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Abstract: 
The availability of large-scale biobanks linking rich phenotypes and biological measures are a 
powerful opportunity for scientific discovery. However, real-world collections frequently have 
extensive non-random missing data. Machine learning methods are able to predict missing data 
but performance is significantly impaired by block-wise missingness inherent to many biobanks. 
To address this, we developed Missingness Adapted Group-wise Informed Clustered LASSO 
(MAGIC-LASSO) which performs hierarchical clustering of variables based on missingness 
followed by sequential Group LASSO within clusters. Variables are pre-filtered for missingness 
and balance between training and target sets with final models built using stepwise inclusion of 
features ranked by completeness. This research has been conducted using the UK Biobank 
(n>500k) to predict unmeasured Alcohol Use Disorders Identification Test (AUDIT.) The 
phenotypic correlation between measured and predicted total score was 0.67 while genetic 
correlations between independent subjects was >0.86, demonstrating the method has significant 
accuracy and utility.  
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Introduction: 
Biobanks are large-scale high-dimensional collections of biomedical information offering 

significant opportunities for scientific discovery, with many collections containing thousands of 
data points on tens of thousands of individuals. Many biobanks collect biospecimens and 
perform genome-wide assessments of genetic variation and increasingly other omic measures 
such as gene expression, epigenetic modifications, and proteomics which allow comprehensive 
agnostic investigations of the relationships between complex human diseases and traits with 
genetic and environmental influences. These powerful resources are increasingly accessible to 
the larger scientific community facilitating novel investigations and discovery. The breadth of 
phenotypes in biobanks represents an opportunity for machine learning (ML) approaches to 
further discover unexpected relationships complementing directed a priori hypothesis testing. 
However, the scale of biobanks also presents challenges including significant missing data, much 
of which is non-random. 

There is a growing list of available biobanks for scientific discovery including the UK 
Biobank1 (UKB) which has enrolled over half a million UK residents, all of whom provided 
biological samples for genotyping. Volunteers in the UKB also provided access to their 
electronic health records, hospitalization records, biological samples, and answers to survey 
questions regarding diet, lifestyle habits, and mental health; phenotypic measures available to 
link with genetic measures total in the thousands. In the US, the National Institutes of Health is 
funding the All of Us2 biobank effort, which has enrolled nearly 25% of its goal of one million 
participants who will provide biological samples, genotypic data, electronic health records, and 
answers to several series of survey questions. Similarly, BioBank Japan3 has sampled over 
200,000 participants with one of 47 common diseases and collected genetic information along 
with health records and other phenotypic information. Many additional biobanks are currently 
available to researchers and construction of new biobanks continues, motivated in part by the 
necessity of collecting large sample sizes to study the genetics of complex traits. 
 Structural characteristics in biobanks present challenges for data analysis. Many biobanks 
do not administer every test or survey to each participant, as budget considerations, for example, 
often dictate how many participants receive more costly testing, such as imaging. In order to 
mitigate dropout and participant fatigue, a subset of questionnaires may be sent to each 
participant; requests for participation in a particular survey may have been sent to a portion of 
subjects and only a subset of those were returned. Similarly, subsets of subjects may be chosen to 
participate in additional surveys according to previous responses, where the decision logic for 
these selections may not be clear or available to researchers. These practices, while pragmatic for 
cost and volunteer retention, may result in widespread, block-wise missingness across the full 
biobank, in which large subsets of the full sample have completely missing values for a portion 
of question categories. This missingness is non-random across the full set of available measures 
in the biobank such that no subset of subjects with complete information exists in the sample. 

Missingness patterns can severely limit the power for epidemiological and genetic 
analyses of any single trait. Traditionally, data missingness can be addressed through imputation 
where a missing-at-random structure can be reasonably assumed. Some commonly used 
approaches include k nearest neighbors4 or Multivariate Imputation by Chained Equations5 
(MICE). These methods borrow information across the available data to infer missing points, but 
because biobank missingness is generally pervasive across all phenotypes and often decidedly 
non-random, these traditional imputation methods are not appropriate for filling in the missing 
values. Where imputation is inappropriate, row-wise deletion is sometimes employed to drop 
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subjects who have missing observations. However, given the block-wise nature of biobank 
missingness, this sort of deletion can render the dataset many orders of magnitude smaller. Given 
the phenotypic depth of the biobank, there is an opportunity to apply ML methods to leverage the 
existing data to predict missing values. Utilization of ML, or “data mining,” as it is often called, 
has continued to rise across many applications including genetics. For example, the 
PsychENCODE project6 employed deep learning techniques to predict functional ramifications 
in the brain of genome-wide association study (GWAS) hits associated with psychiatric 
disorders. Advances in technology and cloud resources continue to ease the computational 
burden of applying ML methods to high-dimensional genomic data with many of the machine 
learning methods themselves based in statistical techniques long established theoretically and 
proven empirically7. 

A subset of ML approaches have been adapted to account for some level of predictor 
missingness and applied to missing phenotype imputation. MI-LASSO8, for example, integrates 
Multiple Imputation (MI) of missing predictors with the Least Absolute Shrinkage and Selection 
Operator (LASSO) for a hybrid approach applicable where missingness may be assumed to be 
random. PhenIMP9 and extensions10 use related phenotypes to impute a difficult to collect 
phenotype in order to boost power. While PhenIMP can impute using only summary information 
from other phenotypes, it relies on distributional assumptions which make the approach 
impractical where many phenotypes are categorical and do not conform to such assumptions. 
Similarly, the PHENIX11 method was designed to impute missing phenotypes in a Bayesian 
framework in the presence of other informative data but also requires distributional assumptions 
and does not drop non-informative input measures, thereby prohibiting variable selection. Other 
approaches developed by Yuan et al.12 and expanded upon by Xiang et al.13 specifically 
addresses block-wise missingness structures with a focus on imputing entire blocks of missing 
data, specifically where neuroimaging data is present. While innovative and effective for 
applications involving a small number of well-defined blocks of data, this method is not 
applicable to the structure of large-scale data wherein the blockwise missingness patterns are 
highly inconsistent across subjects and the number of blocks is large. 

