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Abstract:

Taxonomic classification of viruses is a multi-class hierarchical classification problem, as

taxonomic ranks (e.g., order, family and genus) of viruses are hierarchically structured and have

multiple classes in each rank. Classification of biological sequences which are hierarchically

structured with multiple classes is challenging. Here we developed a machine learning

architecture, VirusTaxo, using a multi-class hierarchical classification by k-mer enrichment.

VirusTaxo classifies DNA and RNA viruses to their taxonomic ranks using genome sequence. To

assign taxonomic ranks, VirusTaxo extracts k-mers from genome sequence and creates
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bag-of-k-mers for each class in a rank. VirusTaxo uses a top-down hierarchical classification

approach and accurately assigns the order, family and genus of a virus from the genome

sequence. The average accuracies of VirusTaxo for DNA viruses are 99% (order), 98% (family)

and 95% (genus) and for RNA viruses 97% (order), 96% (family) and 82% (genus). VirusTaxo

can be used to detect taxonomy of novel viruses using full length genome or contig sequences.

Availability:

Online  version of VirusTaxo is available at https://omics-lab.com/virustaxo/.

Introduction:

Virus genome consists of either DNA or RNA and is broadly classified as DNA virus or RNA

virus (Chaitanya, 2019). Viruses are classified into taxonomic ranks which play an important role

in finding out their source, genetic relationship, ancestry and origin. Taxonomic classification of

viruses ensures the consistent and accurate classification of novel viruses. Using sequencing

technologies, there are methods available for automating the classification of the viruses from

genomic sequences (Remita et al., 2017; Vilsker et al., 2019). Most of the existing methods are

based on similarities in genome structure and organisation, the presence of homologous gene and

protein sequences (Vilsker et al., 2019; Simmonds, 2015). Homology based methods require higher

computational resources and might produce unreliable alignment for novel viral species (Bazinet

and Cummings, 2012). Supervised machine learning methods have been widely used to classify

metagenomic reads against known viral and bacterial genomes (Ounit et al., 2015; Ounit and

Lonardi, 2016; Shang and Sun, 2020). Machine learning techniques have also been used to assign

taxonomic labels of viruses from genome sequence in CASTOR and ML-DSP (Remita et al.,
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2017; Randhawa et al., 2020, 2019). CASTOR used the features of restriction fragment length

polymorphism (Remita et al., 2017) and ML-DSP used Discrete Fourier Transformation, a digital

signal processing technique, to encode DNA sequence (Randhawa et al., 2019). K-mer (i.e., DNA

words of length k) feature is considered as core to the metagenomic read classification (Ounit et

al., 2015; Ounit and Lonardi, 2016; Lorenzi et al., 2020; Breitwieser et al., 2018). K-mer-based

classification is shown to be powerful to detect long sequences of RNAs (Kirk et al., 2018). Here

we used the k-mer features to develop VirusTaxo that classifies DNA and RNA viruses to their

taxonomic ranks from genome sequence. VirusTaxo has two separate models for DNA and RNA

viruses to classify their taxonomic ranks. An online version of VirusTaxo is available for users to

predict the taxonomic rank of a given virus from genome sequence.

Results and discussion

Classification of virus taxonomic ranks using VirusTaxo

We trained VirusTaxo using DNA and RNA virus genomes to predict their taxonomic ranks e.g.,

order, family and genus. Total 2,561 DNA and 1,480 RNA virus genomes were used to train the

VirusTaxo models that belong to 231 DNA and 142 RNA virus genera (Table 1). For the

hierarchical classification of virus taxonomic ranks, we trained multiple classifiers at each level

but during prediction we utilize one classifier at each level based on previous output except root.

