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Abstract: 

Transposable elements (TEs) are self-replicating “genetic parasites” ubiquitous to eukaryotic 

genomes. In addition to conflict between TEs and their host genomes, TEs of the same family 

are in competition with each other. They compete for the same genomic niches while 

experiencing the same regime of copy-number selection. This suggests that competition among 

TEs may favor the emergence of new variants that can outcompete their brethren. To 

investigate the sequence evolution of TEs, we developed a method to infer clades: collections of 

TEs that share SNP variants and represent distinct TE family lineages. We applied this method 

to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of 

several TE families shows significant population structure that arises from the population-

specific expansions of single clades. We used population genetic theory to classify these clades 

into younger versus older clades and found that younger clades are associated with a greater 

abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the 

abundance of younger, but not older clades, is positively correlated with antisense piRNA 

production, suggesting a general pattern where hosts preferentially produce antisense piRNAs 

from recently active TE variants. Together these findings suggest a co-evolution of TEs and 

hosts, where new TE variants arise by mutation, then increase in copy number, and the host 

then responds by producing antisense piRNAs which may be used to silence these emerging 

variants. 
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Introduction: 

 Transposable elements (TEs) are mobile, selfish genetic elements commonly thought of 

as “genetic parasites''. At the start of an invasion TEs begin as a single copy within a host 

genome, but can transpose and expand rapidly in copy number throughout the population in 

each successive generation by using the host’s replication machinery (Orgel and Crick 1980; 

Doolittle and Sapienza 1980). In Drosophila, explosive growth in copy number during a TE 

invasion is thought to be quickly followed by the host acquiring resistance to TE transpositions, 

commonly through host production of piwi-interacting small RNAs, piRNAs which interfere with 

TE transcripts (Brennecke et al. 2007; Kofler et al. 2018; Le Rouzic and Capy 2005; Aravin, 

Hannon, and Brennecke 2007). In the germline, piRNA mediated silencing begins with the 

“primary” piRNA pathway: transcription of long precursor antisense RNAs from TE-rich loci 

called piRNA clusters that are processed into 21-30 base-pair-long antisense piRNAs. These 

piRNAs complex with piwi clade proteins, bind to nascent sense TE transcripts by recognizing 

sequence complementarity, and then recruit additional proteins to transcriptionally silence 

homologous TEs. Additionally, the TE transcript is degraded to form sense piRNAs through a 

“secondary” piRNA pathway. These sense piRNAs bind to the antisense piRNA precursor to 

create a positive feedback loop, known as the Ping-Pong cycle, that establishes constitutive 

silencing (Brennecke et al. 2007; Le Thomas et al. 2014; Aravin, Hannon, and Brennecke 2007; 

Czech et al. 2018). 

Ultimately the TE copy number may reach a steady state, with the rate of transposition 

dampened by piRNA silencing as well as selection against the deleterious consequences to 

reproductive fitness of the host organism (Charlesworth and Charlesworth 1983; Lee and 

Langley 2010; Kelleher, Barbash, and Blumenstiel 2020). However, as TEs expand in copy 

number, they also acquire polymorphisms in their sequences, which may lead to the formation 

of new lineages or subfamilies. Multiple lineages of a TE will compete with each other, as long 

as their polymorphisms are not deactivating (Le Rouzic and Capy 2006; Iwasaki, Kijima, and 
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Innan 2020). Much in the same way individuals within an ecological system are constrained by a 

carrying capacity, variants of the same TE may be constrained by the copy-number carrying 

capacity of the host (Charlesworth and Charlesworth 1983; Le Rouzic and Capy 2006). This 

dynamic produces an arena of genomic competition of TE variants where selection may drive 

the propagation of more fit TE lineages, while less fit lineages are purged (Le Rouzic and Capy 

2006).  

The study of selection on TE population variation has often focused on the fitness of the 

host organism rather than on the TEs themselves. Much of it centered on the variation of TE 

insertions within and between populations as well as fitness and phenotypic effects associated 

with particular insertion loci (Cridland et al. 2013; Blumenstiel et al. 2014; Kofler, Nolte, and 

Schlötterer 2015). The study of selection on sequence variation of TEs, on the other hand, is 

much more limited. TEs are typically categorized into classes and subclasses based first on 

their mechanism of transposition, and then on presence of shared motifs, relative sequence 

identity, and phylogenetic characteristics (Arkhipova 2017; Makałowski et al. 2019; Wicker et al. 

2007). There is extensive systemization of TE families, describing their consensus sequences, 

open reading frames, and insertion site preferences (Bao, Kojima, and Kohany 2015).  

Due to the challenges of quantifying variation within repetitive sequences, however, the 

empirical study of TE sequence polymorphism is largely limited to analyses of reference 

genome assemblies. For example, the sequence variation of TE families in the Drosophila 

melanogaster reference genome has been comprehensively described (Lerat, Rizzon, and 

Biémont 2003; Kaminker et al. 2002). In another example, phylogenetic and evolutionary 

analyses on retrotransposons within the Oryza sativa genome revealed strong purifying 

selection on protein-coding regions, with occasional bursts of positive selection (Baucom et al. 

2009). To our knowledge, studies examining TE sequence variation from population samples 

are rare, likely because reference genomes are the primary source of full-length TE sequence 

data. 
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Ideally, to apply population genetic and molecular evolutionary principles to the genetic 

variation of TEs, we would study the complete sequences of individual TE insertions across 

many genomes. This is especially necessary if the aim is to assess competition between TE 

subfamily lineages, where reconstructing the underlying phylogenies would yield insight into the 

dynamics of how lineages diversify and potentially compete with each other. However, most 

current population genomic data comes from short-read sequencing, which does not permit an 

unambiguous assembly containing all the TEs with their unique variants. The problem is related 

to haplotype phasing, which can be done with short reads (Excoffier and Slatkin 1995; 

Delaneau, Coulonges, and Zagury 2008; Clark 1990; Browning and Browning 2007), except 

here the TE insertions are at nonhomologous positions. Furthermore, the high multiplicity of TEs 

greatly complicates the task of determining which polymorphisms co-occur in the same 

insertion, such that with short reads, unambiguous TE haplotypes cannot be recovered as 

complete sequences of linked SNPs. Although new long-read technologies, like PacBio and 

Oxford Nanopore, have emerged that greatly reduce phasing problems, their higher cost and 

relatively high error rates have limited their application to large-scale population genomics 

studies.  

To gain insight into the sequence evolution of actively invading TEs, we sought to 

resolve some of these challenges by leveraging a straightforward intuition: If a set of SNPs co-

occur in the same TE lineage, their copy-number variation should be correlated across 

genomes, covarying as the copy number of that lineage varies across genomes. To this end, we 

took advantage of the large sample sizes in a population-genomic dataset to quantify positive 

correlations in the copy number of SNPs across multiple individuals, and from these we identify  

groups of SNPs that co-occur within TE lineages. We refer to these groups of SNPs as clades, 

which are inferred to distinguish lineages of TE subfamilies while sidestepping the task of 

reconstructing the full phylogenies from short-read data. Applying our method to a set of 85 D. 

melanogaster genomes from the Global Diversity Lines (GDL) (Grenier et al. 2015), we inferred 
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clades in 41 recently active TE families. We then used public PacBio datasets and simulations 

to validate our inferred clades (Long et al. 2018; Chakraborty et al. 2019). We analyzed the 

population variation of TE variants and found significant population structure driven by 

population-specific TE clades, several which are likely active. We additionally analyzed several 

piRNA libraries from ovaries focused on SNPs that distinguish clades, and found piRNAs are 

especially enriched for younger TE clades.  

 

New approaches: 

Hierarchical clustering of SNPs uncovers TE clades in NGS data: 

 We leverage large population-genomic datasets to detect TE clades by inferring the co-

occurrences of SNPs within a TE lineage. We expect that if two alleles exist within the same 

lineage they will correlate in copy number, varying together as the TEs of that lineage vary in 

copy number (Figure 1a). We apply this principle to all pairwise combinations of SNPs within an 

element to compute a correlation matrix and then use hierarchical clustering to cluster groups of 

SNPs that are strongly correlated. The result is clusters of SNPs that co-vary in their copy 

number across samples; because these are inferred to occur within the same TE lineage we 

refer to these clusters as “clades”. Hierarchical clustering is a particularly appropriate choice for 

this problem as SNPs within TE lineages are truly related to each other in an underlying tree-like 

structure that is analogous to a hierarchical clustering dendrogram. The correlations between 

alleles are unlikely to be a result of co-transposition of multiple TEs because the linkage 

between TEs is very low and the sampling variation in these data is quite high.  

  We employed this clade inference method using short-read libraries from the Global 

Diversity Lines (GDL), 85 D. melanogaster lines from populations in Beijing, Ithaca, the 

Netherlands, Tasmania, and Zimbabwe (Grenier et al. 2015). We aligned the short-read data to 

the TE consensus sequences of 41 recently active TEs and the D. melanogaster reference 

genome using ConTExt (McGurk and Barbash 2018). Then we calculated allele frequencies of 
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SNPs from the read pileups of the alignments and calculated copy number from the read depth. 

In brief, copy number was estimated by dividing the observed read depth at each position on the 

TE consensus by the expected read depth of single copy sequences inferred from the read 

depth of the reference genome, with corrections for GC bias (McGurk, Dion-Côté, and Barbash 

2020). For each individual we took the allele frequencies at each position and multiplied them by 

the estimated copy number at each position to generate the copy number of alleles at each 

position for that individual. We compute pairwise correlations between the copy number of 

alleles across individuals (Figure 1b), and then employ hierarchical clustering to cluster 

positively correlated SNPs thus inferring clades (Figure 1c). For each of the 41 TEs analyzed, 

we report the SNP clusters, as well as the copy number of each inferred clade, calculated by 

averaging the copy number of the individual alleles (Supplemental File 1). 