Given the variety of available ML approaches and characteristics of biobanks, there is 
significant need for an ML solution for imputing missing phenotypes which collectively (1) is 
capable of including categorical and/or non-normally distributed predictors, (2) produces 
interpretable models, (3) incorporates penalization or variable selection such that it could be 
generalizable, and most importantly, (4) is applicable and robust in the presence of non-random, 
blockwise missingness. While many traditional ML methods could satisfy the first three 
interests, most are intolerant to missingness in the predictors, precluding out-of-the-box 
application of available methods.  
 As a proof of principle, we selected the UKB to serve as an example application of our 
proposed ML method. The data freeze (UKB Application 30782, approval date Sep 3, 2018, 
using data baskets created  Sep 28, 2019 and May 20, 2019) contained 9,613 phenotypes on 
502,536 subjects. We chose the Alcohol Use Disorders Identification Test (AUDIT) survey from 
UKB as our target outcome which was directly measured in 157,162 (31.2%) participants. Here, 
we describe a novel ML approach and demonstrate its usefulness in leveraging thousands of 
measured phenotypes in order to predict an unknown, unmeasured phenotype and show how this 
predicted outcome boosts power for downstream analyses including GWAS and cross-trait 
genetic correlation studies. 
Results: 
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MAGIC-LASSO: 
We developed an adaptation of the Group Least Absolute Shrinkage and Selection 

Operator (Group-LASSO) machine learning method for penalized regression to address the 
shortcomings of existing, software-implemented ML methods for predicting phenotypes in the 
presence of non-random, blockwise missingness named the Missingness Adapted Group 
Informed Clustered (MAGIC)-LASSO. 
LASSO background: 

As a member of the family of penalized regression ML techniques, the LASSO14 is well 
established and popular. Often presented in the context of the elastic net15 formulation, the 
general formula for the LASSO may be found under the linear regression paradigm by estimating 
the values which minimize: 
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where there are 𝑖 = 1,… ,𝑁 total participants, 𝑦$ represents outcome observation 𝑖 and 𝑥$& is a 
vector of predictors. The 𝜆 is a tuning parameter that adjusts the amount of shrinkage 
(penalization) applied to the model and 𝛼 mixes the 𝐿! and 𝐿" penalties, where: 
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such that when 𝛼 = 1, the formula becomes the LASSO and when 𝛼 = 0, the formula becomes 
ridge regression16; mixing the two parameters using 0 < 𝛼 < 1 results in the classic elastic net 
design. The nature of the ridge penalty prevents any coefficient estimate to shrink to exactly 
zero, making it more useful for addressing multicollinearity than dimension reduction, while the 
LASSO encourages sparsity and the coefficients of some covariates are allowed to shrink to 
exactly zero, making it a useful tool for variable selection. The mixing parameter is generally 
chosen by the user and set for the duration of the experiment. Where the overarching goal is to 
identify a parsimonious set of covariates from a large pool which may accurately approximate an 
outcome, setting 𝛼 = 1 is generally appropriate because the LASSO is well suited to achieve 
this. The tuning parameter (𝜆) is best chosen through cross-validation, a method by which a 
single observation is held out during the fitting process and the resulting model used to predict 
the outcome of the left-out observation. Repeating this process for every observation in the 
dataset allows for the calculation of a mean error rate of prediction. The lambda associated with 
the model with the smallest mean error rate of prediction is generally the best model7. 
Group LASSO background: 

In traditional LASSO, categorical covariates can be included by coding them according 
to a numerical scale. This is not ideal, as it assumes equal spacing between and inherent ordering 
within categories17. A solution to this is to dummy-code the 𝑘-level categorical measures by 
augmenting the representation of a single variable into 𝑘 − 1 binary variables. However, 
traditional LASSO treats each of these as individual measures which may result in shrinkage of 
some but not all categories within a single covariate, rendering interpretation of selected 
variables difficult. The Group LASSO18  was developed to encourage sparsity at the factor level, 
such that all categories of a given variable are included or excluded from the model as a set. The 
Group LASSO is found as the solution to: 
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In the simplest form, 𝐾. can be an identity matrix, but it may take a variety of forms. To fit a 
model within this framework, each categorical variable must be expanded into binary dummy-
coded columns. Our MAGIC-LASSO approach utilizes the conventional Group-LASSO fitting 
algorithm, but applies it in an innovative, iterative manner in order to overcome the challenges of 
the blockwise missingness design. 
MAGIC-LASSO Overview:  

In brief, MAGIC-LASSO procedure involves (1) Characterizing missingness, (2) filtering 
variables for general missingness and for balance across training and target sets, (3) variable 
clustering based on missingness, (4) iterative Group-LASSO and variable selection within 
clusters, and (5) cross cluster model building with variables prioritized by informativeness. 
Figure 1 describes the flow logic of the MAGIC-LASSO. 
Characterizing missingness and general filtering: This first step is to create a subset of variables 
suitable for downstream investigation. This includes removing potential predictor variables that 
are (a) excessively sparse (>80% missingness), (b) categorical with excess, sparse levels such as 
ICD codes in a collapsed matrix format, (c) unstructured where the format is inappropriate for 
modeling, such as free text, date values, or array variables, or (d) invariant. After initial filtering, 
we identify and remove variables for which missingness patterns were highly skewed between 
prediction and training sets for the outcome of interest. Due to blockwise missingness, there may 
be variables which pass the first filtering step but are not informative in the target dataset. In 
other words, where data completeness is highly correlated with the variable of interest. This is 
not to be confused with correlation among the phenotypic measures themselves, which is 
generally not of concern since the LASSO procedure more capable of handling many measures 
with varying degrees of collinearity than traditional linear regression7. 
General background on ML training and test sets:  

This filtering step relies on the identification of a so-called measured set, also referred to 
here as a training set, the subset of subjects with the primary outcome measured, and an 
unmeasured set, or a prediction set, the remaining subjects for whom the outcome of interest was 
unmeasured and for whom the ML procedure will predict the missing phenotype. Figure 2 
illustrates an example of how a dataset may be subdivided into these measured and unmeasured 
sets. 
Balancing:  