(Fig. 1a) illustrates an example of total 8 classifiers trained for 2 orders, 5 families with 17

genera at three taxonomic ranks.
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Figure 1: Multi-class hierarchical classification model. a) Example of a hierarchical structure of virus taxonomic

ranks. Classifier(s) are added at each layer of taxonomic ranks. b) Schematic representation of the classifier for

training and testing by creating bags of k-mers from virus genomes.
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DNA and RNA virus genomes are different in their genome sizes (median size of DNA virus

genome is 44,559bp and RNA is 8,746bp) and sequence compositions (Chaitanya, 2019). We

extracted k-mers using different ranges of k-mer lengths e.g., 17-26bp and 13-22bp for DNA and

RNA viruses respectively. The accuracies of DNA and RNA models varied at different k-mer

lengths. K-mer lengths of 21-23bp showed highest accuracies in order (99.57%), family

(98.27%) and genus (94.81%) level in the DNA model (Fig. 2a). At the family level the

accuracies did not change between the k-mer lengths of 20-26bp. For the RNA model, k-mer

length of 17bp provided the maximum accuracies where the accuracies fluctuate with the k-mer

lengths (Fig. 2a). At a fixed k-mer length, the accuracies also reduced with the increase of

minimum frequency threshold (MFT) of k-mers in both models (Fig. 2b) (see methods). To

build the prediction models, we used k-mer lengths of 21bp and 17bp for DNA and RNA virus

datasets respectively with MFT value of 1. We tested the accuracies of these models to predict

order, family and genus by using test datasets that contain one species genome from each genus.

Total 231 DNA and 142 RNA genomes were randomly selected from each genus to generate test

datasets and repeated the testing 10 times. The average accuracies were 99% (order), 98%

(family) and 95% (genus) for the DNA viruses and 97% (order), 96% (family) and 82% (genus)

for the RNA viruses (Fig. 2c). Because of fewer branches and larger sample sizes in the top

taxonomic rank, order level accuracies were highest in both models and the accuracies dropped

gradually from family to genus level.
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Figure 2: Accuracy of VirusTaxo for order, family and genus level classification. a) Changes of accuracies at

different k-mers. For DNA and RNA datasets, 21 and 17 k-mer lengths provided the highest accuracy which is

highlighted in gray dotted line. b) Accuracies with different minimum frequency thresholds (MFT) at k-mer length

of 21bp and 17bp in DNA and RNA viruses respectively. c) Accuracies of VirusTaxo for 10 rounds of testing of

DNA and RNA models. For each iteration of hierarchical testing, one species genome per genus was randomly

selected from the DNA and RNA datasets.

Comparison of VirusTaxo with other machine learning algorithms

To benchmark the performances of VirusTaxo with other machine learning methods, we

compared VirusTaxo with four different algorithms e.g., random forest, gradient boosting,

multilayer perceptron, k-nearest neighbors. In both DNA and RNA virus datasets, VirusTaxo

outperformed other methods at all taxonomic ranks (e.g., order, family and genus) we analyzed.

VirusTaxo showed 1% (order), 6% (family) and 16% (genus) improvement over other methods

on average for DNA dataset (Table 1). For RNA datasets, VirusTaxo showed 5.5% (order), 13%

(family) and 27% (genus) improvement. On average RNA virus genome is 5 times smaller than

DNA virus and has 43% (1480/2561) less number of species genomes available compared to

DNA virus. Potentially for those reasons, accuracies of all models are relatively lower in RNA

dataset across all the methods compared to DNA dataset. In RNA datasets, VirusTaxo showed

significant improvement with 15% overall higher accuracies at order, family and genus levels on

average compared to other methods.

Table 1: Performance comparison of different algorithms to predict virus taxonomic ranks.

Performance comparison of VirusTaxo with four other algorithms using DNA and RNA datasets.

Highest accuracies in each dataset are highlighted in bold font. For VirusTaxo average accuracy

of 10 rounds of testing is shown here.
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Dataset Algorithm Order Family Genus

DNA

VirusTaxo 0.99 0.98 0.95

Random forest 0.97 0.96 0.88

Gradient boosting 0.99 0.94 0.76

Multilayer perceptron 0.99 0.90 0.84

k-nearest neighbors 0.97 0.89 0.67

RNA

VirusTaxo 0.97 0.96 0.82

Random forest 0.93 0.86 0.53

Gradient boosting 0.89 0.77 0.43

Multilayer perceptron 0.93 0.87 0.65

K-nearest neighbors 0.91 0.83 0.58

Benchmarking of VirusTaxo using full and partial genome assemblies from SARS-CoV-2

SARS-CoV-2 belongs to Betacoronavirus genus, Coronaviridae family and Nidovirales order.