One important consideration of this method is that we are not identifying the full set of 

TE insertions within an inferred clade. Rather we are identifying sets of SNPs that distinguish 

lineages from each other (lineage-informative SNPs), not the complete sequences of the 

insertions at any particular locus that belong to an inferred clade. Clades are statistical 

inferences of the set of true lineages that exist for a TE family, but because all TE lineages of a 

family are related by an underlying phylogeny, there likely does not exist a single correlation 

cutoff that optimally groups TEs into distinct clades. Rather, any chosen threshold induces some 

degree of coarse-graining in how it collapses this phylogeny, splitting and merging lineages of 

TE variants into clades. For example, two closely related lineages may share an ancestral set of 

SNPs, but have recently diverged and acquired a small number of additional polymorphisms 

that distinguish them. Depending on the stringency of the clustering cut-off these two lineages 

may be called as a single clade containing all of the SNPs, or multiple clades each with some 

subset of SNPs. Thus, a higher stringency in the clustering cut-off will produce many small 

clusters of tightly correlated SNPs that split lineages, while low stringency cut-offs will produce a 

few large clusters that merge lineages together. Because of this, clusters of SNPs may be found 
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to occur in the same insertions at some frequency, but whether or not they are merged into one 

clade depends on the clustering cut-off and how often the two sets of lineage-informative SNPs 

occur in the same insertion.  

We attempt to address these caveats and trade-offs in our analysis by using simulations 

and PacBio data to validate our inferences. When inferring clades in the GDL short-read data 

we chose stringent clustering parameters to make the clade calls conservative (splitting distantly 

related lineages). These sets of parameters were chosen to essentialize TE clades to a 

minimum number of core SNPs that co-occur with a high positive correlation, while increasing 

the number of distinct, resolved clades. High stringency cut-offs also minimize the number of 

false positives that can result from performing many thousand pairwise correlations of allele 

copy number (Supplemental Figure 1a, 1b). Parameters could be tuned to be less stringent to 

define clades harboring greater internal SNP variation, but the sets of parameters we chose 

performed well in our validation.  

 

TE clade inference recovers lineages in simulated and biological datasets. 

 We first validated a critical assumption of our inference model: that SNPs on the same 

TE will co-vary in copy number, while SNPs on unrelated TE sequences will not. To do this we 

asked whether the SNPs in different TE families are positively correlated, expecting that 

because the SNPs on different TEs are physically unlinked there will be little to no positive 

correlation between them. We computed the correlation for every pairwise combination of active 

TEs in our dataset and found, as expected, the correlation of SNPs taken from the same TE 

family (average Pearson’s r = 0.23) are generally much greater than from unrelated families 

(average Pearson’s r = 0.02) (Supplemental Figure 2a). There is an elevated number of positive 

correlations between SNPs on different telomeric TEs (average Pearson’s r = 0.11), likely due 

to them being linked together in large multimeric arrays exclusively at the ends of 

chromosomes. There are also very strong positive correlations of SNPs in the Bari element 
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(Pearson’s r = 0.69) and P-element (Pearson’s r = 0.68) that are driven by the small number of 

SNPs segregating in those two families. There are only three SNPs that passed filtering for Bari 

and four for P-element, which represent one clade in each TE family.  

We next sought to benchmark the performance of our method by simulating TE 

polymorphism data using a phylogenetic process to generate an inference data set with a 

known set of lineages to use as validation. Using the simulated data we benchmarked our 

method by inferring clades under a range of parameters and then reported the clustering quality, 

as determined by a Silhouette Score. In brief, the Silhouette Score is bound between -1 and 1 

and quantifies the cohesiveness and separation of clusters. The optimal score is 1 and implies 

that clusters of SNPs were often found together in the validation dataset. We find that our 

method produces high Silhouette Scores (0.75-0.9), correctly inferring clades in the simulated 

dataset under a wide range of clustering parameters (Pearson’s r = 0.3-0.9), and only produces 

errors when clustering parameters are at extremes (Supplemental Figure 2b). The inferred 

clades also recapitulate the structure of the simulated phylogenetic tree (Supplemental Figure 

5b). 

 We further validated our clade inferences from the GDL short-read data by comparing 

them to long-read PacBio assemblies of D. melanogaster lines that contain molecularly phased 

haplotypes for the TEs. We looked for sets of SNPs that delineate TE clades in the high-

confidence contigs of PacBio assemblies, considering only clades where two or more of the 

lineage-informative SNPs were detected in the PacBio data, because we were interested in 

estimating our ability to correctly infer the rate of co-occurrence between detected SNPs in a 

lineage. Not removing those clades downwardly biased the estimate of our clustering accuracy 

(Supplemental Figure 3a). Using the filtered set of clades, we found that 70% of the total clades 

inferred from the GDL data were detected in the PacBio dataset (Figure 1d). We discovered that 

of the 30% undetected clades in the filtered set, 5% were very likely closely related lineages that 

had been merged into a single cluster (Supplemental Figure 2b). The remaining 25% of the 
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inferred clades not found in the PacBIo data tend to be large clusters that are missing more 

lineage-informative SNPs in the PacBio data than the detected clades. This indicates that these 

undetected clades might be closely related lineages merged into a single cluster as well, but are 

population specific, or are sufficiently rare that a subset of their SNPs were not sampled in the 

PacBio data. Therefore the differences in samples between the short-read and PacBio data may 

be driving poor clustering quality rather than systematic errors, however we cannot completely 

discount true errors in clustering (Supplemental Figure 4). 

 

Results: 

Diversity and variation of TE lineages in the GDL. 

 To determine whether high sequence diversity of a TE family is due to the evolution of 

many distinct lineages or a few highly diverged lineages, we assessed the sequence diversity of 

TE families and the number of clades segregating in the GDL. We calculated the average 

nucleotide diversity across the GDL of active TE families and found a positive relationship 

between the number of clades and nucleotide diversity (Figure 2a; Pearson’s r = 0.74; p-value < 

0.05). Both the telomeric TEs and LTR retrotransposons have many families with a high number 

of clades and high sequence diversity. There are also several LINE-like retrotransposon and 

DNA transposon families with high sequence diversity, but they tend to have fewer clades than 

non-LINE TEs with similar sequence diversity. For example, the R1 family has a high sequence 

diversity (𝜋 ≈ 0.026) and only eight clades, while the non-LINE LTR retrotransposon Zam has 

comparable sequence diversity and 94 clades.  

This pattern may be driven by merging SNPs into large clades rather than splitting them 

into many small ones, so we characterized each clade by the number of lineage-informative 

SNPs it contains (Figure 2b). In general, the distribution of lineage-informative SNPs is small 

and tightly distributed, with a median number of two and an interquartile range (IQR) of one. The 

small cluster size is indicative of a preference for splitting multiple related clades rather than 
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merging them into larger clusters. Clusters of SNPs we discover may therefore not be mutually 

exclusive and may occur together within a subset of insertions, but with a degree of positive 

correlation insufficient to pass the clustering threshold. This preference for splitting would 

upwardly bias the number of clades that we estimate, as large clusters of SNPs with distant 

genealogical relationships might be broken up into many small clusters of SNPs that are closely 

related. The exact number of clades segregating in each TE family is affected by 

parameterization of the clustering, but the relative proportions of clades among different families 

in our analyses are likely not. Furthermore, the inference of clades using simulated data showed 

that the number of clades and quality of clusters are robust to clustering parameters 

(Supplemental Figure 2b, 5a). 

Although most TE families have clades with a small number of SNPs, R1 clades are 

notable outliers, with a median of 14 SNPs and IQR 19.75 and two clades with 60 and 100 

SNPs each. This might be explained by the presence of two independently evolving populations 

of R1 elements in D. melanogaster, the hundreds of R1 insertions in the highly repetitive 

ribosomal DNA array, and a separate lineage of divergent elements that comprise a megabase-

sized satellite array (McGurk and Barbash 2018; Roiha et al. 1981; Wellauer and Dawid 1977; 

Xiong and Eickbush 1988; Luan et al. 1993). Divergence between these lineages likely explains 

the high sequence diversity. The similarity of sequences within each lineage and dissimilarity 

between lineages may favor their merging into a handful of large clades during clustering. 

Additionally, R1 arrays are physically linked, behaving as a single haplotype that experiences 

high rates of gene conversion that homogenizes the ribosomal DNA and the R1 copies (Szostak 

and Wu 1980; Dvorák, Jue, and Lassner 1987). All of these features could explain why full R1 

clades were not detected in the PacBio data (Figure 1d).  

 We next addressed whether a single clade dominates a transposable element family in 

terms of copy number or if instead the clades occur at roughly equal frequency. We determined 

the proportion of all copies of a TE family in the GDL population belonging to a clade by 
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calculating the “clade population frequency”, dividing the total clade copy number by the 

average copy number across the lineage-informative positions summed across the GDL 

(Supplemental File 1). We find that most clades occur in the population at a frequency between 

~10-30% (mean 17%; Figure 2c). There is a notable lack of low frequency clades, likely due to 

the filtering of low copy-number and low population-frequency alleles before calling clades. We 

found 21 clades with high population frequency ( > 40%) occurring in 13 different TE families, 

including telomeric TEs and several LTR and LINE-like retrotransposons. The Diver and Nomad 

LTR retrotransposons had the greatest number of high frequency clades (3-4 per family), but 

with dramatically different clade population frequency distributions. The Diver frequency 

distribution had many clades spread across the entire range from low to high, while the Nomad 

distribution is clearly split between a handful of low and high frequency clades (Figure 2d). 

Several other TE families like Jockey, Doc, and DM412 had frequency distributions similar to 

Nomad, while other families such as Gypsy1, Zam, and I-element had a more uniform clade 

frequency distribution similar to Diver (Figure 2d). The Nomad-like frequency distributions may 

reflect a relatively fast copy-number expansion of a handful of clades that outcompeted other 

lineages, while Diver-like distributions may reflect gradual diversification and slow increase in 

copy number of many clades, possibly driven by stochastic processes.  

One important consideration is that due to the way population frequency was calculated, 

clades with SNPs in commonly deleted portions of a TE may be at a high frequency despite 

being at a relatively low copy number. This is particularly important for LINE-like elements and 

DNA transposons that are frequently truncated and internally deleted. Therefore, the clade 

population frequency does not necessarily reflect the proportion of TE insertions in the clade, 

but instead the number of TE insertions that have those nucleotide sites in the given clade. High 

population-frequency clades in Gypsy, Zam, HeT-A2, and Tart-B1 had very low copy numbers 

(~1-2 copies on average; Supplemental File 1), likely due to having SNPs in commonly deleted 

portions of their respective TE sequences. However, we found that many high population-
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frequency clades were at high copy number (10-40 copies on average). The high frequency 

clades of Jockey, DM412, and Doc clades were particularly striking as they reach high copy 

number and dominate other clades of their respective families. These clades may be at high 

frequency due to age, having a competitive edge over other variants, or by pure chance. 

 

The majority of clades are young and recently active.  