When training an ML model to predict unmeasured variables, the learning occurs on the 
subset of data for which complete observations are available, i.e., the measured, or training set 
and is then implemented in the unmeasured, or the prediction set. The algorithm learns how to 
predict unobserved data by modeling patterns that exist in observed data. Where certain variables 
are largely measured in conjunction with the primary outcome of interest in the training set but 
are largely unmeasured in the prediction set, an ML algorithm which relies on these measures for 
prediction will perform poorly, since the inputs will be largely missing. 
For a given experiment, partition the total number of observations into those in the measured and 
unmeasured sets 𝑁23456738 + 𝑁6923456738 = 𝑁:;:4< and for each additional phenotype 𝑘, 
quantify 𝑛=,23456738 and 𝑛=,6923456738 the number of observations present in 𝑁23456738 and 
𝑁6923456738, respectively. Then calculate a filtering parameter: 

𝜏= =
9#,%&'()*&+

#%&'()*&+
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where 𝜏= represents the ratio of the proportion of observations present in the measured set to the 
proportion of observations present in the unmeasured set, for phenotype 𝑘. Plotting is helpful to 
determine empirically a useful cutoff for 𝜏 = 𝑡. 
Clustering:  

The Group-LASSO, like many ML procedures, cannot accommodate missing data and 
relies on row-wise deletion of observations where one or more variables are missing. One 
strategy to mitigate reduction in sample size from requiring complete information across all 
covariates is to segregate the variables into blocks according to patterns of missingness and apply 
the ML procedure within that subset of measures. In the MAGIC clustering step, variables are 
grouped to minimize missingness while maximizing sample sizes in order to optimize 
downstream within-cluster prediction performance. First, pairwise observation counts for every 
pair of phenotypic variables are calculated.  Using this pairwise count matrix, we calculated the 
Euclidean distance of these measures to feed into an average-linkage agglomerative hierarchical 
clustering procedure to discover the inherent groupings of variables based on missingness. This 
clustering procedure begins with each variable in its own cluster and proceeds by combining two 
clusters for each step until all variables reside in a single cluster. The clustered tree may be cut at 
some point to obtain the clustering assignments. Exact height for cutting is determined 
empirically by examining mean observation count per variable in the cluster, number of variables 
in the cluster, and the number of complete cases for that subset of measures. 
Iterative Group-LASSO:  

The cut tree provides groups of variables within which the complete data observation 
count is maximized. Limiting each cluster to only the complete data therefore, the Group-
LASSO is applied to each cluster individually. Each model utilizes 𝑘-fold cross-validation to 
choose the penalty term with minimal prediction error and variables in each model were retained 
if they achieved non-zero effect estimates, where 𝑘 is chosen to be small and approaching 𝑛, 
with consideration of computation resources. After applying the Group-Lasso to each cluster, 
variables retained by each model are aggregated across clusters, as illustrated in Figure 3. The 
set of aggregated, retained variables is then re-clustered using the same hierarchical clustering 
procedure and the Group-Lasso applied to each cluster. With each successive iteration of the 
clustering and Group-Lasso application, the phenotype space shrinks as the measures most 
predictive of the outcome are retained across iterations and the less-informative measures are 
dropped. Figure 1 illustrates the flow of the algorithm, which continues until moderate 
parsimony is achieved. 
Cross cluster model building:  

Once the iterative procedure is halted, with 𝑝 remaining phenotypes, the Group-Lasso is 
fit up to (𝑝 − 1) times using a stepwise procedure which orders the phenotypes according 
missingness. Beginning with the phenotype with least missingness and adding an additional 
phenotype each round, the Group-Lasso model is fit to the complete data on those phenotypes 
and 𝑘-fold cross-validation is used to determine the phenotypic correlation between the observed 
and predicted outcome. With each step, an additional phenotype is added and the Group-Lasso 
fit, and the procedure continues until every set has been fit, or there are no longer any complete 
cases in the successive set. The set of phenotypes producing the most predictive model is chosen 
as the final model. 

Although each iteration of the Group-Lasso application is fit using cross-validation, it is 
optimal to further utilize a hold-out test set during the construction of the final model in order to 
rigorously assess performance. The proportion of the data assigned to the hold-out test set 
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depends on the size of the data set itself, although a hold-out set containing 10-30% of the data is 
typical7. Phenotypic predictive performance is assessed by plotting observed versus predicted 
observations in the test set and reporting the correlation between the observed and predicted sets. 
Application to real world biobank data: 

As a proof of principle, we applied MAGIC-LASSO to predict AUDIT in the UKB. The 
AUDIT is a ten-item, self-administered screening instrument for alcohol problems containing 
three questions surveying consumption and seven items surveying problems related to alcohol 
which comprise the AUDIT-C and -P subscales19,20. The AUDIT survey was part of the mental 
health battery of questionnaires and was returned by 157,348 UKB participants. Median total 
AUDIT score was 4, median AUDIT-C was also 4 , and median AUDIT-P was 0. 

To construct a set of variables to be used in the predictive algorithm, we filtered the full 
set of 9,603 available phenotypes (not including the AUDIT measures) to remove measures (a) 
with fewer than 100,000 observations, (b) which were ICD codes, (c) which were unstructured, 
(d) which were invariant, or (5) which were repeated and measured at later longitudinal 
timepoints, such that only baseline measures were retained. Figure 4 shows the sample sizes 
remaining after each filtering step. After these filtering steps, 631 curated, so-called top-level 
(i.e., baseline) variables remained. Further filtering for balance between the measured and 
unmeasured sets removed 277 more variables for which missingness patterns were highly 
skewed between prediction and training sets. Measures with a ratio of missingness in the 
predicted versus the training set of 𝑡 ≤ 0.7 were filtered out, leaving 354 variables. 