(Fig. 3a) illustrated the taxonomic ranks of SARS-CoV-2 and its hierarchical taxonomic

classification by VirusTaxo. VirusTaxo accurately identified the Nidovirales order,

Coronaviridae family and Betacoronavirus genus from SARS-CoV-2 reference genome

sequence. In addition, we obtained 5,793 de novo assemblies of SARS-CoV-2 genome (Islam et

al., 2021). This dataset contains full and partial genome assemblies with minimum contig length

of 446bp (1.49% of the 29,903bp genome) and 261 assemblies had less than 75% of the genome

constructed. Despite the partial genomes provided, VirusTaxo model correctly predicted

Nidovirales as the order, Coronaviridae as the family, and Betacoronavirus as the genus for all of

the assemblies.
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Figure 3: Benchmarking of VirusTaxo for SARS-CoV-2 genomes. a) Schematic representation of hierarchical

prediction of taxonomic ranks of SARS-CoV-2 genome using VirusTaxo. In an evolutionary tree the genera were

connected together by lines that come from their most recent ancestor indicating their evolutionary relationship.

VirusTaxo classified the taxonomic ranks of SARS-CoV-2 for its order, family and genus which is highlighted in red

color. b) Distribution of fraction of genome assembled in 5,793 assemblies of SARS-CoV-2 genome.
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Methods

Datasets

RefSeq genomes of all RNA and DNA viruses were downloaded from the NCBI virus database

(Brister et al., 2015). Taxonomic classification of the viruses was obtained from the International

Committee on Taxonomy of Viruses, ICTV Master Species List 2019.v1 release (Adams et al.,

2017). We chose orders with at least two families, families with at least two genera, and genera

with at least three species to ensure sufficient genomes for the RNA and DNA virus classifier

models. The summary of the selected datasets is listed in (Table 1).

Table 1: Summary of RNA and DNA virus genome sequences.

DNA genomes RNA genomes

Order 3 9

Family 12 28

Genus 231 142

Total species genomes 2561 1480

Training and testing dataset for VirusTaxo

There are 2561 and 1480 species genomes that belong to 231 and 142 unique genera of DNA and

RNA viruses respectively (Table 1). We randomly selected one species genome from each genus

for testing the DNA and RNA models of VirusTaxo. Therefore, total 231 and 142 species

genomes were used to test the DNA and RNA models respectively. For the training of DNA and

RNA models, remaining 2,330 and 1,338 genomes were used in VirusTaxo. We iterated this

process 10 times and the average was reported as the model accuracy.
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Hierarchical classification architecture of VirusTaxo

Each virus is associated with taxonomic ranks e.g., order, family and genus. To classify

taxonomic ranks using virus genome, we developed VirusTaxo architecture of hierarchical

classification of virus taxonomy illustrated in (Fig. 1a). VirusTaxo uses a top to bottom approach

for the classification of order, family and genus of a virus sequence. For m and n number of

order and family respectively, there will be m numbers of family classifiers under respective

orders in the 2nd layer and n numbers of genus classifiers under respective families in the 3rd

layer. There will be a total number of classifiers = 1 + m + n in each model. We trained the

classifiers at different layers of the tree by utilizing Breadth First Search (BFS) (Moore, Edward

F., 1959) graph traversal algorithm for both DNA and RNA datasets. (Fig. 1a) illustrates an

example of hierarchical classification by VirusTaxo where the order classifier (OC) in the root is

classifying the genomes between two orders (e.g., Order-1 and Order-2). Then all the genomes in

an order are split into corresponding families to train the family level models. Two family

classifiers (e.g., FC-1 and FC-2) that belong to 2 orders classifying 5 families. Similarly, 5 genus

classifiers were built to classify the genomes into 17 genera.

Hierarchical prediction of taxonomic ranks

We pass a genome sequence through the order classifier and we get the decision for an order.