While the limitations of short-read data prevent us from mapping SNPs to specific 

insertions and assessing their population frequency, the insertion-site frequency spectrum of a 

TE influences the variance of its copy-number distribution across individuals. Our approach 

infers TE clades, which are collections of TE insertions that share a subset of SNPs, but the 

same idea applies -- the insertion-site frequency spectrum, and therefore copy-number 

distribution, of clades is also expected to be related to their age. We therefore applied 

population genetic theory to predict the age of clades from their copy-number distributions. 

Recently active, young TEs will have insertions that are mostly at a low population frequency 

with little variance. If there is a large number of occupiable sites and no linkage disequilibrium 

between insertions, the copy-number distribution will follow a Poisson distribution (mean equal 

to the variance, “dispersed”) (Charlesworth and Charlesworth 1983; McGurk, Dion-Côté, and 

Barbash 2020). An older lineage will have insertions at variable frequencies -- due to drift 

increasing the frequency of older insertions -- resulting in the variance being less than the mean 

(“underdispersion”). A recently active lineage with population structure (e.g. a population-

specific expansion) or other forms of linkage disequilibrium will have a variance greater than the 

mean (“overdispersion”) (Charlesworth and Charlesworth 1983). The copy-number distributions 

of known active and inactive TE families recapitulate these expectations well (McGurk, Dion-

Côté, and Barbash 2020).  

We analyzed the copy-number distribution of clades by using a two-tailed dispersion test 

with multiple testing correction to ask whether the distributions are overdispersed, 
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underdispersed, or fit a Poisson (Figure 3a) (Yang, Hardin, and Addy 2009). We found that most 

high population frequency clades of telomeric TEs and other families such as Jockey, Copia, 

Nomad and DM412 had copy-number distributions consistent with recent activity (dispersed or 

overdispersed), while the high frequency clades of Zam and Stalker-4 were classified as older 

lineages (underdispersed). High population frequency clades in Doc and Diver, on the other 

hand, were a mixture of young and old clades. We found that on average old clades were at a 

slightly higher frequency in the population than young clades (Dunn’s test: p-value < 0.05; 

Figure 3b). Overall, 56% of the clades were classified as young and therefore active. The 

excess of old clades segregating in the GDL is driven by eight families (Gypsy, Gypsy1, I-

element, BS, Zam, Bel, Diver and Burdock), which accounts for 86% of all the old clades (Figure 

3c). The abundance of old clades in these TE families matches their known insertion-site 

frequency spectra, which is skewed towards older, higher population frequency insertions 

(Kofler, Nolte, and Schlötterer 2015). However, despite having mostly old and inactive lineages, 

there are still several young lineages actively transposing in these families.  

I-element is a particularly striking example where all but one clade is old (Figure 3c). 

This is consistent with the known evolutionary history of the I-element, as it appears to have 

invaded D. melanogaster populations multiple times, leaving both inactive relics of ancient 

invasions and younger active copies (Kidwell 1983; Picard et al. 1978; Busseau et al. 1994). 

Many D. melanogaster strains are susceptible to I-element invasion, despite having euchromatic 

insertions, and crosses with strains carrying active I-elements result in hybrid dysgenesis 

(Olovnikov et al. 2013; Ryazansky et al. 2017). Therefore, many of the older clades segregating 

in I-element may be remnants of this ancient invasion. 

 Curiously, the only I-element clade that was predicted to be young shows strong 

population structure, being at a higher copy number in Beijing than in the other populations 

(Figure 3d). Strong population structure is expected to inflate the variance in copy number 

calculated across all populations, so we re-analyzed the I-element in the Beijing population. We 
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found the copy-number distribution of the Beijing strains fit a Poisson well, implying that this I-

element clade is likely young and active (p-value = 0.7). This clade is at less than 1% frequency 

in the other four populations, while at ~11% frequency in the Beijing population. It is quite likely 

then that this young I-element clade invaded the Beijing population after the D. melanogaster 

population migrated to East Asia. Generally, 54% of the likely active clades were overdispersed, 

which suggests there may be population structure to their geographic distributions as well and 

potentially indicates ongoing population-specific invasions.  

 

Population structure of TE variation. 

The genetic variation of TEs within and between populations is an underexplored facet 

of TE evolution. Early in the P-element and hobo invasions, variant lineages emerged and rose 

to high frequency, entirely replacing the wild-type TE in some populations within a decade 

(Black et al. 1987; Periquet et al. 1989). These dynamics may reflect selection acting at the 

level of TEs, with variants outcompeting the ancestral lineage (Le Rouzic and Capy 2006; 

Iwasaki, Kijima, and Innan 2020; Robillard et al. 2016). The clades we identified provide an 

opportunity to catch such events in progress. We sought therefore to identify TE lineages that 

have expanded or contracted in copy number within specific geographic populations, because 

these might be signatures of selection acting on the TE sequence. 

 To find clades with population structure we used a Bonferroni-corrected Kruskal-Wallis 

test to determine which clades rejected the null-hypothesis that their copy number was 

homogeneously distributed across populations. We found that ~15% of clades were 

heterogeneously distributed among the five GDL populations, thus indicating population 

structure (Figure 4a). Some TE families, such as Burdock and Tart-A, have few or no clades 

that are enriched for particular populations, while Jockey, Copia, and Tirant have many clades 

with population structure.  
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To quantify the extent of the population structure we compared the average clade copy 

number across the GDL to the average clade copy number of the subpopulation (Beijing, Ithaca, 

Netherlands, Tasmania, or Zimbabwe) that was the most differentiated from the entire GDL 

(Figure 4b). Of the clades that were statistically significant by the Kruskal-Wallis test, the most 

differentiated populations had a clade copy number that was, on average, ~3.8 copies greater 

or lesser than the GDL mean. In general, these population structure differences were of modest 

effect, but Roo, R1, and F-element clades have differences from the GDL mean of ~10-35 

copies. These much larger effect sizes might be driven in part by the very high copy number of 

these three families throughout the genome. 

Our analysis of these summary statistics, although informative, does not reveal in which 

population(s) a clade is enriched. We therefore employed PCA (Principal Component Analysis) 

on the matrix of SNP frequencies of each TE family in each individual. This allows us to find 

which SNPs are driving the population variation within a TE family, as well as to visualize which 

individuals in the GDL carry similar TE variants. We find strong population structure for Roo 

variants with distinct clusters of Beijing and Zimbabwe individuals (Figure 4c). This population 

structure is driven by population-specific expansions of clades (Figure 4d, 4e). The Beijing- and 

Zimbabwe-specific clades are at ~45 copies (~33% frequency), and ~50 copies (~40% 

frequency) in Beijing and Zimbabwe, respectively. The Beijing clade is very rare outside of its 

respective population, ~1% frequency, which implies that it emerged in East Asia and then 

expanded in copy number. The Zimbabwe clade, on the other hand, segregates at ~10% 

frequency in the other populations, implying a more ancestral origin. 

We find an analogous pattern in Tirant and Jockey variation where there is also strong 

population structure that is driven by population-specific expansions of clades. Much like Roo, 

Ithaca- and Tasmania-specific clade expansions drive the population structure of Tirant variation 

(Supplemental Figure 6a, 6b, 6c). However, in Jockey it is the absence of a clade in Zimbabwe 

that is found in all other populations, coupled with a Zimbabwe-specific expansion of a different 
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clade, that drives that structure (Supplemental Figure 6d, 6e, 6f). In these three families with 

notable population structure, it is the presence or absence of a single clade that drives the 

variation rather than multiple variants expanding within the populations. This pattern could be a 

reflection of selection favoring the expansion of a single lineage in a population, or simply due to 

genetic drift. In either case it shows that TE lineages are able to expand in copy number and 

become endemic in a population, dramatically altering the composition of TE variants within 

those individuals.  

Not every population-specific expansion of a clade will be as stark as Roo, Jockey, or 

Tirant. And as we noted above, ~15% of the several hundred clades discovered show 

significant heterogeneity in copy number between populations. These clades may not be 

sufficient to drive variation on a PCA due to their modest effect sizes, but are still significantly 

different between populations. These small differences may represent stochastic fluctuations in 

clade copy number between populations, or they may reflect the initial stages of a newly 

emerging clade in a population rising to high frequency.  

 

Sense and antisense piRNA pools are diverse and reflect the age of variants. 

One of the primary mechanisms by which hosts control the proliferation of TEs is 

through the piRNA pathway. piRNAs are produced in both the sense and antisense direction 

from two distinct pathways. Antisense piRNAs are generally produced from clusters containing 

fragments of inactive TEs and target TE transcripts for silencing. Sense piRNAs, in contrast, are 

generally derived from cleavage of a TE primary transcript, guided by an antisense piRNA. 

Antisense piRNAs therefore reflect the potential to silence TE expression, while sense piRNAs 

reflect the cleavage and silencing of TE transcripts. Sense piRNAs further feed back into the 

production of antisense piRNAs, amplifying the pool of piRNAs targeting that TE sequence 

(Czech et al. 2018; Aravin, Hannon, and Brennecke 2007; Brennecke et al. 2007). Therefore, 
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the pool of piRNAs a host produces might reflect the genetic variation of active TE families, not 

just polymorphisms in piRNA clusters. 

We asked whether the sequence diversity in the sense and antisense piRNAs (𝝅piRNA) 

tended to be correlated with the sequence diversity of the TEs themselves (𝝅TE). Sequence 

diversity of the piRNAs was quantified by aligning ovarian piRNA libraries from 10 strains from 

the GDL (two from each population) to TE consensus sequences (Luo et al. 2020). For each TE 

family we pooled together the piRNA reads from the 10 strains to calculate the average piRNA 

sequence diversity across its consensus and did a similar procedure with the copy-number data. 

To reduce technical artifacts we only considered SNPs in the piRNA data whose presence was 

supported by the corresponding genomic data. We found a strong positive relationship between 

the sequence diversity of a TE family and the sequence diversity in both sense and antisense 

piRNAs (+: Spearman’s rho = 0.90, p-value < 0.05; -: Spearman’s rho = 0.88, p-value < 0.05) 

(Figure 6a).  

The ratio ( 𝞹piRNA/𝞹TE , dubbed the “piRNA diversity ratio”) in each TE family estimates 

how well the piRNA diversity reflects genomic diversity. If the ratio is 1, then the piRNAs are as 

diverse as the genomic loci that they are derived from. A piRNA diversity ratio less than 1 

implies that there is greater unevenness in the proportion of variants found in the piRNA pool 

than in the genomic sequence, such that some variants may be absent from the piRNAs while 

others dominate. In contrast, a piRNA diversity ratio greater than 1 implies that variants are 

present in piRNAs at more equal proportions than in the genomic sequence. Across all families 

of TEs, the piRNA diversity ratio is approximately 0.6 (Figure 5a).  