Clustering the post filtered phenotype set resulted in an initial 12 clusters (Table 1). One 
cluster of 5 phenotypes was dropped because there were no complete cases in the cluster. Using 
5-fold cross-validation, the first application of the Group-Lasso resulted in an aggregated total of 
99, 106, and 123 phenotypes were retained across all clusters for the AUDIT-Total, AUDIT-C, 
and AUDIT-P, respectively. In the second iteration, phenotypes were grouped in 5, 6, and 4 
clusters for AUDIT-Total, AUDIT-C, and AUDIT-P respectively and applying the Group-Lasso 
to each cluster resulted in an aggregate of 65, 80, and 54 phenotypes retained across the clusters 
for AUDIT-Total, AUDIT-C, and AUDIT-P, respectively.  

Having reduced the phenotypic space by nearly a quarter for each score, the iterative 
Group-Lasso process halted. We then ordered the phenotypes in each set according to 
missingness and applied the Group-Lasso procedure to the set of phenotypes constructed in a 
forward stepwise manner, beginning with the phenotype with least missingness. Table 2 shows 
the number of subjects with complete data, with the addition of each phenotype, including the 
breakdown of complete cases in the measured and unmeasured sets, as well as the phenotypic 
correlation from a predictive model constructed using each successive set of phenotypes. The 
phenotypic correlations and the ratio of proportion of complete cases from the measured and 
unmeasured sets are shown for each outcome in Figure 5. The stepwise procedure showed final 
models with 30, 18, and 20 input variables resulted in the best prediction for Total, 
Consumption, and Problems respectively. The final models resulted in 27, 18, and 20 non-zero 
coefficient estimates and test-set phenotypic correlations of 0.64, 0.71, and 0.48 for Total, 
Consumption, and Problems respectively. 

Using the full measured sets for which both observed and predicted AUDIT scores were 
available, the phenotypic correlations were 0.65, 0.70, and 0.46 for Total, Consumption, and 
Problems, respectively. Figure 6 shows the density curves of observed and predicted (both 
measured and unmeasured) for all three scores. Density curves of the prediction residuals are 
shown in Figure 7. 
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One significant advantage to evaluating ML methods including MAGIC-LASSO in 
biobanks such as UKB is the availability of genetic information on all subjects and methods to 
estimate SNP-based heritabilities (ℎ") and genetic correlations (𝑟?). To explore the accuracy of 
the predicted phenotypes and evaluate their utility in downstream genetic studies, we estimated 
ℎ"in each set and 𝑟?between (a) observed and predicted in the subjects with measured AUDIT 
and (b) predicted AUDIT in subjects with and without direct measurement. We note that the last 
sets are completely independent with no information being shared in the model building step 
except for missingness balance. 

Heritability: Within-subject GCTA based ℎ"	for AUDIT-T in men and women showed 
similar estimates between measured and predicted (range 0.089 – 0.139) (Table 3) and was 
similar to LDSC based estimates (range 0.047 – 0.087) derived from GWAS summary statistics. 
Of note, the estimated heritabilities of the predicted score are close to those of the observed score 
in both the measured and unmeasured sets. Using LDSC, we estimated heritabilities for men and 
women combined across the three outcome sets, see Table 4 and Figure 8. The LDSC estimates 
are slightly lower than the GCTA estimates, as expected. Heritability in observed and predicted 
AUDIT-Total and AUDIT-C are similar, while the point estimate for observed AUDIT-P is 
lower than that in predicted AUDIT-P. 

Genetic Correlations: Using GCTA and only subjects with measured AUDIT, the 𝑟? 
between the observed and predicted AUDIT-T was 0.863 (se 0.040) in men and 0.884 (se 0.032) 
in women. The LDSC-estimated 𝑟? (Table 5 and Figure 9) between observed and predicted 
AUDIT in the measured set provides an indicator of prediction performance, with 𝑟? between 
these sets of 0.919 (AUDIT-Total), 0.858 (AUDIT-C), and 0.792 (AUDIT-P.) 
Discussion: 

The goal of this methodological work was to develop an ML procedure which could 
predict missing phenotypes (1) accurately, (2) in an interpretable manner, and (3) in a 
generalizable framework, (4) using existing software, and (5) for application in biobank-scale 
datasets with block-wise missing data structures. Our novel MAGIC-LASSO approach achieves 
these goals, as demonstrated through the prediction of the AUDIT measures in the UK Biobank 
study. The consistently high phenotypic and genetic correlations across the observed and 
predicted sets indicates that the ML procedure is capable of predicting the missing phenotype 
with high accuracy and in a manner which faithfully reflects the underlying genetic contribution 
to the phenotype. It is further noteworthy to mention that in ML practice, predictive performance 
in the full set often overestimates the real-life potential of the algorithm to predict missing 
values. However, our predictive performance in the full set was nearly identical to that in the 
hold-out test set in the UKB AUDIT application, with a difference in phenotypic correlation of 
no more than 0.02 between the full and hold-out sets in all three AUDIT measures. 

Prediction was less accurate in the AUDIT-P outcome as compared to AUDIT-Total and 
AUDIT-C. This demonstrates two considerations, first, that the distribution of the outcome can 
affect its prediction. Where observations are highly skewed and less evenly distributed across the 
potential range, prediction is rendered more difficult. Second, prediction performance varies 
based on the phenotype and the dataset, as observed with the AUDIT measures. The available 
phenotypes in UKB, in aggregate, lend better information to the prediction of AUDIT-Total and 
AUDIT-C than of AUDIT-P, although expansion of the phenotypes entering the MAGIC-
LASSO model may improve the prediction of AUDIT-P. Furthermore, Figure 5 demonstrates 
the differing architecture of the predicted scores in Total and Consumption versus Problems, 
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where the first few variables comprise the bulk of the prediction for AUDIT-T and AUDIT-C, 
while the prediction of AUDIT-P is composed of more variables of small effect. 