Then we pass it through the family classifier under the predicted order. Finally to get the genus,

we go to the genus classifier under the predicted family.

Training:
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A dataset and two parameters are required to train the multi-class classification model. These

parameters are k and the minimum frequency threshold (MFT) of k-mers. Here are the training

steps:

1. Create empty bags for each class.

2. Iterate over each sequence in the dataset and follow the steps mentioned below.

a. Generate k-mers by extracting substrings of k bp with k-1 bp overlaps from the

sequence.

b. Add extracted k-mers to a bag in accordance with the class.

3. Follow the steps below for each bag.

a. Create an empty set called temporary.

b. Iterate over each k-mer in the bag and perform the following action.

i. If the frequency of a k-mer in the current bag is greater than the MFT, then

add it to the temporary.

c. Update the current bag by temporary.

4. Return the bags as a model.

Training pseudocode:

1 function Train(data, k, minimum_frequency_threshold)

2        create hashmap B

3 for each (sequence, class) in data do

4            kmers ← extract(sequence, k)

5            B[class].add(kmers)

6 end for

7

8 for each class in B do

9            temporary ← Ø

10 for each kmer in B[class] do

11 if B[class].count(kmer)>= minimum_frequency_threshold then
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12                   temporary ← temporary ∪ {kmer}

13 end if

14 end for

15           B[class] ← temporary

16 end for

17

18 return B

Prediction:

Given an input sequence, model and k, the following steps are performed for predicting the rank

and class.

1. Generate k-mers (same k-mer generation technique that was used in training) from the

given input sequence.

2. Declare two variables called maximum count and prediction. Then initialize them with 0

and null respectively.

3. Iterate over each bag from the model and follow the steps mentioned below.

a. Count how many extracted k-mers from the input sequence overlap with the bag.

b. If the current count is greater than the maximum count, then update the maximum

count as well as the prediction by the current count and bag’s label.

4. Return the prediction as output.

Prediction pseudocode:

1 function predict(sequence, model, k)

2        kmers ← extract(sequence)

3        maximum_count, prediction ← 0, null

4 for each (class, bag) in model do

5            count ← 0

6 for each kmer in kmers do
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7 if kmer in bag then

8                    count ← count + 1

9 end if

10 end for

11 if count > maximum_count then

12               maximum_count, prediction ← count, class

13 end if

14 end for

15

16 return prediction

Benchmarking of virus taxonomic classification:

We compared the performances of VirusTaxo with four other algorithms on RNA and DNA virus

datasets. We used word2vec encoding (Mikolov et al., 2013) for transforming genome sequences

into vectors. To train two word2vec models for DNA and RNA datasets, we generated a stream

of k-mers without changing sequence chronology of k-mers from each genome sequence taking

21bp and 17bp k-mer length respectively. We trained word2vec models using fastText

(Bojanowski et al., 2017) using the following hyperparameters in (Table 2). After completion of

word2vec training, we utilize four algorithms (Multilayer perceptron, Random forest, Gradient

boosting, KNN) one by one in hierarchical classification of RNA virus and DNA virus. The

hyperparameter details of the four algorithms are in (Table 3). Here we also randomly choose

one species genome from each genus to create the test set.

Table 2: Hyperparameters setup for word2vec training.

Hyperparameters Value

Method (Skip-gram / CBOW) Skip-gram

Dimension 300

Learning rate 0.025
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Table 3: Hyperparameters for four algorithms used to perform benchmarking.

Algorithm Hyperparameters

Multilayer perceptron Hidden layer: 1
No of nodes in hidden layer: 100
Optimizer: Stochastic gradient descent
Learning rate: 0.01

Random forest No of trees: 100
Metric: Gini impurity

Gradient boosting Learning rate: 0.01
Loss function: Deviance

K-nearest neighbors K: 5

Benchmarking of SARS-CoV-2 assemblies using VirusTaxo

We benchmarked the VirusTaxo RNA model using a total of 5,793 SARS-CoV-2 RNA virus

assemblies from (Islam et al., 2021). For each RNA fasta file, the prediction was done using the

VirusTaxo RNA model.
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