We found that LTR retrotransposons have the lowest piRNA diversity ratio, 0.58 for 

either strand, while DNA transposons and LINE-like elements have ratios of ~0.7 (Supplemental 

Figure 7a). A low sense piRNA diversity ratio may reflect TE families with an abundance of old 

and inactive TE variants, which would produce few sense transcripts and thus few sense 
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piRNAs. Alternatively, these TE variants may be actively transcribing, but not be effectively 

silenced by piRNAs and therefore few of their transcripts are processed into sense piRNAs. A 

lower antisense piRNA diversity is likely due to the fact that antisense piRNAs tend to be 

generated predominantly from piRNA clusters, which contain only a subset of TE variants that 

are not necessarily representative of all TE variation. P-element has the lowest piRNA diversity 

ratio of all families, ~0.01, likely reflecting the low genetic diversity of P-element ( ) 

and their recent invasion in D. melanogaster (Kidwell 1983). Few P-element variants are 

segregating in the population and even fewer presumably have been captured by piRNA 

clusters.  

 Although most TE families had a low piRNA diversity ratio, R2, Blood and Hobo had a 

piRNA diversity ratio > 1 for one or both strands, and Roo was about 1.5x for both strands. 

These results were not due to an abnormally low average genomic diversity (~0.005 - 0.01). A 

high sense piRNA diversity ratio implies that many TE variants are transcribed and targeted by 

piRNAs, while the high diversity of the antisense piRNAs indicates that most variants are 

present in piRNA clusters or are producing de novo antisense piRNAs.  

Given that piRNA content was generally less diverse than the TEs themselves, we 

wanted to determine which variants were contributing to the diversity of the piRNA pools. 

Therefore, we calculated the number of mapping sense and antisense piRNAs that contained 

the lineage-informative SNPs of a clade per copy of that clade and averaged this ratio across 

the 10 GDL strains. A clade that is both being regulated by piRNAs and being used to produce 

piRNAs should have high quantities of both sense and antisense piRNAs.  

With the exception of the telomeric TEs, antisense piRNA read depth of lineage-

informative SNPs was more abundant than sense. This difference was most stark in LTR 

retrotransposons where over 4x more antisense than sense piRNA reads/copy contained 

lineage-informative SNPs (Figure 5b, Wilcoxon signed-rank test: p-value < 0.05). This suggests 

that many of these clades have been incorporated into piRNA clusters and are producing 
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antisense piRNAs. The telomeric TEs not only showed similar proportions of sense and 

antisense piRNAs per copy, but also generally had more piRNAs per clade copy than other TEs, 

likely reflecting the fact that piRNAs targeting telomeric TEs are generated from the telomeric 

TEs themselves rather than distinct piRNA cluster loci (Radion et al. 2018). Newly evolved 

telomeric TE variants do not have to insert by chance into an existing piRNA cluster or become 

converted into a de novo piRNA cluster, but instead can be immediately incorporated into the 

pools of antisense piRNAs. 

We find that many clades produced few or no piRNAs, but there were some, such as in 

HeT-A5, that produced over a hundred piRNAs/copy (Supplemental Figure 7b). The low piRNA 

diversity ratio we observed for TEs such as HeT-A5 may therefore reflect the inclusion of only a 

subset of clades in the primary or secondary piRNA pathway, and this inclusion may not be 

representative of the copy number of those clades. It is clear that some clades are more likely to 

be present in the piRNA pool than others. We therefore hypothesized that recently active 

variants might be more readily targeted by host piRNAs and therefore produce more 

piRNAs/copy. We used the above described classifications of young and old clades based on 

the Poisson fit of their copy-number distributions and analyzed the piRNA abundance of the two 

groups. We found that young clades have significantly higher sense piRNAs/copy, fitting our 

prediction that these clades are indeed actively transcribed and therefore likely transpositionally 

active (Dunn’s test: p-value < 0.05) (Figure 5c). This also held for antisense piRNA read depth, 

although the difference was less pronounced (Dunn’s test: p-value < 0.05). It is clear that 

although young, recently active clades are more readily used as a substrate by the primary 

piRNA pathway, there are still many older clades that generate antisense piRNAs, perhaps 

representing old heterochromatic piRNA clusters containing inactive variants. We note that our 

classifications using the theoretical expectations of the copy-number distribution are imperfect, 

and some “older” variants may still retain transpositional activity despite their age. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.442051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.442051
http://creativecommons.org/licenses/by-nc/4.0/


20 

Previous models of evolutionary arms races between TEs and piRNAs predict a positive 

correlation between the copy number of invading elements and the production of antisense 

piRNAs, because there is selection on the host genome to silence these elements (Luo et al. 

2020). Therefore, for each clade we calculated the Spearman’s rank correlation coefficient 

between its copy number and piRNA read depth for the 10 GDL strains, and compared these 

values between active and inactive clades. We found that young clades were significantly 

enriched for positive correlations in both sense and antisense piRNAs (Figure 5d, 5e, 5f; +: 

Dunn’s test:  p-value < 0.05; -: Dunn’s test: p-value < 0.05). We also found that there were 61 

and 58 young clades that had a statistically significant correlation between copy number and 

antisense and sense piRNA read depth, respectively, while only 2 and 4 old clades were 

statistically significant (Benjamini-Hochberg: FDR = 10%). Of the young clades many belonged 

to telomeric TEs, or recently active LTR and LINE-like retrotransposons, like Jockey, and Tirant. 

Overall, our analysis of piRNA sequence variation shows that host piRNA content 

changes to respond to the emergence of variant TEs, and that not all variants are represented 

in the piRNA pool. Young, putatively active TE variants are disproportionately represented in the 

sense and antisense piRNAs, suggesting that host genomes may be responding to the 

evolution of new TE lineages.  

  

Discussion: 

Clade inference provides a new tool for understanding the evolution of TEs. 

 We have developed a technique for inferring clades within TE families by leveraging 

population genomics datasets and heuristic statistical methods. This approach bridges a 

significant gap in the field of population genomics by obtaining information about TE family 

substructure from existing short-read datasets. Simulations show that this method reliably 

identifies clade structures that are consistent with the TE genealogy under a wide parameter 

space, and we also validated TE clade inferences in D. melanogaster by checking them against 
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PacBio genomes. We then used the clade designations from data on natural D. melanogaster 

populations to infer aspects of TE dynamics and host responses.  

The clade calls should be interpreted with some caveats in mind, however. The clusters 

of lineage-informative SNPs are markers that distinguish clades in the TE genealogy, not the 

complete set of SNPs within a full-length insertion. Given that two clades may descend from the 

same ancestral lineage, clusters of SNPs may co-vary within insertions but still be called as 

distinct TE clades. This behavior reflects a trade-off between merging versus splitting clades 

and depends on the chosen false-positive rate. This choice will affect the number of clades 

called for a given TE, but does not likely change the relative proportions of clades among 

different TEs, which our simulations show are robust to perturbations in clustering parameters. 

The technique we have developed can be readily applied to any organisms where population-

level short-read genomic sequence data and libraries of TE consensus sequences exist.  

 

Extensive population variation of TE lineages. 

 The study of the genetic variation of TEs has previously been largely relegated to 

reference genome assemblies. By applying population genetic theory to the copy-number 

distribution of clades, we found that a majority of clades (56%) were young and recently active. 

This is not wholly unexpected as most of the TE families we assayed have sequence diversity 

and population insertion-site frequency spectra that reflect recent invasion and activity (Kelleher 

and Barbash 2013; Kofler et al. 2015). We found that some young clades, such as in Jockey 

and DM412, have expanded in copy number dramatically across all populations, accounting for 

~40% of all insertions. Other young clades have expanded only within a subset of the 

populations, sometimes to 3-4x higher copy number than other populations. Interestingly, 

Tasmanian-specific SNPs for Tirant had been previously observed, but our study is the first to 

put this observation in the context of the emergence and expansion of a TE lineage (Schwarz et 

al. 2020). 
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This begs the question: what drives these differences in copy number? One possible 

cause of local copy-number expansions is the acquisition of adaptive polymorphisms that 

increase transposition rate. For example, hobo elements in D. melanogaster with 5 copies of an 

internal repeat are less active than variants with 3 copies (Souames et al. 2003). There are also 

segregating polymorphisms in the human LINE-1 element that account for ~16 fold differences 

in transposition rate (Lutz et al. 2003; Seleme et al. 2006). Polymorphisms could affect the 

transposition rate by changing the affinity of a transcription factor to the internal promoter, 

modifying the conformation of a transposase or reverse transcriptase to increase efficiency, or 

evading host genome-silencing mechanisms. A more transpositionally efficient variant would 

eventually displace other variants as it increased in copy number within that population (Le 

Rouzic and Capy 2006).  

It is also possible that differences in clade copy number between populations are caused 

by neutral processes. Genetic drift and geographic isolation could affect the copy number of 

variants within a population, thus creating population structure. Population genetic simulations 

of TEs competing within a population provide a future way to explore these hypotheses.  

 

Antisense piRNA production of variants may be adaptive. 

Although the piRNA system can quickly respond to the invasion of TE families into naive 

populations by producing antisense piRNAs specific to those new invaders (Kofler et al. 2018), 

its ability to change in response to the emergence of new variants of a TE family has been 

underexplored. We have shown that the piRNA defense system is surprisingly malleable and 

seems to often respond to the emergence of new variants by incorporating those variants into 

antisense piRNAs. The presence of a variant in the antisense piRNAs indicates inclusion of that 

variant in a piRNA cluster, and may reflect the propensity for the host to silence those variants. 

We found that, in general, antisense piRNAs had less sequence diversity than genomic TE 

insertions and that young, recently active clades were overrepresented in the antisense piRNAs. 
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This is consistent with previous findings that showed a bias for piRNA silencing of active human 

LINE-1 elements (Lukic and Chen 2011). In D. melanogaster, a positive relationship was found 

previously between indicators of transposition activity for TE families and their antisense piRNA 

abundance. However, this relationship seemed to be driven by the removal of inactive TE 

families from the piRNA pool rather than an increase in the silencing of active elements 

(Kelleher and Barbash 2013). Our analyses largely concur, as older clades of TEs are 

significantly less represented in the piRNA pool than younger clades.  