Strengths of the MAGIC-LASSO include, first, it can be applied using existing packages 
in the R software environment. Second, the prediction process is straightforward and transparent. 
The MAGIC-LASSO is built on the foundation of the Group-Lasso, a statistically rigorous 
framework with well-established properties which allow the user access to the regression 
structure of the prediction. Third, it is applicable to large biobank-scale environments where 
missing-at-random structures cannot be assumed. The application of the MAGIC-LASSO for 
phenotype imputation can confer great power gains for genetic analyses, as demonstrated using 
AUDIT in UKB. AUDIT and genotypic data were directly measured in 117,559 European 
ancestry individuals in the UKB sample. Predicting AUDIT in the unmeasured subjects added 
242,421 independent samples for downstream GWAS, representing a 56% increase in effective 
sample size. Finally, the MAGIC-LASSO is a flexible framework allowing for straightforward 
adaptations for application to datasets of various structures and outcomes of different 
characteristics. 
 Limitations of the MAGIC-LASSO framework include the limitations of the Group-
Lasso procedure to account for interaction effects of covariates. The current demonstrated 
implementation of the approach is also limited to the linear regression framework. Penalized 
non-linear regression algorithms which can account for grouped covariates exist for the logistic 
regression framework21 but not for the ordinal or polytomous outcome scenario, rendering 
application of the MAGIC-LASSO to item-level AUDIT responses, for example, not possible 
using existing software. 
 Despite these limitations, the method demonstrated strong predictive performance in the 
real data UKB application and represents an innovative contribution to the field of biomedical 
research in biobanks. The method is accessible through open-source software and transparent in 
nature, allowing the user to assess performance and understand the full regression procedure 
constructing the predicted outcomes. The MAGIC-LASSO is an additional tool now available to 
researchers to further harness the discovery potential inherent in large data collections and 
maximize the return on the financial and altruistic participant time and effort contributions 
invested in the assembly and management of biobank resources. 
Methods: 

Data management and application of the MAGIC-LASSO was conducted in in R22 
(v3.5.2) using packages Matrix23 (v1.2.17), fastDummies24 (v1.5.0), and grpreg25 (v3.2.1) 
Clustering was conducted using hclust UPGMA method in base R and the Group-Lasso was fit 
using the cv.grpreg function in the grpreg package. 

GWAS: To assess how well the predicted AUDIT outcome captures the underlying 
genetic factors influencing AUDIT, we calculate the heritability of observed and predicted 
AUDIT as well as the genetic correlations (𝑟?) between the observed and predicted outcomes. To 
this end, we conducted GWAS (bgenie26 version 1.3) of the AUDIT-Total, AUDIT-C, and 
AUDIT-P scores in the measured and the combined measured plus unmeasured sets. We utilized 
the Neale lab GWAS filtering criteria27 for MAF < 0.5%, INFO < 0.8, and HWE p-value < 10^(-
6), adjusting for covariate effects of age, sex, and the first 20 PCs. The independent European 
subjects sample size for the GWAS was 359,980 with 117,559 and 242,421 subjects in the 
AUDIT measured and unmeasured sets, respectively. 

Heritability and Genetic Correlation: GCTA28 (version 1.93.2) was used to calculate 
heritabilities and the 𝑟? between observed and predicted AUDIT, but only within the set of 
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participants on whom AUDIT was directly measured since the GCTA only allows 𝑟? to be 
calculated across the same set of observations. We also utilized LDSC29,30 (version 1.0.1) to 
estimate heritabilities and 𝑟? between observed and predicted scores, both within the measured 
set and between the measured and unmeasured sets. Using LDSC, 𝑟? can be estimated in 
independent samples by leveraging a reference set of genetic correlations (linkage 
disequilibrium) and GWAS test statistics. 
Data Availability: 

The UKB data utilized in this research is available to, “bona fide researchers for health-
related research in the public interest31,” through an application process accessible through the 
UKB website, https://www.ukbiobank.ac.uk/. 
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Table and Figure Legends: 
Table 1: Clustering details for rounds 1 (a) and 2 (b). For each iterative round, number of 
phenotypes, complete cases per cluster, and number of phenotype measures retained after 
applying the Group-Lasso to each cluster are shown. 
Table 2: Stepwise Group-Lasso application results for AUDIT-Total (a), AUDIT-Consumption 
(b), and AUDIT-Problems (c). For each step, the number of complete cases (subjects with 
complete data) in and the proportion of observations in the measured and unmeasured sets, as 
well as the phenotypic correlation for the prediction model built on that set, are shown. The 
highlighted line indicates the best performing model, with 30 phenotypes in AUDIT-Total, 18 in 
AUDIT-C, and 20 in AUDIT-P. 
Table 3: GCTA estimated heritabilities (ℎ") and genetic correlations (𝑟?) for AUDIT-Total. 𝑟? 
calculated as the genetic correlation between the observed and predicted scores within the 
measured set only. 
Table 4: LDSC GCTA estimated heritabilities (ℎ") for observed and predicted AUDIT. 
Table 5: LDSC estimated genetic correlations (𝑟?) between the observed and unobserved AUDIT 
in the measured and unmeasured sets. 
Figure 1: Flow logic of the MAGIC-LASSO procedure. The MAGIC-LASSO procedure begins 
with filtering, followed by clustering, then iterative Group-LASSO application until parsimony is 
achieved. 
Figure 2: Conceptualization of how a dataset may be subdivided into a measured and 
unmeasured set. Where 𝑁 represents the full sample size, 𝑁@923456738 and 𝑁A3456738 represent 
the subsets of subjects on whom the outcome of interest is either missing or measured, 
respectively. Then the amount of overlap in observation may be quantified for each of p 
additional variables. 
Figure 3: Illustration of clustering and Group-LASSO procedures within the MAGIC-LASSO. 
The hierarchical clustering steps divides the phenotypic space into non-overlapping subsets 
based on missingness. The Group-LASSO is applied to each cluster and variables retained by the 
algorithm in each set are aggregated. 
Figure 4: Flowchart of filtering in the UKB application set. The number of variables remaining 
after each filtering metric is applied is shown for the UKB data application example. 
Figure 5: Stepwise model results. Phenotypic correlations and ratio of the proportion of total 
measured to unmeasured observations in the model set for (a) AUDIT-Total, (b) AUDIT-
Consumption, and (c) AUDIT-Problems. Final selected model highlighted in blue. 
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Figure 6: Density curves of the observed and predicted scores. Outcomes in the observed and 
predicted in the measured and unmeasured sets plotted for (a) AUDIT-Total, (b) AUDIT-C, and 
(c) AUDIT-C. 
Figure 7: Residual densities for AUDIT prediction. Density curves with means noted showing 
the distribution of the prediction residuals for (a) AUDIT-Total, (b) AUDIT-Consumption, and 
(c) AUDIT-Problems. 
Figure 8: LDSC estimated heritabilities. SNP-based heritability estimates for the observed 
(green) and predicted in the measured (purple) and unmeasured (orange) sets for the AUDIT 
outcomes. 
Figure 9: LDSC estimated genetic correlations. Genetic correlation estimated between the 
observed data and predicted scores in the measured sets (green,) the observed data and the 
predicted scores in the unmeasured sets (orange,) and the predicted scores in the measured and 
unmeasured sets (purple.) 
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Table 1: Clustering details for rounds 1 (a) and 2 (b). For each iterative round, number of 
phenotypes, complete cases per cluster, and number of phenotype measures retained after 
applying the Group-Lasso to each cluster are shown. 
 

