 3 - Part13; Station 4 - Part01.

Availability of data and material
Raw sequencing data along with geographical and physico-chemical information are 
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available at the European Nucleotide Archive (https://www.ebi.ac.uk/ena) under the 

study id PRJEB31356. Meteorological data are available as supplementary material.
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Figure 1. a) Relative abundance of most abundant bacterial phyla in two consecutive 

years. b) scatter plot of the relative abundances of bacterial SVs in 2018 vs 2017. Each 

dot represents a bacterial genus in a given site, and horizontal and vertical coordinates 

are the relative abundances in 2017 and 2018, respectively. The straight line is the 

bisectrix of the first quadrant. c) same as a), for fungi. d) same as b, for fungi.

Figure 2. Richness and diversity of the bacterial a) and fungal b) components of the 

microbiota.
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Figure 3. a) Number of bacterial Svs that, in a given site, were present only in one of 

the two years or in both, stratified by phylum. b) Number of bacterial Svs that, in a given

site, were present only in one of the two years or in both, as a function of their 

abundance. c), d)  Same as a), b), for fungi.
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Figure 4. a) Left panel:PCoA of the Bray-Curtis dissimilarity for bacteria;  Right panel: 

boxplots of the between-samples Bray-Curtis dissimilarities between pairs of samples 

for bacteria. In all comparisons only one factor is different, while all others are held 

constant. b) same as a), for fungi.
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Figure 5. a) Left panel: Red dots are the prediction accuracy on the 2018 samples by a 

SVM trained over 2017 samples as a function of the number of selected bacterial SVs 

per site. The boxes are the cross-validation expected value of the accuracy of the SVM 

over the 2017 samples. The blue circle marks the minimal number of features that are 

needed for a 2018 prediction with an accuracy similar to the 2017 cross validation 

value. Right panel: Number of predictive SVs (corresponding to the blue dot in the left 
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panel) classified at the Genus level. Only genera with at least two predictive SVs are 

shown. b) Same as a), for Fungi.
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