Furthermore, the malleability of piRNA content might be beneficial to the host as positive 

correlations were found between the copy number of young clades and their antisense piRNA 

read depth. Such positive correlations are predicted under an evolutionary arms race model with 

strong piRNA silencing (Luo et al. 2020). Recent analyses of TE family copy number in D. 

melanogaster laboratory and natural populations found positive correlations between piRNA 

read depth and copy number in 6 out 105 families analyzed. These were mostly young and 

recently expanding TE families, including P-element and a handful of telomeric TEs (Luo et al. 

2020; Saint-Leandre et al. 2020). By considering the copy-number variation of clades within TE 

families, our analyses provide much wider evidence of the expected correlation, with antisense 

piRNA production correlated with copy number for 61 TE clades in 22 out of the 41 likely active 

TE families considered. These include many telomeric TE clades, for which the positive 

correlation may have a distinct mechanistic explanation: as nearly all telomeric TEs are found at 

the telomere ends and do not insert at pericentromeric piRNA clusters, the piRNAs must be 

generated from the telomeres (Radion et al. 2018). However, we discovered that other active 

TE families, including Roo, Jockey, R1, and Tirant, also show this correlation and were not 

detected previously. The increased power in our analysis would be expected if active lineages 

preferentially display this correlation between piRNA read depth and TE copy number, with 

family-level analyses losing statistical power due to the aggregation of young and old clades. 
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This highlights the importance of integrating sequence polymorphisms into the analysis of TEs 

and the utility of our clade inference method. 

 Because the arms-race model predicts significant positive correlations between 

antisense piRNA abundance and copy number when the strength and efficiency of piRNA 

silencing is high, it is possible that the host produces antisense piRNAs that are specific to 

recently active clades to increase silencing efficiency (Luo et al. 2020). Those piRNAs that have 

perfect sequence complementarity to their targets might have higher specificity in binding and 

therefore increased silencing efficiency. In C. elegans and D. melanogaster, deletions or 

polymorphisms in piRNA binding sites on a transcript can reduce or eliminate silencing (Post et 

al. 2014; D. Zhang et al. 2018).  

Given that piRNA silencing efficiency is affected by sequence complementarity, then two 

possible models may explain the significant enrichment for recently active TE clades in 

antisense piRNAs. In the first, natural selection acts to increase the frequency of piRNA clusters 

segregating in the population that contain active TE variants. piRNA clusters can be highly 

polymorphic in TE content and rapidly turnover in sequence (S. Zhang, Pointer, and Kelleher 

2020; Wierzbicki et al. 2020; Assis and Kondrashov 2009; Zanni et al. 2013). Many distinct 

piRNA clusters are therefore likely to be segregating in D. melanogaster populations, each with 

distinct compositions of TE families and variants. The piRNA clusters that contain newly 

emerging variants may be selected for if they more efficiently silence novel variants, thus 

increasing in frequency.  

Alternatively, transcriptional activity of piRNA clusters may drive variation in piRNA 

pools. This epigenetic model is plausible because the transgenerational inheritance of piRNA 

cluster expression is dependent on maternally deposited piRNAs that trigger the production of 

primary piRNAs from piRNA clusters (Le Thomas et al. 2014; Brennecke et al. 2008). Maternally 

deposited piRNAs derived from TE variants may have higher affinity to piRNA clusters that are 

composed of those same variants, and therefore bias the production of antisense piRNAs 
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towards more active variants. This mechanism could “switch on” the activity of piRNA clusters 

that contain active TE variants, thus establishing a transgenerational change in piRNA content 

without altering the frequencies of piRNA clusters in the population. Such transgenerational 

epigenetic changes may be additionally bolstered by the formation of de novo piRNA clusters 

that can form from individual TE insertions. Euchromatic insertions of TE variants that are young 

will more likely be transcriptionally active than insertions of older variants, making them a more 

prominent target of silencing by antisense piRNAs. The piRNA pathway would then silence 

these actively transcribing TE variants and may convert some into de novo piRNA clusters by 

recruitment of the Rhino-Deadlock-Cutoff complex, thus producing variant-containing antisense 

piRNAs (Olovnikov et al. 2013; Shpiz et al. 2014; Mohn et al. 2014).  

In the first model, selection plays a major role in determining the piRNA content in a 

population and the enrichment of variant-containing antisense piRNAs is strictly adaptive. But in 

the epigenetic model, the enrichment is not necessarily adaptive. Changes in piRNA content 

may shift to bias more active variants due to variation in piRNA cluster activity or through the 

formation of de novo clusters, but these variant-containing piRNAs need not be more efficient at 

silencing TE variants. It is possible that this epigenetic variation is beneficial for the host, or it 

may be a byproduct of the mechanisms by which piRNA clusters are inherited. These two 

models are not mutually exclusive, and the underlying observations reveal a fundamental 

aspect of TE-host coevolution, where a new TE variant emerges in a population, increases in 

copy number, and then is used as a substrate by the host genome to produce novel antisense 

piRNAs. 

 

Methods 

Aligning short-read data to TE consensus using ConTExt and estimating copy number: 

 85 short-read libraries from the Global Diversity Lines were aligned to a curated index of 

RepBase TE consensus sequences and the D. melanogaster release 6 reference genome (Bao, 
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Kojima, and Kohany 2015; Hoskins et al. 2015; Grenier et al. 2015; McGurk, Dion-Côté, and 

Barbash 2020), using ConTExt following the parameters in (McGurk and Barbash 2018). From 

this output we estimated the copy number of each position for every TE consensus from the 

read depth, as described in (McGurk, Dion-Côté, and Barbash 2020), and used the read pile-

ups to calculate allele frequencies. Copy-number estimates and allele frequencies were 

generated for each of the 85 short-read libraries for each TE consensus. For Long Terminal 

Repeats (LTRs), or Perfect Near-Terminal Repeats (PNTRs) sequences the consensus 

sequence for the repeat unit is too short for copy-number estimation from read depth, so in 

these cases we used the median copy number from the internal sequence as the estimate of 

copy number. Additionally, we appended the LTR/PNTR copy number, and allele frequency 

data to the end of the internal sequence in order to be able to infer SNPs on the LTR/PNTR that 

co-occur with internal SNPs.  

 

Filtering reads by mapping quality. 

When creating the copy number and allele frequency matrices, reads aligned to the TE 

consensus sequences were filtered for mapping quality as described in (McGurk, Dion-Côté, 

and Barbash 2020). In brief, rather than using the Bowtie2 mapping quality scores we derived 

our own metric of filtering ambiguous reads based on the percent identity of the read to the 

primary (AS) and secondary (XS) alignments. We chose to filter reads in this way because we 

expect that many reads will be diverged from the consensus if they are derived from 

polymorphic elements, and we would like to retain that information. We first convert the 

alignment score of the read alignments to the percent identity to the consensus by assuming all 

penalties are due to mismatches, and then use these percent identities for AS and XS to 

compute a score: 
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Which reflects the distance between the primary (AS) and secondary (XS) alignment penalized 

by the divergence of AS to the consensus. If secondary alignments are reported by Bowtie2 we 

require this score to be greater than 0.05 for the alignment to be included in the analysis. If only 

a primary alignment is found the alignment must be less than 20% diverged from the consensus 

to be included.   

 

Calculating sequence diversity of TE families. 

 From the copy number and allele frequency data derived from the read alignments to the 

TE consensus we calculated the sequence diversity at each position in the alignment. We 

multiplied the copy-number matrices by the allele frequency data to generate the estimated 

number of copies for all alleles across the sequence of the TE consensus, and removed alleles 

with a copy number < 0.5 as we assumed these low values reflected sequencing errors. We 

calculated the allele copy number of a TE family for each strain’s alignments, as well as pooling 

allele copy number for all strains belonging to the same population (e.g. all Beijing strains), and 

pooling all strains to obtain global allele copy-number data. We next estimated sequence 

diversity at each position for each strain, population, and the entire dataset using the allele 

copy-number data as: 

 

Where N is the total copy number at that position and Xnt is the copy number of an allele. When 

calculating the sequence diversity of the piRNA reads we performed the same procedure, but 

used a matrix of read counts rather than copy number and did not include any alleles with a 

copy number < 0.5.  

 

Inferring TE Clades: 
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         We developed a method to infer the co-occurence of SNPs within a TE sequence by 

finding positive correlations in copy numbers between SNPs across multiple individuals. We 

performed this inference on a set of 41 recently active TEs (Supplemental File 1). For this 

approach we only included positions within a TE that had a within-population sequence diversity 

> 0.1; or had an overall sequence diversity > 0.1. This would be equivalent to filtering out 

positions where the major allele is present in greater than 95% of copies.  After initial diversity 

filtering, we obtained the copy number estimates of each allele by taking the proportion of reads 

that mapped to each allele and multiplying it by the estimated copy number at that position. For 

each position we determined the major allele as being the allele with highest copy number 

across the entire dataset and then extracted the copy number of the three minor alleles for 

every strain at every position. The result of this is an S x N matrix, where N is the number of 

minor alleles that passed our diversity criteria and S is the number of strains in the dataset. 

Each element of this matrix contains the copy number estimates for that allele for each strain. 

To reduce the rate of false positive correlations caused by low-copy-number alleles, we required 

that an allele must be present in at least 10 strains to be considered. Additionally, because we 

are only interested in high frequency alleles, we required alleles to be present in at least 10% 

frequency either across the GDL, or within a population.  

Additionally, we removed strains from the S x N matrix that were determined to be 

outliers in copy number as determined from (McGurk, Dion-Côté, and Barbash 2020). These 

outliers do not represent the natural variation in copy number and instead represent TE copy-

number expansions that likely occurred during the inbreeding process of the strain. These 

massive expansions break assumptions of our method by allowing situations where distinct TE 

subfamilies may co-expand in copy number and correlate while not existing on the same TE 

sequence. We perform this data processing for each active TE of interest. 

         To identify lineage-informative SNPs we perform Hierarchical Clustering with average 

linkage using a correlation distance on the S x N matrix (Using the R package pheatmap). This 
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clusters together alleles that correlate in copy number. We use this to both seriate a correlation 

matrix of the alleles, and to directly call clusters by cutting the dendrogram at a correlation 

distance optimized for each TE, as described in Choosing a Distance Cut Off for Hierarchical 

Clustering. Clusters of minor alleles with more than one allele are lineage-informative SNPs that 

can be used to distinguish TE clades.  