(a) Round 1:  

Cluster 
Number of 
Phenotypes 

Number of 
Complete 

Cases 

Phenotypes 
retained in 
AUDIT T 

Phenotypes 
retained in AUDIT 

C 

Phenotypes 
retained in 
AUDIT P 

1 250 80839 28 24 52 

2 12 19292 9 11 12 

3 7 44941 7 7 7 

4 6 16436 1 5 0 

5 14 24888 9 8 8 

6 2 27852 2 2 2 

7 5 67766 5 5 5 

8 5 0 - - - 

9 11 225 5 6 5 

10 31 45638 22 28 21 

11 2 31086 2 1 2 

12 9 120601 9 9 9 
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(b) Round 2: 

AUDIT-T 
   

Cluster Number of Phenotypes Number of Complete Cases Phenotypes Retained 
1 46 16363 21 
2 17 4031 13 
3 7 12680 7 
4 5 36004 5 
5 24 27737 19 

AUDIT-C    

Cluster Number of Phenotypes Number of Complete Cases Phenotypes Retained 

1 33 85210 17 

2 19 5169 18 

3 12 6312 8 

4 7 12680 7 

5 6 6608 5 

6 29 33174 25 

AUDIT-P    

Cluster Number of Phenotypes Number of Complete Cases Phenotypes Retained 

1 69 16922 14 

2 19 8244 10 

3 7 12680 7 

4 28 6612 23 
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Table 2: Stepwise Group-Lasso application results for AUDIT-Total (a), AUDIT-Consumption 
(b), and AUDIT-Problems (c). For each step, the number of complete cases (subjects with 
complete data) in and the proportion of observations in the measured and unmeasured sets, as 
well as the phenotypic correlation for the prediction model built on that set, are shown. The 
highlighted line indicates the best performing model, with 30 phenotypes in AUDIT-Total, 18 in 
AUDIT-C, and 20 in AUDIT-P. 
(a) AUDIT-Total 

Number of 
Phenotypes 

Number of 
Complete 

Cases 

Number of 
Complete 

Cases 
(measured) 

Number of 
Complete Cases 
(unmeasured) 

Proportion of 
Measured 

Observations 

Proportion of 
Unmeasured 
Observations 

Ratio of 
Measured to 
Unmeasured 

Phenotypic 
Correlation 

1 502536 157162 345374 1 1 1 NA 
2 502536 157162 345374 1 1 1 0.2684 
3 501645 157089 344556 0.9995 0.9976 0.9981 0.3419 
4 501639 157088 344551 0.9995 0.9976 0.9981 0.6044 
5 501632 157088 344544 0.9995 0.9976 0.9981 0.6058 
6 501515 157067 344448 0.9994 0.9973 0.9979 0.611 
7 499725 156837 342888 0.9979 0.9928 0.9949 0.616 
8 497760 156548 341212 0.9961 0.9879 0.9918 0.6081 
9 489704 154505 335199 0.9831 0.9705 0.9872 0.6089 
10 489654 154491 335163 0.983 0.9704 0.9872 0.6128 
11 472443 149925 322518 0.954 0.9338 0.9789 0.613 
12 453342 144398 308944 0.9188 0.8945 0.9736 0.6174 
13 453339 144397 308942 0.9188 0.8945 0.9736 0.6187 
14 433878 138101 295777 0.8787 0.8564 0.9746 0.6189 
15 433378 137942 295436 0.8777 0.8554 0.9746 0.6197 
16 432764 137767 294997 0.8766 0.8541 0.9744 0.6281 
17 399391 131141 268250 0.8344 0.7767 0.9308 0.623 
18 364427 125509 238918 0.7986 0.6918 0.8662 0.6035 
19 331556 113971 217585 0.7252 0.63 0.8687 0.628 
20 271230 95947 175283 0.6105 0.5075 0.8313 0.6155 
21 215930 79510 136420 0.5059 0.395 0.7808 0.5544 
22 163047 62004 101043 0.3945 0.2926 0.7416 0.5469 
23 149450 56980 92470 0.3626 0.2677 0.7385 0.4953 
24 149450 56980 92470 0.3626 0.2677 0.7385 0.5284 
25 149450 56980 92470 0.3626 0.2677 0.7385 0.6179 
26 149450 56980 92470 0.3626 0.2677 0.7385 0.6376 
27 149450 56980 92470 0.3626 0.2677 0.7385 0.6376 
28 91677 33330 58347 0.2121 0.1689 0.7966 0.6265 
29 55671 19386 36285 0.1234 0.1051 0.8517 0.6366 
30 26307 9862 16445 0.0628 0.0476 0.7588 0.639 
31 26307 9862 16445 0.0628 0.0476 0.7588 0.637 
32 26307 9862 16445 0.0628 0.0476 0.7588 0.637 
33 26307 9862 16445 0.0628 0.0476 0.7588 0.637 
34 12636 4904 7732 0.0312 0.0224 0.7175 0.6241 
35 5844 2062 3782 0.0131 0.011 0.8346 0.6271 
36 5844 2062 3782 0.0131 0.011 0.8346 0.6271 
37 5844 2062 3782 0.0131 0.011 0.8346 0.6271 
38 5844 2062 3782 0.0131 0.011 0.8346 0.6271 
39 5844 2062 3782 0.0131 0.011 0.8346 0.6271 
40 2612 852 1760 0.0054 0.0051 0.94 0.5728 
41 0 0 0 0 0 NA NA 
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(b) AUDIT-Consumption 

Number of 
Phenotypes 

Number of 
Complete 

Cases 

Number of 
Complete 

Cases 
(measured) 

Number of 
Complete Cases 
(unmeasured) 

Proportion of 
Measured 

Observations 

Proportion of 
Unmeasured 
Observations 

Ratio of 
Measured to 
Unmeasured 

Phenotypic 
Correlation 

1 502536 157162 345374 1 1 1 NA 
2 502536 157162 345374 1 1 1 0.2884 
3 501645 157089 344556 0.9995 0.9976 0.9981 0.3471 
4 501639 157088 344551 0.9995 0.9976 0.9981 0.6881 
5 501522 157067 344455 0.9994 0.9973 0.9979 0.687 
6 499529 156778 342751 0.9976 0.9924 0.9948 0.6881 
7 496519 156224 340295 0.994 0.9853 0.9912 0.6922 
8 488461 154161 334300 0.9809 0.9679 0.9868 0.6898 
9 488411 154147 334264 0.9808 0.9678 0.9868 0.6901 
10 475775 150955 324820 0.9605 0.9405 0.9792 0.6927 
11 475775 150955 324820 0.9605 0.9405 0.9792 0.6935 
12 461337 146357 314980 0.9312 0.912 0.9793 0.6896 
13 461334 146356 314978 0.9312 0.912 0.9793 0.6932 
14 442202 140174 302028 0.8919 0.8745 0.9805 0.6921 
15 441698 140017 301681 0.8909 0.8735 0.9804 0.6979 
16 441068 139835 301233 0.8898 0.8722 0.9803 0.6991 
17 401599 127090 274509 0.8087 0.7948 0.9829 0.7018 
18 332697 107054 225643 0.6812 0.6533 0.9591 0.7053 
19 267747 89546 178201 0.5698 0.516 0.9056 0.6976 
20 229101 77294 151807 0.4918 0.4395 0.8937 0.6938 
21 181950 64355 117595 0.4095 0.3405 0.8315 0.6074 
22 147982 53641 94341 0.3413 0.2732 0.8003 0.6106 
23 109901 38096 71805 0.2424 0.2079 0.8577 0.5998 
24 84491 28471 56020 0.1812 0.1622 0.8954 0.6134 
25 67376 22807 44569 0.1451 0.129 0.8892 0.6026 
26 50148 17732 32416 0.1128 0.0939 0.8319 0.6023 
27 50148 17732 32416 0.1128 0.0939 0.8319 0.6021 
28 46032 16357 29675 0.1041 0.0859 0.8256 0.5732 
29 46032 16357 29675 0.1041 0.0859 0.8256 0.5975 
30 46032 16357 29675 0.1041 0.0859 0.8256 0.6477 
31 46032 16357 29675 0.1041 0.0859 0.8256 0.6609 
32 46032 16357 29675 0.1041 0.0859 0.8256 0.6613 
33 30054 8731 21323 0.0556 0.0617 1.1113 0.6677 
34 25683 7353 18330 0.0468 0.0531 1.1344 0.6628 
35 14602 4503 10099 0.0287 0.0292 1.0206 0.6663 
36 9876 2979 6897 0.019 0.02 1.0535 0.6643 
37 7380 2215 5165 0.0141 0.015 1.0611 0.6626 
38 7380 2215 5165 0.0141 0.015 1.0611 0.6632 
39 7380 2215 5165 0.0141 0.015 1.0611 0.663 
40 7380 2215 5165 0.0141 0.015 1.0611 0.663 
41 3311 1066 2245 0.0068 0.0065 0.9583 0.5482 
42 1586 574 1012 0.0037 0.0029 0.8023 0.5793 
43 760 256 504 0.0016 0.0015 0.8959 0.6511 
44 0 0 0 0 0 NA NA 
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(c) AUDIT-Problems 

Number of 
Phenotypes 

Number of 
Complete 

Cases 

Number of 
Complete 

Cases 
(measured) 

Number of 
Complete Cases 
(unmeasured) 

Proportion of 
Measured 

Observations 

Proportion of 
Unmeasured 
Observations 

Ratio of 
Measured to 
Unmeasured 

Phenotypic 
Correlation 

1 502536 157162 345374 1 1 1 NA 
2 501645 157089 344556 0.9995 0.9976 0.9981 0.2076 
3 501639 157088 344551 0.9995 0.9976 0.9981 0.3199 
4 501629 157088 344541 0.9995 0.9976 0.9981 0.3301 
5 501512 157067 344445 0.9994 0.9973 0.9979 0.3386 
6 499724 156837 342887 0.9979 0.9928 0.9949 0.3548 
7 497759 156548 341211 0.9961 0.9879 0.9918 0.3438 
8 489703 154505 335198 0.9831 0.9705 0.9872 0.3494 
9 467267 148214 319053 0.9431 0.9238 0.9796 0.359 
10 446935 141689 305246 0.9015 0.8838 0.9803 0.3706 
11 446291 141504 304787 0.9004 0.8825 0.9801 0.3655 
12 444751 141046 303705 0.8975 0.8794 0.9798 0.3718 
13 357287 117944 239343 0.7505 0.693 0.9234 0.3797 
14 280039 97110 182929 0.6179 0.5297 0.8572 0.3866 
15 252356 88187 164169 0.5611 0.4753 0.8471 0.4084 
16 252356 88187 164169 0.5611 0.4753 0.8471 0.4376 
17 252356 88187 164169 0.5611 0.4753 0.8471 0.4569 
18 252356 88187 164169 0.5611 0.4753 0.8471 0.4674 
19 252356 88187 164169 0.5611 0.4753 0.8471 0.4685 
20 147063 48890 98173 0.3111 0.2843 0.9138 0.4785 
21 71542 26002 45540 0.1654 0.1319 0.797 0.4623 
22 71542 26002 45540 0.1654 0.1319 0.797 0.4623 
23 71542 26002 45540 0.1654 0.1319 0.797 0.4623 
24 71542 26002 45540 0.1654 0.1319 0.797 0.4623 
25 39805 13484 26321 0.0858 0.0762 0.8883 0.4663 
26 39805 13484 26321 0.0858 0.0762 0.8883 0.4663 
27 39805 13484 26321 0.0858 0.0762 0.8883 0.4663 
28 39805 13484 26321 0.0858 0.0762 0.8883 0.4663 
29 39805 13484 26321 0.0858 0.0762 0.8883 0.4663 
30 17562 5429 12133 0.0345 0.0351 1.017 0.3982 
31 0 0 0 0 0 NA NA 
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Table 3: GCTA estimated heritabilities (ℎ") and genetic correlations (𝑟?) for AUDIT-Total. 𝑟? 
calculated as the genetic correlation between the observed and predicted scores within the 
measured set only. 
 