 

Choosing a Distance Cut Off for Hierarchical Clustering 

To justify the correlation cut-off criteria in our Hierarchical Clustering, we generated a 

null distribution of correlations by permuting the order of the rows of each column of the filtered 

sets of minor alleles and calculating the pairwise correlation of these permuted SNPs. We 

performed this operation 1,000 times for each TE. We calculated the pairwise correlations of the 

un-permuted filtered sets of minor alleles and denoted this as the Test distribution. Due to the 

large number of pairwise comparisons performed in the clustering (869,042 pairwise correlations) 

we sought to correct the false positive rate by performing Bonferonni correction on our critical 

value ( ) by dividing  by the number of pairwise comparisons. This critical value is 

subtracted from 100 to obtain a percentile that we use to determine cutoffs in the hierarchical 

clustering, a so-called “Critical Percentile”. We pooled the Test and Null distributions across all 

TEs of interest and computed the correlation value at the “Critical Percentile” in the Null 

distribution, r = 0.59 (Supplemental Figure 1a). Although stringent, we found that 6.38% of the 

SNPs in the Test distribution had a r > 0.59.  

We further sought to justify our cut-off by examining the individual Null and Test 

distributions for each TE and comparing the Null distributions between elements (Supplemental 

Figure 1b). We observed that there was some degree of variability of the Test and Null 

distributions for each of the TEs. The “Critical Percentile” of the Null distributions fell between a 

correlation value of ~0.43 - 0.93 across the samples. Therefore, we optimized the hierarchical 
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clustering distance cutoff for each TE by setting it to the correlation at the “Critical Percentile” for 

each Null distribution.  

 

PacBio Data and Alignment of TE Consensus 

For analysis of PacBio data we used 13 DSPR founders, the OregonR PacBio genome, 

and five PacBio genomes from the GDL (Chakraborty et al. 2019; Long et al. 2018). RepBase 

consensus sequences of 41 TEs of interest were processed by substituting ambiguous base 

calls with a non-ambiguous nucleotide, and then aligned to the PacBio genomes using BLASTn 

(Bao, Kojima, and Kohany 2015; Camacho et al. 2009; S. F. Altschul et al. 1997; Stephen F. 

Altschul et al. 1990). For retrotransposons with LTRs or PNTRs we aligned only the internal 

sequence to simplify the amount of downstream processing of the alignments, and because the 

majority of SNPs reside in the internal sequence. Alignments were output as XMLs to be 

analyzed downstream. We also extracted the sequences of each of the alignments as fasta files 

to be used to construct phylogenies (Supplemental File 2).  

 

Constructing TE Phylogenies from PacBio Data: 

 We constructed phylogenies of TEs by using TE fasta sequences extracted from PacBio 

genomes, and then annotated the tips of the phylogeny with inferred clades from the GDL short-

read data. We constructed phylogenies for all 41 TEs analyzed (Supplemental File 3). We first 

extracted fasta sequences of each insertion in the PacBio genomes by taking the sequences 

from the alignments described above.  We excluded TE sequences that were less than 75% full 

length and then generated a multiple sequence alignment of the remaining sequences using 

clustalOmega (Sievers et al. 2011). A phylogeny of the sequences was constructed using 

maximum likelihood and model fitting with the tool iqTree2. A consensus tree was built using 

1,000 bootstrap replicates (iqtree2 -s {input} -bb 1000) (Minh et al. 2020; Hoang et al. 2018; 

Kalyaanamoorthy et al. 2017). We used this consensus tree to generate cladograms, queried 
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the sequences of the tree for inferred clades, and then colored in the tips of the phylogeny if 

they contained greater than 50% of the SNPs present in the cluster (Supplemental File 3).  

 

Validation of GDL clades using PacBio genomes 

 We used the alignments of TE consensus sequences to the PacBio genomes to recover 

our clades inferred from the GDL short-read data. To do this we first needed to extract phased 

haplotypes from our alignments. We took the alignments and recorded the position on the 

consensus and the alleles found in each TE insertion of the PacBio genomes. We accounted for 

gaps created by insertions and deletions by correcting the position, or adding missing values, 

respectively. The result is a sequence for each alignment that records the position of the 

nucleotide found in the PacBio genome relative to the position in the RepBase consensus 

sequence, and the allele found at that position. 

 We then checked lineage-informative SNPs discovered from the GDL short-read data in 

the PacBio TE insertions by querying the SNPs against the PacBio insertions for a given TE. 

For each clade we removed PacBio alignments if they had a deletion at one of the positions of a 

lineage-informative SNP. On occasions when a SNP was not found in any alignment, that SNP 

was removed from the analysis. Additionally, we removed clades from the validation if less than 

two of the SNPs were detected in the PacBio data, because we wanted to be able to assay our 

ability to infer linkage between detected SNPs. A total of 1,719 out of 4,383 alleles were 

removed from the PacBio analysis. The proportion varied among TEs, with some elements like 

Tart-A or P-element having 95-100% of SNPs missing while other elements like Doc had no 

SNPs missing.  

  We justify the absence of these alleles as a consequence of the difference of power 

between the 85 GDL genomes used to make the initial inference, and the 19 PacBio genomes 

that were used to confirm the method. In addition to power issues, this validation is limited by 

the differences in population structure between the PacBio genomes and the GDL data. 
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Although five of the PacBio genomes, B59, I23, N25, T29A, and ZH26, came from GDL 

populations, the other 14 genomes are from the DSPR. It is possible that alleles that are present 

at low frequency within the GDL would not be present in the DSPR, because the alleles are 

population specific. It should also be noted that for retrotransposons only their internal sequence 

was aligned to the PacBio genome and so SNPs that reside on the LTR/PNTR were not used in 

this verification. 

We recorded the frequency at which each of the complete sets of lineage-informative 

SNPs was found in its entirety in the PacBio sequences and found that approximately 70% of 

the clades inferred from the GDL short-reads were found within the PacBio alignments (Fig 2a). 

We also performed the same analysis on the complete set of clades and found that while the 

total number of clades detected decreases to 38%, the trends on the percent clades validated 

for each TE are similar (Supplemental Figure 3a). Missing clades not found in the PacBio 

genomes may reflect several distinct technical and biological issues. Firstly, some sets of clades 

do not have perfect linkage between all of their SNPs. This can occur when related lineages that 

share SNPs are segregating within the population. The clustering algorithm is unable to 

distinguish these multiple lineages and clusters them together, because they share a significant 

portion of their SNPs. The other possibility is that the lineage, or a subset of SNPs in the 

lineage, are rare or specific to a population in the GDL, and were not sampled in the PacBio 

genomes.  

To more finely describe the co-occurence of SNPs in clades, we computed the pairwise 

Jaccard Score of SNPs within and between inferred clades. The Jaccard Score is computed as 

the number of times two SNPs occur together in a TE insertion in the PacBio genomes divided 

by the total number of times that either one or both SNPS are present. We converted these 

scores into a Jaccard Distance by simply calculating 1 - Jaccard Score, such that two SNPs that 

always co-occur will have a distance of 0 while two that never co-occur have a distance of 1.  
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We used these Jaccard Distance matrices to quantify the cohesiveness and separation 

of lineage-informative SNPs by computing Silhouette Scores. Silhouette Scores are a common 

metric for evaluation clustering performance and are calculated as being the mean distance 

between an individual in a cluster and its other cluster members subtracted by the mean 

distance between this individual and the members of the closest neighboring cluster. These 

values are then normalized such that they are bounded between -1 and 1, where positive 

scores imply that SNPs within a cluster, or clade, co-occur with each other more often than they 

co-occur with SNPs from a neighboring clade, and negative scores imply the opposite. 

By comparing the Silhouette Score of clades to their frequency in the PacBio data, we 

can classify clades in four ways (Supplemental Figure 3b).  “Full clade”: the Silhouette Score is 

a positive value, and the frequency is greater than 0 i.e. clustering quality is good, and this 

arrangement of SNPs is found in the validation data. “Multiple derived lineages”: the Silhouette 

Score is positive, but the frequency is 0. In this case we reason that the sets of alleles co-

segregate in multiple lineages that share SNPs with each other, and the algorithm merges these 

multiple lineages into one cluster. “Incomplete clade”, the Silhouette score is negative, but the 

frequency is greater than 0. These arrangements of SNPs are found to exist in the validation 

data, but may be a result of splitting lineages, or can reflect a high degree of relatedness with 

other clusters. “Errors”, the Silhouette Score is negative and the frequency is 0. In these cases 

the SNPs are found in the validation set, but do not seem to co-exist on the same TE sequence.  

Using these classifications we find that 41.4% of inferred clades were “Full clades”, 5.5% 

were “Multiple derived lineages”, 28.4% were “Incomplete clades”, and 24.7% were “Errors”. 

“Errors” may be a result of erroneous clustering, but likely reflect a mismatch between the SNPs 

found in the PacBio dataset and the short-read dataset, as nearly 39% of SNPs found in the 

GDL population were not found in the PacBio dataset. We also find that “Error” clades are larger 

(composed of more SNPs) than “Full clades” and “Incomplete clades”, but not “Multiple derived 

lineages” (Wilcoxon rank sum test). “Error” clades also tend to have more SNPs missing in the 
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PacBio dataset than “Incomplete clades” (Wilcoxon rank sum test: p-value < 0.05), and although 

have a higher mean number of SNPs missing than “Full clades” (2.3 SNPs vs 0.5 SNPs) this 

difference was not significant.  

As a qualitative assessment of the clustering we generated graphs of the SNPs for TEs 

where each node is a SNP, and the edge weights are the Jaccard Distance between SNPs. The 

SNPs are then colored by which clade they belong to (Supplemental File 4). Using Jockey as an 

example, short edge lengths connect the SNPs of “Cluster_3”, giving us strong confidence that 

this is a “Full clade” as expected, while the SNPs in “Cluster_12” are disconnected and fall into 

the “Error” category (Supplemental Figure 3c). Interestingly, we see that “Cluster_7” is centrally 

located in the graph with strong connections to many other SNPs. This high degree of 

connectivity with other clusters implies that it is an ancestral variant that has given rise to the 

other variants seen in the graph. In support of this hypothesis we find that “Cluster_7” is at 

~40% frequency in the GDL, and is present in nearly all Jockey insertions.  

As an additional qualitative assessment we examined the annotated phylogenies of TE 

sequences from the PacBio alignments (Supplemental File 3). We expect that clades will cluster 

together along branches, and that ancestral variants will be uniformly distributed across the 

branches -- meaning the older variants will be more widely shared. Generally, we find that our 

expectations hold true: older clades are widely distributed across the tree and are at higher 

frequency, while TEs that share newer, lower frequency clades cluster together. The tree for 

Jockey is shown as an illustrative pattern of the expected structure (Supplemental Figure 2d). 

We find that “Cluster_3”, “Cluster_8”, and “Cluster_9” form cohesive groups within the 

phylogeny, and that “Cluster_7” seems to be an ancestral variant that is shared among all the 

TE sequences in this tree.  

 

Simulating Artificial Clades from Phylogenies 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.442051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.442051
http://creativecommons.org/licenses/by-nc/4.0/


35 

 To generate the sequences of artificial clades we first used a birth-death process to 

generate a topology of the evolutionary history of a TE (R package treeSim) (Love, Huber, and 

Anders 2014; Stadler 2011). We reason that transposition events in a TEs evolutionary history 

can be considered births, while a deactivating mutation or excision, would be equivalent to the 

extinction of a lineage. We used a birth rate of   and a death rate of  (Le 

Rouzic, Payen, and Hua-Van 2013). We simulated 20,560 generations of this process which 

generated a tree with 2,500 extant tips and 248 extinct tips -- a large but manageable number of 

sequences. We retained the extinct tips in the topology as they would represent TEs that are no 

longer active but still segregate in the population. We used this topology to generate sequences 

evolving neutrally by generating a random ancestral sequence of length 3,000 bp and dropping 

mutations via a Poisson process along the branch lengths with a mutation rate of  and 

no recombination, thus generating sequences for each tip (R package simSeq) (Schliep 2011). 

For a population of 85 individuals (the same number of individuals as in the GDL sample) we 

generated a copy-number distribution by drawing each individual's copy number from a Poisson 

distribution with a mean copy number of 25. We then used this distribution to randomly sample 

from all extant and extinct lineages with replacement (Supplemental File 5).  

 

Simulations of Short-Reads from Artificial Clades 

 We aimed to simulate data that would be obtained from short-read libraries generated 

genomes harboring TE insertions that were aligned to a consensus sequence using ConTExt. 

We used arrays of known sequences that “reside” in each simulated individual in our population 

to generate TE copy number, and an allele proportion matrix. 

TE copy number is simply the number of copies of an artificial TE that an individual has 

within their “genome”. The allele proportion matrix contains the proportion of artificial TE 

sequences that contain an A, T, C, or G at a given position for each strain plus pseudocounts 

added to represent a 0.1% Illumina sequencing error.  
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 We then used these two reference files to simulate allele copy number pileups that 

replicate the inputs we used for our analysis of the GDL short-read data. For each strain we 

generated the coverage of our simulated library by drawing from a Poisson distribution with a 

target coverage as our lambda parameter: 

 

 

 

We call the values drawn from this distribution our Expected Reads, E(R). We then use 

E(R) to generate the observed number of reads, O(R), that map to a given position of our TE. 

We reason that the number of reads observed at a position would be the E(R) multiplied by the 

TE copy number, CN. Therefore, we draw O(R) from another Poisson distribution where lambda 

is E(R) times the CN: 

 

 

 

With the O(R) obtained for all positions of a TE for a given simulated library we now will 

use this to estimate the observed copy number, O(CN). We do this by adapting methods of copy 

number estimation, but instead of estimating E(R) with library specific parameters, we use our 

known E(R) from our simulated library (McGurk, Dion-Côté, and Barbash 2020). In short we 

divide O(R) by E(R) to obtain our O(CN): 

 

 

 

We now randomly sample O(R) number of reads from a multinomial distribution 

parameterized by the allele proportion matrix, thereby generating read counts that map to A, T, 
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C or G. We use the proportion of reads that map to each nucleotide to generate a mapped allele 

proportion matrix that we multiply to O(CN) to obtain the number of copies observed for each 

allele. This was output as our final simulated allele copy-number matrix where we have 

recorded the copy number of each allele of a TE for 85 simulated libraries (Supplemental File 

5). These simulated data are identical in structure to the data structure that was used to infer 

clades from the GDL short-read data. We used our clade inference pipeline described in the 

above sections to infer clades using the same population specific parameters as the GDL (  > 

0.1, Population Frequency > 10%). We examined the effect of correlation clustering cut offs at 

0.1 intervals from -1 to 1.  

 

Simulations of sequence evolution and copy-number data to benchmark clade inference: 

 We benchmarked the performance of our clade inference method using the 

aforementioned simulations of sequence evolution to create artificial TE sequences segregating 

in a simulated population. We used the artificial sequences as a validation set for the clade 

inferences by calculating the frequency of inferred clades in the validation set, and Silhouette 

Scores for each clade. To examine the effect that clustering correlation cut-offs had on 

inference quality, we inferred clades from the same simulated data set using correlation cut-offs 

ranging from -1 to 1 in 0.1 intervals and computed an average Silhouette Score for the run. We 

found that relaxed correlation cut-offs, i.e. r < 0, produced a singular cluster that encompassed 

the entire set of SNPs. We assigned the lowest possible score, -1, to these results as they are 

uninformative. Conversely, a very stringent cut-off, i.e. r = 1, produced no clusters and also was 

assigned a -1 score. The intermediate scores between 0 and 0.9 were the most informative. We 

found that Silhouette Scores steadily increase as the cut-off stringency increases until reaching 

a peak at r = 0.8 (Figure 2b).  This result shows that increasing clustering stringency produces 

tighter, more cohesive clusters, as would be expected, until a limit is reached and an under-

clustering behavior emerges.  
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To finely describe the quality of individual clades we used both frequency in the 

validation set and Silhouette Scores to classify them (Supplemental Figure 4a). The relaxed 

clustering cutoffs, i.e. r = (0, 0.1, 0.2), have more “Multiple Derived lineages” as would be 

expected, while if the cut-off is more stringent, r = 0.9, we see an “Incomplete Clade”. However, 

in general we see many high frequency “Full Clades” called at a wide range of clustering 

parameters, but the optimum seems to be, r = 0.7-0.8 ( Supplemental Figure 4a).  

 Our final assessment of clustering quality was to annotate the underlying phylogeny that 

was used to generate the sequences with the clades that were inferred from the simulated data. 

We took the results from one of the optimal clustering cut-offs, r = 0.7, and colored the tips of 

the phylogeny if that sequence contained more than 50% of the SNPs that form a cluster. We 

found that the tips that contain the same clades form groupings in the phylogeny as expected. 

Additionally, we can see that “Cluster_3” is an older clade that is more widely distributed along 

the phylogeny, as was observed for old clades in the real TE sequences (Supplemental Figure 

4b).  

These simulations allowed us to generate a realistic dataset to validate our clade 

inferences. We find in general that clustering behaves better under more stringent clustering 

cut-off parameters (Supplemental Figure 2b, Supplemental Figure 4a), and our inferred clades 

are correctly identifying phylogenetic relationships (Supplemental Figure 4b).  

 

Processing and aligning small RNA data 

 Public piRNA libraries were all created from female D. melanogaster ovaries, and are 

available through the SRA (see SRA acessions). We obtained libraries from 10 GDL strains 

(two from each population) (Luo et al. 2020). piRNA reads were trimmed using Trimmomatic 

and aligned to an index of curated RepBase repeat consensus sequences using Bowtie2 using 

the parameters: -N 1 -L 10 -i S,1,0.5 -p 8 --score-min L,0,-1.2 -D 100 -R 5 (Langmead et al. 

2019; Langmead and Salzberg 2012; Bolger, Lohse, and Usadel 2014; Bao, Kojima, and 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.442051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.442051
http://creativecommons.org/licenses/by-nc/4.0/


39 

Kohany 2015; McGurk, Dion-Côté, and Barbash 2020). After alignment, reads were filtered by 

base quality (Q > 30), by size (21-30 base pairs) and by mapping quality as described for the 

genomic data in the above sections. From the remaining reads we generate SNP read pileups 

with the python module pysam using the pileup function (https://github.com/pysam-

developers/pysam), akin to samtools mpileup (Li et al. 2009). We separated reads out by sense 

and antisense to get SNP pileups derived from the secondary piRNA pathway, and the primary 

piRNA pathway, respectively. The result is a matrix containing the number of sense and 

antisense reads that map to each position and that read’s nucleotide at that position. After 

generating the matrices, we used a Size Factor Normalization approach to normalize the total 

read depth of all repeats that reads were aligned to. We generated a table of read counts for 

each TE from the SNP pileups, and then followed the protocols described by DESeq2, but used 

a custom script to handle our unique data structure (Love, Huber, and Anders 2014). The 

normalized read depth SNP pileups were used as the primary data for all piRNA analyses in this 

study. To calculate piRNA read depth of each clade we averaged the sense and antisense 

piRNA read depth across all alleles of each clade across the strains. We then added 

pseudocounts of one to the clade piRNA read depth and to the clade copy number of the strains 

before computing piRNAs/copy. This was done to regularize data for log-transformation. We 

used these values to calculate the average sense and antisense piRNA read depth per clade 

copy across the 10 GDL strains. 

 

Data and code availability: 

 Short-read, PacBio and piRNA data used in this study were previously published and are 

publicly available: GDL NGS libraries are available under SRA accession SRP050151 (Grenier 

et al. 2015). GDL PacBio genomes are available under SRA accession SRP142531 (Long et al. 

2018), and DSPR PacBio genomes are available under BioProject accession PRJNA418342 

(Chakraborty et al. 2019). GDL piRNA data is available under SRA accession SRP068882 (Luo 
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et al. 2020). Code and processed data used to infer clades are publicly available through Github 

(https://github.com/is-the-biologist/TE_CladeInference). 
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Figure 1. Outline and examples of the TE clade inference method. (a) Cartoon depicting the 

method. The genomes of three individuals (orange rectangles) contain copies of an ancestral 

TE (blue rectangles) and a derived TE with SNPs A and B (blue rectangles with a red and 

purple stripe, respectively). As the copy number of the derived TE varies in copy number across 

individuals 1-3, so does the copy number of SNPs A and B. This relationship in copy number is 

depicted as a cartoon scatterplot, where each red dot represents the copy number of SNPs A 

and B in one of nine individuals sampled in the population. The copy number of the SNPs is 

positively correlated because the SNPs are physically linked. (b) Scatterplot depicting the 

correlation in copy number across GDL individuals for two SNPs in the Jockey element. Each 

dot represents the copy number of the SNPs C at position 2238 (C_2238) and C at position 

2402 (C_4204) for each individual, colored by their population of origin. The degree of 

correlation of these two SNPs is high (Pearson’s r = 0.82), suggesting that they are physically 

linked and represent a clade. Black dashed line is a linear fit of the data drawn for emphasis. (c) 

Heatmap showing correlation of the copy number of all SNPs from the Jockey element. Cells in 

the heatmap are seriated via hierarchical clustering to create clusters of tightly correlated SNPs, 

which are inferred to be Jockey clades segregating in the population. The cells are shaded by 

the pairwise Pearson’s correlation between SNP copy number. The SNPs from (b) are outlined 

in a block box. (d) The percent of clades inferred from GDL data that were then detected in a set 

of PacBio genomes (includes only clades where at least two SNPs were detected at any 
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frequency in the PacBio data). The results are separated by TE family, with total clades shown 

on the far right. Fraction of clades validated over the total number of clades found are placed 

above each bar.  