Set Outcome Sex 𝒉𝟐 SE (𝒉𝟐) N 𝒓𝒈 SE (𝒓𝒈) 

Measured Observed Male 0.139 0.0108 50,912 0.863 0.040 

Measured Predicted Male 0.091 0.0105 50,912     

Measured Observed Female 0.109 0.0087 64,768 0.884 0.032 

Measured Predicted Female 0.092 0.0084 64,768     

Unmeasured Predicted Male 0.089 0.0052 109,916     

Unmeasured Predicted Female 0.108 0.0048 122,159     

 
Legend: 
ℎ": heritability 
𝑟?: genetic correlation 
SE: standard error 
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Table 4: LDSC GCTA estimated heritabilities (ℎ") for observed and predicted AUDIT. 
 

Set Outcome ℎ" (SE) 

AUDIT-Total   

Measured Observed 0.0811 (0.006) 

Unmeasured Predicted 0.0727 (0.0036) 

Measured Predicted 0.08433 (0.0056) 

AUDIT-Consumption   

Measured Observed 0.0869 (0.0061) 

Unmeasured Predicted 0.0759 (0.0042) 

Measured Predicted 0.0816 (0.0056) 

AUDIT-Problems   

Measured Observed 0.0468 (0.0049) 

Unmeasured Predicted 0.0647 (0.0034) 

Measured Predicted 0.0769 (0.0056) 
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Table 5: LDSC estimated genetic correlations (𝑟?) between the observed and unobserved AUDIT 
in the measured and unmeasured sets. 
 

Comparison 𝒓𝒈 (SE) p-val 

AUDIT-Total   

Observed vs. Predicted, 
Unmeasured 0.9746 (0.0354) 5.40E-167 

Observed vs. Predicted, 
Measured 0.9191 (0.0181) 0 

Predicted Measured vs. 
Predicted, Unmeasured 0.9746 (0.0333) 2.30E-188 

AUDIT-Consumption   

Observed vs. Predicted, 
Unmeasured 0.8695 (0.0353) 3.30E-134 

Observed vs. Predicted, 
Measured 0.858 (0.0222) 0 

Predicted Measured vs. 
Predicted, Unmeasured 0.9712 (0.0349) 1.40E-170 

AUDIT-Problems   

Observed vs. Predicted, 
Unmeasured 0.9126 (0.0583) 2.90E-55 

Observed vs. Predicted, 
Measured 0.7915 (0.0387) 5.0E-93 

Predicted Measured vs. 
Predicted, Unmeasured 0.9627 (0.0381) 5.30E-141 
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Figure 1: Flow logic of the MAGIC-LASSO procedure. The MAGIC-LASSO procedure begins 
with filtering, followed by clustering, then iterative Group-LASSO application until parsimony is 
achieved. 
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Figure 2: Conceptualization of how a dataset may be subdivided into a measured and 
unmeasured set. Where 𝑁 represents the full sample size, 𝑁@923456738 and 𝑁A3456738 represent 
the subsets of subjects on whom the outcome of interest is either missing or measured, 
respectively. Then the amount of overlap in observation may be quantified for each of p 
additional variables. 
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Figure 3: Illustration of clustering and Group-LASSO procedures within the MAGIC-LASSO. 
The hierarchical clustering steps divides the phenotypic space into non-overlapping subsets 
based on missingness. The Group-LASSO is applied to each cluster and variables retained by the 
algorithm in each set are aggregated. 
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Figure 4: Flowchart of filtering in the UKB application set. The number of variables remaining 
after each filtering metric is applied is shown for the UKB data application example. 
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Figure 5: Stepwise model results. Phenotypic correlations and ratio of the proportion of total 
measured to unmeasured observations in the model set for (a) AUDIT-Total, (b) AUDIT-
Consumption, and (c) AUDIT-Problems. Final selected model highlighted in blue. 
 
(a) AUDIT-Total 
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(b) AUDIT-Consumption 
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(c) AUDIT-Problems 
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Figure 6: Density curves of the observed and predicted scores. Outcomes in the observed and 
predicted in the measured and unmeasured sets plotted for (a) AUDIT-Total, (b) AUDIT-C, and 
(c) AUDIT-C. 
 

(a) AUDIT-Total 
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(b) AUDIT-Consumption 
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(c) AUDIT-Problems 
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Figure 7: Residual densities for AUDIT prediction. Density curves with means noted showing 
the distribution of the prediction residuals for (a) AUDIT-Total, (b) AUDIT-Consumption, and 
(c) AUDIT-Problems. 
 
(a) AUDIT-Total 
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(b) AUDIT-Consumption 
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(c) AUDIT-Problems 
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Figure 8: LDSC estimated heritabilities. SNP-based heritability estimates for the observed 
(green) and predicted in the measured (purple) and unmeasured (orange) sets for the AUDIT 
outcomes. 
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Figure 9: LDSC estimated genetic correlations. Genetic correlation estimated between the 
observed data and predicted scores in the measured sets (green,) the observed data and the 
predicted scores in the unmeasured sets (orange,) and the predicted scores in the measured and 
unmeasured sets (purple.) 
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