 
Figure 2. Summary statistics of TE clades inferred from GDL short-reads. (a) Average 

nucleotide diversity for each TE family vs. the number of clades inferred for that family, colored 

by TE class. (b) The number of phase-informative SNPs that compose each clade inferred for 

every TE family. Each point represents a clade and is colored by TE class. (c)  Histogram of the 

population frequency of all clades from 41 recently active TE families. (d) Boxplots of the clade 

population frequency of all clades separated by TE family. Each point represents a clade and is 

colored by TE class.  

 
Figure 3. Age of clades are inferred by their copy-number distribution. (a) Mean-variance 

relationship of the clade copy-number distributions for clades from all families. The copy-number 

distributions for each clade were tested for goodness of fit to a Poisson distribution, and then 

colored based on acceptance or rejection of this test: “overdispersed” (rejected, red), 

“dispersed” (fail to reject, yellow), or “underdispersed” (rejected, purple). (b) Population 

frequency of young (red: “dispersed'' and “overdispersed”) or old (purple: “underdispersed”) 

clades across all TE families. (c) Number of discovered clades per TE family that are young 

(red: “dispersed'' and “overdispersed”) or old (purple: “underdispersed”). (d) Boxplot of the copy-

number distribution of the sole putatively active I-element clade from (c) for each GDL 

population. There is a significant elevation in the copy number of this clade in Beijing. 

 
Figure 4. Population structure and variation of TE clades is common. (a) Boxplot showing 

the result of Kruskal-Wallis tests on the clade copy number between GDL populations for each 

TE family. Each dot represents the negative log base-2 transformed p-value for a single clade. 

Red dashed line is the Bonferonni corrected critical value. 15% of the clades had a p-value less 
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than the critical value, and showed heterogeneity in copy number between populations 

(Bonferonni correction: =0.05919). (b) Each dot represents the average copy number of a clade 

across GDL and the average copy number of the population that is most differentiated from the 

GDL average. Most differentiated is defined as the greatest absolute difference between the 

population mean and the GDL mean. Clades are colored by whether they are statistically 

significant by Kruskal-Wallis test (sig., red), or not (n.s., grey). (c) PCA on the minor allele 

frequency of Roo element SNPs in the GDL. Each dot represents the principal components 

derived from the minor allele frequencies of an individual. Beijing (red), and Zimbabwe (purple) 

clusters can be seen. (d) Boxplot of copy number of a Roo clade enriched for Beijing (B: Beijing, 

I: Ithaca, N: Netherlands, T: Tasmania, Z: Zimbabwe). (e) Boxplot of copy number of a different 

Roo clade enriched for Zimbabwe. (B: Beijing, I: Ithaca, N: Netherlands, T: Tasmania, Z: 

Zimbabwe). 

 
Figure 5. piRNA diversity and the average sense and antisense piRNAs/copy of TE clades 

for 10 GDL strains. (a) Scatterplot where each point represents the sense (+, red) or antisense 

(-, blue) piRNA sequence diversity (𝝅piRNA) for a TE family plotted against the genomic TE 

sequence diversity (𝝅TE) of the TE family. The grey dashed line represents the 1:1 expectation of 

piRNA diversity:genomic diversity and the black dashed line represents a linear fit between the 

piRNA diversity and genomic diversity. (b) Average clade piRNAs/copy for sense (+,  red), and 

antisense (-, blue) separated by TE class. Significant differences between sense and antisense 

piRNAs/copy were found in clades for LTR and LINE-like elements (sig.), but not telomeric or 

DNA transposons (n.s. ; Wilcoxon signed-rank test) . (c) piRNAs/copy of putatively young clades 

(likely active) and old clades (likely inactive). Young clades had greater piRNAs/copy than older 

clades (+, Dunn’s test p-value < 0.05; -, Dunn’s test p-value < 0.05). (d) Spearman’s correlation 

calculated for copy number and piRNA read depth for putatively young and old clades. Young 

clades had a greater Spearman’s correlation than inactive clades for sense and antisense 
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piRNA read depth (+, Dunn’s test p-value < 0.05; -, Dunn’s test p-value < 0.05). (e) Copy 

number vs. sense (+, red) and antisense (-, blue) piRNA read depth for a young, recently active 

Jockey clade, and (f) for an old, putatively inactive I-element clade. 

 
Supplemental Figure 1. Null and test distributions used to choose optimal correlation cut 

offs for hierarchical clustering. Null distributions were constructed by permuting the allele 

copy number matrices for each TE family 1,000 times and recording all pairwise correlations 

between permuted alleles. The test distributions were computed by performing the pairwise 

comparisons of the allele copy number matrices for each TE family. (a) Aggregations of all test 

distributions (orange) and null distributions (teal) for all TE families. (b) Boxplots of individual 

test distributions (orange) and null distributions (teal) for each TE family. 

 
Supplemental Figure 2. Clade inference method validated using PacBio genomes and 

simulations. (a) Average pairwise correlation of allele copy number between TE families and 

within TE families from GDL short-reads. (b) Clustering quality (Silhouette Score) of inferred 

clades from simulated polymorphism data. Clustering accuracy was high when the correlation 

cutoff for clustering was  and . 

 
Supplemental Figure 3. Additional validation of GDL clades using PacBio data. (a) The 

percent of all clades inferred from GDL data that were then detected in a set of PacBio 

genomes (including those with no SNPs detected in the PacBio data). The results are separated 

by TE family, with total clades shown on the far right (colors are for visual separation and are 

not quantitative). (b) Each clade is classified by a Silhouette Score and insertion frequency in 

the PacBio genomes: Full clade (Silhouette Score > 0, Frequency > 0; green), Incomplete clade 

(Silhouette Score =< 0, Frequency > 0; orange), Multiple derived lineages (Silhouette Score > 0, 

Frequency = 0; blue), and Errors (Silhouette Score =< 0, Frequency = 0; red). Results are 

separated by TE family. (c) Network graph showing Jaccard distances between SNPs and their 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.442051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.442051
http://creativecommons.org/licenses/by-nc/4.0/


44 

corresponding clades, for the Jockey element. Each node is a SNP and is colored by the clade 

it belongs to. Edge weights are the Jaccard distance between SNPs calculated from insertions 

in the PacBio genome. (d) Cladogram of Jockey insertions that are >=75% full-length from all 

PacBio genomes. Tips of the cladogram are colored by the clade(s) they contain (an insertion is 

considered to correspond to a clade if it has > 50% of the SNPs that define the clade). 

Insertions with similar composition of clades cluster together within the cladogram.   

 
Supplemental Figure 4. Analysis of missing lineage-informative SNPs in validation. 

Number of missing lineage-informative-SNPs (a) and total number of lineage-informative SNPs 

(b) for each inferred clade. Each point represents a clade and is classified by a Silhouette Score 

and insertion frequency in the PacBio genomes: Full clade (Silhouette Score > 0, Frequency > 

0), Incomplete clade (Silhouette Score =< 0, Frequency > 0), Multiple derived lineages 

(Silhouette Score > 0, Frequency = 0), and Errors (Silhouette Score =< 0, Frequency = 0).  

 
Supplemental Figure 5. Benchmark of clade inference method using polymorphism data 

from a simulated phylogeny. (a) Clades are classified by a Silhouette Score and insertion 

frequency in the simulated reference sequences: Full clade (Silhouette Score > 0, Frequency > 

0; green), Incomplete clade (Silhouette Score =< 0, Frequency > 0; orange), Multiple derived 

clades (Silhouette Score > 0, Frequency = 0; blue), and Errors (Silhouette Score =< 0, 

Frequency = 0; none shown). Classification was done on correlation cutoffs from -1 to 1, but 

only presenting informative runs from -1 - 0.9. (b) Cladogram of a simulated sequence 

phylogeny used to generate polymorphism data. Tips of the cladogram are colored by the 

clade(s) they contain (a sequence is considered to contain a clade if it has > 50% of the SNPs 

that define the clade).  

 
Supplemental Figure 6. PCAs of minor allele frequencies from TEs that show strong 

population structure. (a) PCA on the minor allele frequency of Tirant elements reveals an 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.442051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.442051
http://creativecommons.org/licenses/by-nc/4.0/


45 

Ithaca cluster (teal) and a Tasmania cluster (orange). (b) Boxplot of clade copy number of the 

Tirant clade enriched for Tasmania (B: Beijing, I: Ithaca, N: Netherlands, T: Tasmania, Z: 

Zimbabwe). (c) Boxplot of clade copy number of a Tirant clade enriched strongly for Ithaca, and 

moderately for Netherlands (B: Beijing, I: Ithaca, N: Netherlands, T: Tasmania, Z: Zimbabwe). 

(d) PCA on the minor allele frequency of Jockey elements reveals a cluster for Zimbabwe 

(purple). (e) Boxplot of clade copy number of a Jockey element enriched for Zimbabwe (B: 

Beijing, I: Ithaca, N: Netherlands, T: Tasmania, Z: Zimbabwe). (f) Boxplot of clade copy number 

of a Jockey element depleted in Zimbabwe (B: Beijing, I: Ithaca, N: Netherlands, T: Tasmania, 

Z: Zimbabwe). 

 
Supplemental Figure 7. Additional piRNA diversity ratio and piRNA abundance data for 

recently active TEs. (a) Sense (red) and antisense (blue) piRNA diversity ratio (𝝅piRNA/𝝅TE) for all 

TE families from 10 GDL strains separated by class. (b) Average clade piRNAs/copy for sense 

(+,  red), and antisense (-, blue) separated by TE family. 
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